Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
2.
BMC Plant Biol ; 24(1): 237, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38566021

RESUMO

BACKGROUND: Onions are economically and nutritionally important vegetable crops. Despite advances in technology and acreage, Indian onion growers face challenges in realizing their full productivity potential. This study examines the technical efficiency of onion growers, the factors influencing it, and the constraints faced by those adopting drip irrigation in the Ghod river basin of western Maharashtra. A sample of 480 farmers including those practicing drip irrigation and those not practicing it, was selected from Junnar, Shirur, Parner, and Shrigonda blocks of the basin. The primary data was collected through semi-structured interviews. Analytical tools such as the Cobb-Douglas production function (represents technological relationship between multiple inputs and the resulting output), a single-stage stochastic frontier model, the Tobit model, and descriptive statistics were used to assess the technical efficiency of onion production at the farm level. RESULTS: According to the maximum likelihood estimates of the stochastic frontier analysis, drip adopters exhibited a mean technical efficiency of 92%, while for non-adopters it was 65%. It indicates that the use of drip irrigation technology is associated with higher technical efficiency. The association of technical efficiency and socio-economic characters of households showed that education, extension contacts, social participation, and use of information sources had a positive influence on technical efficiency, while family size had a negative influence on the drip irrigation adopters. For non-drip adopters, significant positive effects were observed for landholding, extension contact, and information source use. The major constraints faced by drip system adopters included a lack of knowledge about the proper operating techniques for drip systems and the cost of maintenance. CONCLUSION: The differences with inputs associated with two irrigation methods showed that the response of inputs to increase onion yield is greater for farmers who use drip irrigation than for farmers who do not, and are a result of the large differences in the technical efficiencies. These inefficiencies and other limitations following the introduction of drip irrigation, such as lack of knowledge about the proper operations, need to be addressed through tailored training for farmers and further interventions.


Assuntos
Irrigação Agrícola , Cebolas , Irrigação Agrícola/métodos , Índia , Fazendas , Produtos Agrícolas
3.
BMC Plant Biol ; 24(1): 317, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654169

RESUMO

BACKGROUND: Fennel essential oils are fragrance compounds used in food and pharmaceutical sectors. One of the major impediments to expansion of fennel farming in Egypt's reclamation areas is saline water. Titanium dioxide (TiO2) or TiO2 nano particles (TiO2NP) can be utilized to boost the yield of aromatic plants cultivated under saline irrigation water. Saline water, particularly which contains sodium chloride can harm fennel plant; consequently, it was predicted that fennel production would fail in Egypt's reclaimed area, where the primary source of irrigation is groundwater consisting sodium chloride. This study sought to help fennel respond to sodium chloride by applying Ti forms to their leaves in order to reduce the detrimental effects of sodium chloride on them for expanding their production in the newly reclamation areas as a natural source of essential oil. Ti forms were applied as foliar application at 0, 0.1, 0.2 TiO2, 0.1 TiO2NP, and 0.2 TiO2NP, mM under irrigation with fresh water (0.4 dS m-1), or saline water (51.3 mM or 4.7 dS m-1). RESULTS: Plants exposed to 0.1 mM TiO2NP under fresh water resulted in the maximum values of morphological characters, estragole, oxygenated monoterpenes and photosynthetic pigments; while those subjected to 0.1 mM TiO2NP under saline water gave the greatest values of essential oil, proline, antioxidant enzymes and phenols. The greatest amounts of soluble sugars were recorded with 0.2 mM TiO2NP irrigated with saline water. Plants subjected to 0 mM TiO2 under saline water produced the greatest values of flavonoids, hydrogen peroxide and malondialdehyde. CONCLUSION: To mitigate the negative effects of salty irrigation water on fennel plant production, TiO2NP application is suggested as a potential strategy.


Assuntos
Irrigação Agrícola , Foeniculum , Folhas de Planta , Titânio , Irrigação Agrícola/métodos , Folhas de Planta/efeitos dos fármacos , Foeniculum/química , Nanopartículas , Águas Salinas , Óleos Voláteis
4.
BMC Plant Biol ; 24(1): 548, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38872106

RESUMO

Enhancing wheat productivity by implementing a comprehensive approach that combines irrigation, nutrition, and organic amendments shows potential for collectively enhancing crop performance. This study examined the individual and combined effects of using irrigation systems (IS), foliar potassium bicarbonate (PBR) application, and compost application methods (CM) on nine traits related to the growth, physiology, and yield of the Giza-171 wheat cultivar. Analysis of variance revealed significant (P ≤ 0.05) main effects of IS, PBR, and CM on wheat growth, physiology, and yield traits over the two growing seasons of the study. Drip irrigation resulted in a 16% increase in plant height, leaf area index, crop growth rate, yield components, and grain yield compared to spray irrigation. Additionally, the application of foliar PBR at a concentration of 0.08 g/L boosted these parameters by up to 22% compared to the control. Furthermore, the application of compost using the role method resulted in enhanced wheat performance compared to the treatment including mix application. Importantly, the combined analysis revealed that the three-way interaction between the three factors had a significant effect (P ≤ 0.05) on all the studied traits, with drip irrigation at 0.08 g PBR rate and role compost application method (referred as Drip_0.08g_Role) resulting in the best performance across all traits, while sprinkle irrigation without PBR and conventional mixed compost method (referred as sprinkle_CK_Mix) produced the poorest results. This highlights the potential to synergistically improve wheat performance through optimized agronomic inputs.


