Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
EMBO Rep ; 25(9): 3777-3788, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39060455

RESUMO

RNA vaccines elicit protective immunity against SARS-CoV-2, but the use of mRNA as an antiviral immunotherapeutic is unexplored. Here, we investigate the activity of lipidoid nanoparticle (LNP)-formulated mRNA encoding human IFNλ1 (ETH47), which is a critical driver of innate immunity at mucosal surfaces protecting from viral infections. IFNλ1 mRNA administration promotes dose-dependent protein translation, induction of interferon-stimulated genes without relevant signs of unspecific immune stimulation, and dose-dependent inhibition of SARS-CoV-2 replication in vitro. Pulmonary administration of IFNλ1 mRNA in mice results in a potent reduction of virus load, virus-induced body weight loss and significantly increased survival. These data support the development of inhaled administration of IFNλ1 mRNA as a potential prophylactic option for individuals exposed to SARS-CoV-2 or at risk suffering from COVID-19. Based on the broad antiviral activity of IFNλ1 regardless of virus or variant, this approach might also be utilized for other respiratory viral infections or pandemic preparedness.


Assuntos
COVID-19 , Interferon lambda , RNA Mensageiro , SARS-CoV-2 , Animais , Feminino , Humanos , Camundongos , Antivirais , Chlorocebus aethiops , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Imunomodulação , Interferons/metabolismo , Lipossomos , Nanopartículas/administração & dosagem , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , SARS-CoV-2/imunologia , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Carga Viral , Replicação Viral , Interferon lambda/administração & dosagem , Interferon lambda/genética
2.
FASEB J ; 38(2): e23443, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38265281

RESUMO

Immune-mediated acute hepatic injury is characterized by the destruction of a large number of hepatocytes and severe liver function damage. Interleukin-28A (IL-28A), a member of the IL-10 family, is notable for its antiviral properties. However, despite advances in our understanding of IL-28A, its role in immune-mediated acute injury remains unclear. The present study investigated the role of IL-28A in concanavalin A (Con A)-induced acute immune liver injury. After Con A injection in mice, IL-28A level significantly increased. IL-28A deficiency was found to protect mice from acute liver injury, prolong survival time, and reduce serum aspartate aminotransferase and alanine aminotransferase levels. In contrast, recombinant IL-28A aggravated liver injury in mice. The proportion of activated M1 macrophages was significantly lower in the IL-28A-deficiency group than in the wild-type mouse group. In adoptive transfer experiments, M1 macrophages from WT could exacerbate mice acute liver injury symptoms in the IL-28A deficiency group. Furthermore, the expression of proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), IL-12, IL-6, and IL-1ß, by M1 macrophages decreased significantly in the IL-28A-deficiency group. Western blotting demonstrated that IL-28A deficiency could limit M1 macrophage polarization by modulating the nuclear factor (NF)-κB, mitogen-activated protein kinase (MAPK), and interferon regulatory factor (IRF) signaling pathways. In summary, IL-28A deletion plays an important protective role in the Con A-induced acute liver injury model and IL-28A deficiency inhibits the activation of M1 macrophages by inhibiting the NF-κB, MAPK, and IRF signaling pathways. These results provide a potential new target for the treatment of immune-related hepatic injury.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Citocinas , Interferon lambda , Interleucinas , Animais , Camundongos , Concanavalina A , Fatores Reguladores de Interferon , Fígado , Macrófagos , Proteínas Quinases Ativadas por Mitógeno , Interferon lambda/genética , Interleucinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA