Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 504
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 40(4): 114, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38418710

RESUMO

Six lactic acid bacteria (LAB) isolated from Algerian sheep's milk, traditional butter, date palm sap and barley, which produce dextran, mannitol, oligosaccharides and vitamin B2 have been characterized. They were identified as Leuconostoc mesenteroides (A4X, Z36P, B12 and O9) and Liquorilactobacillus mali (BR201 and FR123). Their exopolysaccharides synthesized from sucrose by dextransucrase (Dsr) were characterized as dextrans with (1,6)-D-glucopyranose units in the main backbone and branched at positions O-4, O-2 and/or O-3, with D-glucopyranose units in the side chain. A4X was the best dextran producer (4.5 g/L), while the other strains synthesized 2.1-2.7 g/L. Zymograms revealed that L. mali strains have a single Dsr with a molecular weight (Mw) of ~ 145 kDa, while the Lc. mesenteroides possess one or two enzymes with 170-211 kDa Mw. As far as we know, this is the first detection of L. mali Dsr. Analysis of metabolic fluxes from sucrose revealed that the six LAB produced mannitol (~ 12 g/L). The co-addition of maltose-sucrose resulted in the production of panose (up to 37.53 mM), an oligosaccharide known for its prebiotic effect. A4X, Z36P and B12 showed dextranase hydrolytic enzymatic activity and were able to produce another trisaccharide, maltotriose, which is the first instance of a dextranase activity encoded by Lc. mesenteroides strains. Furthermore, B12 and O9 grew in the absence of riboflavin (vitamin B2) and synthesized this vitamin, in a defined medium at the level of ~ 220 µg/L. Therefore, these LAB, especially Lc. mesenteroides B12, are good candidates for the development of new fermented food biofortified with functional compounds.


Assuntos
Leuconostoc mesenteroides , Animais , Ovinos , Dextranos/metabolismo , Dextranase/química , Dextranase/metabolismo , Manitol/metabolismo , Mali , Glucosiltransferases/metabolismo , Oligossacarídeos/química , Sacarose/metabolismo , Vitaminas/metabolismo , Leuconostoc/metabolismo
2.
Food Microbiol ; 115: 104337, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37567639

RESUMO

Leuconostoc spp. is often regarded as the flavor producer, responsible for the production of acetoin and diacetyl in dairy cheese. In this study, we investigate seven plant-derived Leuconostoc strains, covering four species, in their potential as a lyophilized starter culture for flavor production in fermented soy-based cheese alternatives. We show that the process of lyophilization of Leuconostoc can be feasible using a soy-based lyoprotectant, with survivability up to 63% during long term storage. Furthermore, the storage in this media improves the subsequent growth in a soy-based substrate in a strain specific manner. The utilization of individual raffinose family oligosaccharides was strain dependent, with Leuconostoc pseudomesenteroides NFICC99 being the best consumer. Furthermore, we show that all investigated strains were able to produce a range of volatile flavor compounds found in dairy cheese products, as well as remove certain dairy off-flavors from the soy-based substrate like hexanal and 2-pentylfuran. Also here, NFICC99 was strain producing most cheese-related volatile flavor compounds, followed by Leuconostoc mesenteroides NFICC319. These findings provide initial insights into the development of Leuconostoc as a potential starter culture for plant-based dairy alternatives, as well as a promising approach for generation of stable, lyophilized cultures.


Assuntos
Laticínios , Leuconostoc , Fermentação , Leuconostoc/metabolismo , Concentração de Íons de Hidrogênio , Açúcares/metabolismo
3.
Int J Mol Sci ; 24(8)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37108530

RESUMO

Probiotics provide a range of health benefits. Several studies have shown that using probiotics in obesity treatment can reduce bodyweight. However, such treatments are still restricted. Leuconostoc citreum, an epiphytic bacterium, is widely used in a variety of biological applications. However, few studies have investigated the role of Leuconostoc spp. in adipocyte differentiation and its molecular mechanisms. Therefore, the objective of this study was to determine the effects of cell-free metabolites of L. citreum (LSC) on adipogenesis, lipogenesis, and lipolysis in 3T3-L1 adipocytes. The results showed that LSC treatment reduced the accumulation of lipid droplets and expression levels of CCAAT/ enhancer-binding protein-α & ß (C/EBP-α & ß), peroxisome proliferator-activated receptor-γ (PPAR-γ), serum regulatory binding protein-1c (SREBP-1c), adipocyte fatty acid binding protein (aP2), fatty acid synthase (FAS), acetyl CoA carboxylase (ACC), resistin, pp38MAPK, and pErk 44/42. However, compared to control cells, adiponectin, an insulin sensitizer, was elevated in adipocytes treated with LSC. In addition, LSC treatment increased lipolysis by increasing pAMPK-α and suppressing FAS, ACC, and PPAR-γ expression, similarly to the effects of AICAR