Assuntos
Irrigação Agrícola , Triticum , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Irrigação Agrícola/métodos , Fertilizantes , Bicarbonatos/metabolismo , Compostagem/métodos , Compostos de Potássio , Solo/química
5.
BMC Plant Biol ; 24(1): 775, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39143521

RESUMO

BACKGROUND: To optimize irrigation water use and productivity, understanding the interactions between plants, irrigation techniques, and fertilization practices is crucial. Therefore, the experiment aims to assess the effectiveness of two application methods of potassium humate combined with chelated zinc under partial root-zone drip irrigation techniques on maize nutrient uptake, yield, and irrigation water use efficiency across two irrigation levels. METHODS: Open-field experiments were carried out in two summer seasons of 2021 and 2022 under alternate and fixed partial root-zone drip irrigation techniques to investigate their impacts at two irrigation levels and applied foliar and soil applications of potassium humate or chelated zinc in a sole and combinations on maize. RESULTS: Deficit irrigation significantly increased hydrogen peroxide levels and decreased proline, antioxidant enzymes, carbohydrate, chlorophyll (a + b), and nutrient uptake in both partial root-zone techniques. The implementation of combined soil application of potassium humate and chelated zinc under drought conditions on maize led to varying impacts on antioxidant enzymes and nutritional status, depending on the type of partial root-zone technique. Meanwhile, the results showed that fixed partial root-zone irrigation diminished the negative effects of drought stress by enhancing phosphorus uptake (53.8%), potassium uptake (59.2%), proline (74.4%) and catalase (75%); compared to the control. These enhancements may contribute to improving the defense system of maize plants in such conditions. On the other hand, the same previous treatments under alternate partial root zone modified the defense mechanism of plants and improved the contents of peroxidase, superoxide dismutase, and the uptake of magnesium, zinc, and iron by 81.3%, 82.3%, 85.1%, 56.9%, and 80.2%, respectively. CONCLUSIONS: Adopting 75% of the irrigation requirements and treating maize plants with the soil application of 3 g l-1 potassium humate combined with 1.25 kg ha-1 chelated zinc under alternate partial root-zone technique, resulted in the maximum root length, leaf water content, chlorophyll content, yield, and irrigation water use efficiency.


Assuntos
Irrigação Agrícola , Raízes de Plantas , Potássio , Zea mays , Zinco , Zea mays/metabolismo , Irrigação Agrícola/métodos , Zinco/metabolismo , Potássio/metabolismo , Raízes de Plantas/metabolismo , Água/metabolismo , Clima Desértico , Solo/química , Secas , Fertilizantes
6.
BMC Plant Biol ; 24(1): 754, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39107692

RESUMO

BACKGROUND: This study aimed to evaluate the suitability of using drain water as a source of irrigation and its effects along with salicylic acid on morphological, anatomical, physico-chemical as well as yield attributes of potato. For this study, potato tubers were grown in pots and irrigated with different concentrations of drain water. Salicylic acid treatments vis. 0, 0.5 and 1.0 mM were applied foliarly. Pre- and post-harvest analysis was carried out to determine different attributes of soil, water and plants after 60 days. RESULTS: The growth of potato plant was increased as the concentration of SA increased through increasing shoot length, fresh/dry weight and tuber number/plant. In this research work, plant respond to overcome metal stresses by up regulating antioxidant defense system such as, peroxidase, catalase and superoxide dismutase) by application of highest treatment of SA when irrigated with 6% drain water. Plants accumulated the highest concentrations of Cd, Cr, and Pb in the leaves when treated with 1 mM of SA, compared to other plant parts. It was observed that photosynthetic pigment enhanced in 6% drain water treated plants when applied with 1mM SA as compared to control. An increase in epidermis and cortical cell thickness, as well as stomatal closure, was observed, helping to maintain water loss under stress conditions. CONCLUSIONS: According to these results, it can be suggested that SA is potent signaling molecule can play an essential role in maintaining potato growth when irrigated with drain water containing heavy metals through stimulating metal up take and up regulation of antioxidant enzymes.


Assuntos
Irrigação Agrícola , Folhas de Planta , Ácido Salicílico , Solanum tuberosum , Águas Residuárias , Solanum tuberosum/efeitos dos fármacos , Solanum tuberosum/crescimento & desenvolvimento , Ácido Salicílico/farmacologia , Folhas de Planta/efeitos dos fármacos , Irrigação Agrícola/métodos , Tubérculos/efeitos dos fármacos , Tubérculos/crescimento & desenvolvimento , Tubérculos/anatomia & histologia , Antioxidantes/metabolismo
7.
Environ Res ; 255: 119138, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750999

RESUMO

The application of organic amendments is one way to manage low water irrigation in paddy soils. In this 60-day greenhouse pot experiment involving paddy soil undergoing drying-rewetting cycles, we examined the effects of two organic amendments: azo-compost with a low carbon to phosphorus ratio (C:P) of 40 and rice straw with a high C:P ratio of 202. Both were applied at rates of 1.5% of soil weight (w/w). The investigation focused on changes in certain soil biochemical characteristics related to C and P in the rice rhizosphere, as well as rice plant characteristics. The irrigation regimes applied in this study included constant soil moisture in a waterlogged state (130% water holding capacity (WHC)), mild drying-rewetting (from 130 to 100% WHC), and severe drying-rewetting (from 130 to 70% WHC). The results indicated that the application of amendments was effective in severe drying-rewetting irrigation regimes on soil characteristics. Drying-rewetting decreased soil respiration rate (by 60%), microbial biomass carbon (by 70%), C:P ratio (by 12%), soil organic P (by 16%), shoot P concentration (by 7%), and rice shoot biomass (by 30%). However, organic amendments increased soil respiration rate (by 8 times), soil microbial biomass C (51%), total C (TC) (53%), dissolved organic carbon (3 times), soil available P (AP) (100%), soil organic P (63%), microbial biomass P (4.5 times), and shoot P concentration (21%). The highest significant correlation was observed between dissolved organic carbon and total C (r= 0.89**). Organic amendments also increased P uptake by the rice plant in the order: azo-compost > rice straw > control treatments, respectively, and eliminated the undesirable effect of mild drying-rewetting irrigation regime on rice plant biomass. Overall, using suitable organic amendments proves promising for enhancing soil properties and rice growth under drying-rewetting conditions, highlighting the interdependence of P and C biochemical changes in the rhizosphere during the rice vegetative stage.


Assuntos
Irrigação Agrícola , Oryza , Solo , Oryza/crescimento & desenvolvimento , Irrigação Agrícola/métodos , Solo/química , Carbono/análise , Fósforo/análise , Água , Biomassa , Microbiologia do Solo
8.
Environ Res ; 252(Pt 3): 118693, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38537742

RESUMO

Soil nitrogen (N) transformation processes, encompassing denitrification, anaerobic ammonium oxidation (anammox), and anaerobic ammonium oxidation coupled with iron reduction (Feammox), constitute the primary mechanisms of soil dinitrogen (N2) loss. Despite the significance of these processes, there is a notable gap in research regarding the assessment of managed fertilization and irrigation impacts on anaerobic N transformations in paddy soil, crucial for achieving sustainable soil fertility management. This study addressed the gap by investigating the contributions of soil denitrification, anammox, and Feammox to N2 loss in paddy soil across varying soil depths, employing different fertilization and irrigation practices by utilizing N stable isotope technique for comprehensive insights. The results showed that anaerobic N transformation processes decreased with increasing soil depth under alternate wetting and drying (AWD) irrigation, but increased with the increasing soil depth under conventional continuous flooding (CF) irrigation. The denitrification and anammox rates varied from 0.41 to 2.12 mg N kg-1 d-1 and 0.062-0.394 mg N kg-1 d-1, respectively, which accounted for 84.3-88.1% and 11.8-15.7% of the total soil N2 loss. Significant correlations were found among denitrification rate and anammox rate (r = 0.986, p < 0.01), Fe (Ⅲ) reduction rate and denitrification rate (r = 0.527, p < 0.05), and Fe(Ⅲ) reduction rate and anammox rate (r = 0.622, p < 0.05). Moreover, nitrogen loss was more pronounced in the surface layer of the paddy soil compared to the deep layer. The study revealed that denitrification predominantly contributed to N loss in the surface soil, while Feammox emerged as a significant N loss pathway at depths ranging from 20 to 40 cm, accounting for up to 26.1% of the N loss. It was concluded that fertilization, irrigation, and soil depth significantly influenced anaerobic N transformation processes. In addition, the CF irrigation practice is best option to reduce N loss under managed fertilization. Furthermore, the role of microbial communities and their response to varying soil depths, fertilization practices, and irrigation methods could enhance our understanding on nitrogen loss pathways should be explored in future study.


Assuntos
Irrigação Agrícola , Desnitrificação , Nitrogênio , Solo , Nitrogênio/metabolismo , Nitrogênio/análise , Irrigação Agrícola/métodos , Solo/química , Anaerobiose , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Oxirredução , Microbiologia do Solo , Fertilizantes/análise
9.
Environ Res ; 252(Pt 2): 118920, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38657849

RESUMO

Long-term wastewater irrigation leads to the loss of calcium carbonate (CaCO3) in the tillage layer of calcareous land, which irreversibly damages the soil's ability to retain cadmium (Cd). In this study, we selected calcareous agricultural soil irrigated with wastewater for over 50 years to examine the recalcification effects of sugar beet factory lime (SBFL) at doses of 0%, 2.5%, 5%, and 10%. We found that SBFL promoted Cd transformation in the soil from active exchangeable species to more stable carbonate-bonded and residual species, which the X-ray diffraction patterns also confirmed results that CdSO4 reduced while CdS and CaCdCO3 increased. Correspondingly, the soil bioavailable Cd concentration was significantly reduced by 65.6-84.7%. The Cd concentrations in maize roots and shoots were significantly reduced by 11.7-50.6% and 13.0-70.0%, respectively, thereby promoting maize growth. Nevertheless, SBFL also increased the proportion of plant-unavailable phosphorus (P) in Ca8-P and Ca10-P by 4.3-13.0% and 10.7-25.9%, respectively, reducing the plant-available P (Olsen P) content by 5.2-22.1%. Consequently, soil P-acquiring associated enzyme (alkaline phosphatase) activity and microbial (Proteobacteria, Bacteroidota, and Actinobacteria) community abundance significantly increased. Our findings showed that adding SBFL to wastewater-irrigated calcareous soil stabilized Cd, but exacerbated P limitation. Therefore, it is necessary to alleviate P limitations in the practice of recalcifying degraded calcareous land.


Assuntos
Cádmio , Carbonato de Cálcio , Fósforo , Poluentes do Solo , Solo , Águas Residuárias , Zea mays , Cádmio/análise , Cádmio/química , Fósforo/análise , Águas Residuárias/química , Poluentes do Solo/análise , Poluentes do Solo/química , Solo/química , Zea mays/química , Carbonato de Cálcio/química , Irrigação Agrícola/métodos , Microbiologia do Solo , Óxidos , Compostos de Cálcio
10.
Environ Res ; 249: 118387, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38336162

RESUMO

Achieving a balance between greenhouse gas mitigation and biomass production in grasslands necessitates optimizing irrigation frequency and nitrogen addition, which significantly influence grassland productivity and soil nitrous oxide emissions, and consequently impact the ecosystem carbon dioxide exchange. This study aimed to elucidate these influences using a controlled mesocosm experiment where bermudagrass (Cynodon dactylon L.) was cultivated under varied irrigation frequencies (daily and every 6 days) with (100 kg ha-1) or without nitrogen addition; measurements of net ecosystem carbon dioxide exchange, ecosystem respiration, soil respiration, and nitrous oxide emissions across two cutting events were performed as well. The findings revealed a critical interaction between water-filled pore space, regulated by irrigation, and nitrogen availability, with the latter exerting a more substantial influence on aboveground biomass growth and ecosystem carbon dioxide exchange than water availability. Moreover, the total dry matter was significantly higher with nitrogen addition compared to without nitrogen addition, irrespective of the irrigation frequency. In contrast, soil nitrous oxide emissions were observed to be significantly higher with increased irrigation frequency and nitrogen addition. The effects of nitrogen addition on soil respiration components appeared to depend on water availability, with autotrophic respiration seeing a significant rise with nitrogen addition under limited irrigation (5.4 ± 0.6 µmol m-2 s-1). Interestingly, the lower irrigation frequency did not result in water stress, suggesting resilience in bermudagrass. These findings highlight the importance of considering interactions between irrigation and nitrogen addition to optimize water and nitrogen input in grasslands for a synergistic balance between grassland biomass production and greenhouse gas emission mitigation.


Assuntos
Irrigação Agrícola , Biomassa , Pradaria , Gases de Efeito Estufa , Nitrogênio , Gases de Efeito Estufa/análise , Nitrogênio/metabolismo , Irrigação Agrícola/métodos , Óxido Nitroso/análise , Óxido Nitroso/metabolismo , Solo/química , Cynodon/crescimento & desenvolvimento , Cynodon/metabolismo , Dióxido de Carbono/análise , Dióxido de Carbono/metabolismo , Fertilizantes/análise
11.
Ecotoxicol Environ Saf ; 282: 116707, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38996645

RESUMO

CRISPR/Cas9, a potent genetic engineering tool widely adopted in agriculture, is capable of introducing new characteristics into plants on a large scale and without conventional breeding methods. Despite its remarkable efficiency, concerns have arisen regarding unintended consequences in uncontrolled environments. Our aim was to assess potential activity in organisms that could be exposed to genome editing in uncontrolled environments. We developed three scenarios, using irrigation, fumigation and fertilization as delivery methods, based on outdoor uses in agriculture, namely pest and disease control. Using publicly available software (Cas-OFFinder, NCBI Genome Data Viewer and STRING), off-target effects were predicted in multiple species commonly found in the agroecosystem, including humans (16 of 38 (42 %) sampled). Metabolic enrichment analysis (gene IDs), by connecting off-target genes into a physiological network, predicted effects on the development of nervous and respiratory systems. Our findings emphasize the importance of exercising caution when considering the use of this genome editing in uncontrolled environments. Unintended genomic alterations may occur in unintended organisms, underscoring the significance of understanding potential hazards and implementing safety measures to protect human health and the environment.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Edição de Genes/métodos , Humanos , Agricultura/métodos , Animais , Irrigação Agrícola/métodos
12.
Ecotoxicol Environ Saf ; 281: 116648, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38964065

RESUMO

The pollution of Pb2+ and Cd2+ in both irrigation water and soil, coupled with the scarcity of vital mineral nutrition, poses a significant hazard to the security and quality of agricultural products. An economical potassium feldspar-derived adsorbent (PFDA) was synthesized using potassium feldspar as the main raw material through ball milling-thermal activation technology to solve this problem. The synthesis process is cost-effective and the resulting adsorbent demonstrates high efficiency in removing Pb2+ and Cd2+ from water. The removal process is endothermic, spontaneous, and stochastic, and follows the quasi-second-order kinetics, intraparticle diffusion, and Langmuir model. The adsorption and elimination of Pb2+ and Cd2+ is largely dependent on monolayer chemical sorption. The maximum removal capacity of PFDA for Pb2+ and Cd2+ at room temperature is 417 and 56.3 mg·g-1, respectively, which is superior to most mineral-based adsorbents. The desorption of Pb2+/Cd2+ on PFDA is highly challenging at pH≥3, whereas PFDA and Pb2+/Cd2+ are recyclable at pH≤0.5. When Pb2+ and Cd2+ coexisted, Pb2+ was preferentially removed by PFDA. In the case of single adsorption, Pb2+ was mainly adsorbed onto PFDA as Pb2SiO4, PbSiO3·xH2O, Pb3SiO5, PbAl2O4, PbAl2SiO6, PbAl2Si2O8, Pb2SO5, and PbSO4, whereas Cd2+ was primarily adsorbed as CdSiO3, Cd2SiO4, and Cd3Al2Si3O12. After the complex adsorption, the main products were PbSiO3·xH2O, PbAl2Si2O8, Pb2SiO4, Pb4Al2Si2O11, Pb5SiO7, PbSO4, CdSiO3, and Cd3Al2Si3O12. The forms of mineral nutrients in single and complex adsorption were different. The main mechanisms by which PFDA removed Pb2+ and Cd2+ were chemical precipitation, complexation, electrostatic attraction, and ion exchange. In irrigation water, the elimination efficiencies of Pb2+ and Cd2+ by PFDA within 10 min were 96.0 % and 70.3 %, respectively, and the concentrations of K+, Si4+, Ca2+, and Mg2+ increased by 14.0 %, 12.4 %, 55.7 %, and 878 %, respectively, within 60 min. PFDA holds great potential to replace costly methods for treating heavy metal pollution and nutrient deficiency in irrigation water, offering a sustainable, cost-effective solution and paving a new way for the comprehensive utilization of potassium feldspar.


Assuntos
Irrigação Agrícola , Cádmio , Chumbo , Poluentes Químicos da Água , Qualidade da Água , Adsorção , Poluentes Químicos da Água/química , Chumbo/química , Cádmio/química , Irrigação Agrícola/métodos , Purificação da Água/métodos , Metais Pesados/química , Compostos de Potássio/química , Nutrientes , Cinética
13.
Ecotoxicol Environ Saf ; 277: 116376, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38657453

RESUMO

The application of an external magnetic field has been shown to improve the Cd phytoremediation efficiency of F. arundinacea by leaf harvesting. However, the influencing mechanisms of the promoting effect have not yet been revealed. This study evaluated variations in the Cd subcellular allocation and fractions in various F. arundinacea leaves, with or without magnetized water irrigation. Over 50 % of the metal were sequestered within the cell wall in all tissues under all treatments, indicating that cell wall binding was a critical detoxification pathway for Cd. After magnetized water treatment, the metal stored in the cytoplasm of roots raised from 33.1 % to 45.3 %, and the quantity of soluble Cd in plant roots enhanced from 53.4 % to 59.0 %. The findings suggested that magnetized water mobilized Cd in the roots, and thus drove it into the leaves. In addition, the proportion of Cd in the organelles, and the concentration of ethanol-extracted Cd in emerging leaves, decreased by 13.0 % and 47.1 %, respectively, after magnetized water treatment. These results explained why an external field improved the phytoextraction effect of the plant through leaf harvesting.


Assuntos
Biodegradação Ambiental , Cádmio , Festuca , Folhas de Planta , Raízes de Plantas , Folhas de Planta/metabolismo , Cádmio/toxicidade , Cádmio/metabolismo , Raízes de Plantas/metabolismo , Festuca/metabolismo , Festuca/efeitos dos fármacos , Irrigação Agrícola/métodos , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade , Água/química
14.
ScientificWorldJournal ; 2024: 9945354, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39026597

RESUMO

Poor agricultural soil management practices and water use optimisation in irrigation are major challenges facing crop production in Senegal. To address these problems, a factorial experiment was conducted in 2021 and 2022 to investigate the effects of biochar on tomato growth and yield in sandy loam soil under different irrigation levels. Treatments included three biochar treatments (B2 = 30 t·ha-1, B1 = 15 t·ha-1, and B0 = 0 t·ha-1) and three irrigation levels (full irrigation, W0 = 8 L·m-2·day-1; medium deficit irrigation, W1 = 6 L·m-2·day-1, which is 75% of W0; and deficit irrigation, W2 = 4 L·m-2·day-1, 50% of W0). The results showed that using biochar at 30 t·ha-1 significantly (P < 0.05) reduced the bulk density of the soil by up to 8.3% under W1. In addition, biochar at 15 t·ha-1 and 30 t·ha-1 enhanced, regardless of the amount of water applied, the growth of tomato plants by at least 14% compared to that in the B0 treatment. Furthermore, the tomatoes' yields in biochar treatments B1 (12.58 t·ha-1) and B2 (12.45 t·ha-1) under W2 were greater than those under B0 (9.27 t·ha-1) under full irrigation. The combinations of biochar and the lowest irrigation water level (W2 and B1 or W2 and B2) can therefore allow a water economy of up to 50% of full irrigation without compromising yield. Our study concluded that biochar could sustainably reduce agricultural water consumption while increasing yields. To further understand the influence of biochar on sandy loam soil, more research is needed on its effects on soil moisture content at permanent wilting points and field capacity.


Assuntos
Irrigação Agrícola , Carvão Vegetal , Solo , Solanum lycopersicum , Solanum lycopersicum/crescimento & desenvolvimento , Solo/química , Irrigação Agrícola/métodos , Senegal , Água , Agricultura/métodos
15.
ScientificWorldJournal ; 2024: 9982796, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38818109

RESUMO

Irrigation development, particularly small-scale irrigation, is one of the most important projects for improving agricultural productivity in a country's rural communities. The extent to which small-scale irrigation has improved household livelihoods in Ethiopia's rural areas is not widely recognized. As a result, research on the influence of small-scale irrigation on farmers' livelihoods in the Legehida district will be sought. The study took a "with" and "without" strategy, comparing farmers who used irrigation against those who did not. For analysis, both quantitative and qualitative data were employed. The survey's respondents were chosen using a random sample approach from both irrigation users and nonuser households. Quantitative data for the study were collected from randomly selected 241 farm households, of which 113 were users and 128 were nonusers, using a semistructured questionnaire. Accordingly, the propensity score matching model was employed to examine the impacts of small-scale irrigation on farmers' livelihoods. The logit model result indicates that cultivated land size, off-farm income, education level, family size, dependency ratio, total livestock unit, and distance to the nearest agricultural extension office/FTC are determinant factors in determining whether to practice irrigation when other factors remain constant. The impact of irrigation on a household's income and food security (in terms of daily calorie intake) was evaluated using a propensity score matching model. The result shows that a positive and significant impact on farmers who use small-scale irrigation has increased the daily calorie intake and annual income of households by 244.162 kilocalories and 5234.258 ETB, respectively, as compared to nonirrigation users. This shows that households that participate in small-scale irrigation activities have a higher annual income and food security status than comparable groups. In general, the study recommends that to reduce food insecurity and the socioeconomic problems of rural households, irrigation farming is one of the viable solutions; therefore, the government and nongovernmental organizations should extensively focus on the enhancement of small-scale irrigation infrastructure, policies, strategies, and extension services to increase productivity, income, and livelihood improvement in rural households.


Assuntos
Irrigação Agrícola , Características da Família , População Rural , Etiópia , Irrigação Agrícola/métodos , Humanos , Fazendeiros , Fazendas , Inquéritos e Questionários , Renda , Feminino , Masculino , Agricultura/métodos , Adulto , Segurança Alimentar
16.
J Environ Manage ; 361: 121240, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38805960

RESUMO

Afforestation plays a crucial role in environmental management for many countries. Yet, frequently extreme high temperature (EHT) events in arid and semi-arid regions easily cause the death of artificially planted saplings. To address this, we present a new in-situ supplementary irrigation device (SID) consisting of a rainwater catching board, a storage tank, and ceramic emitters. A continuous EHT experiment combined with the HYDRUS-2D model in North China is further conducted to investigate the soil water-heat properties of the in-situ SID and the growth performance of the planted saplings (Platycladus orientalis) under EHT. The results show that in-situ SID keeps a stable and suitable soil water-heat status in the root layer of the planted saplings under EHT. Especially, the in-situ SID with one ceramic emitter maintains the soil water moisture in a narrow and suitable range from 0.149 cm3 cm-3 to 0.153 cm3 cm-3, and reduces the maximum soil temperature by 2.7 °C compared to the traditional irrigation method. Furthermore, the in-situ SID with one ceramic emitter presents the highest average leaf water content (66.9%), new shoot (35.0 mm), and tree height (62.0 mm). The economic benefit analysis finds that the in-situ SID provides a shorter time to recover high funds and saves a large amount of irrigation water resources. Overall, this study provides an effective irrigation device for forest managers to improve the ecological service effectiveness of afforestation in areas with frequent EHT events and scarce water resources.


Assuntos
Solo , China , Irrigação Agrícola/métodos , Árvores/crescimento & desenvolvimento , Chuva , Temperatura Alta
17.
J Environ Manage ; 352: 120087, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38215592

RESUMO

Saline water has proven to be one of the alternative sources of freshwater for agricultural irrigation in water-scarce areas. However, the changes in farmland ecology caused by saline water irrigation remain unclear. In this study, six irrigation water salinities (CK: 1.3 dS m-1, S1: 3.4 dS m-1, S2: 7.1 dS m-1, S3: 10.6 dS m-1, S4: 14.1 dS m-1, S5: 17.7 dS m-1) were set in a three-year (2019, 2021-2022) experiment to investigate their effects on soil environment and greenhouse gas emissions in cotton fields under long-term saline water irrigation. Results show that soil salinity in the same layer increased as increasing water salinity. Soil moisture of S3-S5 increased significantly by 4.99-12.94%. There was no significant difference in soil organic matter content between CK and S1. Saline water irrigation increased soil ammonium nitrogen content by 0.57-49.26%, while decreasing nitrate nitrogen content by 1.43-32.03%. Soil CO2 and N2O emissions and CH4 uptake were lower in S1-S5 than in CK at different cotton growth stages. In addition, saline water irrigation reduced the global warming potential by 6.93-53.86%. A structural equation model was developed to show that soil salinity, moisture, and ammonium nitrogen content were negatively correlated with global warming potential, while organic matter and nitrate nitrogen had positive effects on global warming potential. Considering the comprehensive perspectives of gas emissions and cotton yield, irrigation water with salinity less than 10.6 dS m-1 could effectively reduce greenhouse gas emissions from cotton fields while maintaining stable cotton yields in the experimental area and similar region.


Assuntos
Compostos de Amônio , Gases de Efeito Estufa , Gases de Efeito Estufa/análise , Nitratos , Óxido Nitroso/análise , Solo/química , Irrigação Agrícola/métodos , China , Águas Salinas , Nitrogênio , Agricultura , Fertilizantes/análise , Metano/análise
18.
J Environ Manage ; 361: 121270, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38820796

RESUMO

Reliable nitrogen (N) fertilizer management indicators are essential for improving crop yields and minimizing environmental impacts for sustainable production. The objectives of this study were to assess the importance of major N management indicators (NMIs) for higher yield with low risks of environmental pollution in an intensive potato system under drip irrigation. Six drip-irrigated field experiments with no N application (Control), farmer practice (FP), and optimized N management (OM) based on N-balance, soil mineral N (Nmin), and target yield were conducted from 2018 to 2020 in Inner Mongolia, China. The response of NMIs to potato yield and yield-based environment impact indices (EIY) was evaluated by the random forest algorithm. The N input, N losses from N leaching, ammonia (NH3) volatilization, nitrous oxide (N2O) emission, N use efficiency (NUE), N surplus, and soil residual N after harvest were obtained to identify the best NMIs for high yield and minimal ecological impact. The N management practices in field experimental sites affected the importance of the order of NMIs on potato yield and EIY. The NUE and N leaching were identified as the highest importance scores and the most essential controlling variables to potato yield and EIY, respectively. The integrated NUE and N leaching indicator played a vital role in improving potato yield and reducing ecological impact. The OM treatment achieved 46.0%, 63.6%, and 64.6% lower in N application rate, N surplus, and reactive N loss, and 62.4% higher in NUE than the FP treatment while achieving equal potato yields, respectively. Those key NMIs can guide farmers in understanding their practice short comes to achieve both high productivity and environmental sustainability in intensive potato production systems under drip irrigation.


Assuntos
Irrigação Agrícola , Produção Agrícola , Fertilizantes , Nitrogênio , Solo , Solanum tuberosum , Solanum tuberosum/crescimento & desenvolvimento , Irrigação Agrícola/métodos , Produção Agrícola/métodos , Solo/química , China , Agricultura/métodos , Produtos Agrícolas/crescimento & desenvolvimento
19.
J Environ Manage ; 362: 121228, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38823304

RESUMO

The advent of air nanobubbles (ANBs) has opened up a wide range of commercial applications spanning industries including wastewater treatment, food processing, biomedical engineering, and agriculture. The implementation of electric field-based air nanobubbles (EF-ANBs) irrigation presents a promising approach to enhance agricultural crop efficiency, concurrently promoting environmentally sustainable practices through reducing fertilizer usage. This study investigated the impact of EF-ANBs on the germination and overall growth of agricultural crops in soil. Results indicate a substantial enhancement in both germination rates and plant growth upon the application of EF-ANBs. Notably, the introduction of ANBs led to a significant enhancement in the germination rate of lettuce and basil, increasing from approximately 20% to 96% and from 16% to 53%, respectively over two days. Moreover, the presence of EF-ANBs facilitates superior hypocotyl elongation, exhibiting a 2.8- and a 1.6-fold increase in the elongation of lettuce and basil, respectively, over a six-day observation period. The enriched oxygen levels within the air nanobubbles expedite aerobic respiration, amplifying electron leakage from the electron transport chain (ETC) and resulting in heightened reactive oxygen species (ROS) production, playing a pivotal role in stimulating growth signaling. Furthermore, the application of EF-ANBs in irrigation surpasses the impact of traditional fertilizers, demonstrating a robust catalytic effect on the shoot, stem, and root length, as well as the leaf count of lettuce plants. Considering these parameters, a single fertilizer treatment (at various concentrations) during EF-ANBs administration, demonstrates superior plant growth compared to regular water combined with fertilizer. The findings underscore the synergistic interaction between aerobic respiration and the generation of ROS in promoting plant growth, particularly in the context of reduced fertilizer levels facilitated by the presence of EF-ANBs. This promising correlation holds significant potential in establishing more sustainability for ever-increasing environmentally conscious agriculture.


Assuntos
Irrigação Agrícola , Produtos Agrícolas , Fertilizantes , Produtos Agrícolas/crescimento & desenvolvimento , Irrigação Agrícola/métodos , Lactuca/crescimento & desenvolvimento , Germinação/efeitos dos fármacos , Solo/química , Agricultura/métodos , Ar
20.
J Environ Manage ; 366: 121689, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38991340

RESUMO

In North Bihar (NB), the conventional rice-wheat cropping system has led to soil, water, and environmental degradation, alongside low profitability, threatening sustainability. To address these concerns, a thorough field research was conducted over the course of three years to assess different methods of tillage and crop establishment in a rice, wheat, and greengram cycle. The experiment involved five scenarios with different combinations of crop rotation, tillage techniques, seeding procedures, fertilizer use, and irrigation strategies. Uncertainty analysis showed no significant change in mean and variance estimation among seven scenario replications at 5% significance level. Compared to traditional farming (SN-1), managing DSR-rice (SN-5) increased profitability by 17.56%, improved energy use efficiency (EUE) by 32.16%, and reduced irrigation by 24.76% and global warming potential (GWP) by 23.46%. Similarly, substituting zero tillage wheat (ZTW) SN-5 resulted in comparable profitability gains (18.25%) and significant improvements in irrigation (10 %), EUE (+48.65%), and GWP (-20 %) compared to SN-1. Green gram ZT also showed increased profitability (17.35%), with notable improvements in EUE (+38.31%) and GWP (-12.92%) compared to SN-1. Principal component and correlation analyses revealed relationships between total energy inputs, yields, economic returns, and sustainability indices, highlighting the benefits of crop rotation and tillage practices in optimizing resource use. The study suggests that compared to conventional systems, significant improvements in productivity, profitability, energy-use efficiency, and environmental mitigation can be achieved with Crop Rotation and Tillage Operations techniques.


Assuntos
Agricultura , Produtos Agrícolas , Gases de Efeito Estufa/análise , Gases de Efeito Estufa/metabolismo , Índia , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Agricultura/economia , Agricultura/métodos , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Verduras/crescimento & desenvolvimento , Verduras/metabolismo , Incerteza , Energia Renovável/economia , Irrigação Agrícola/economia , Irrigação Agrícola/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA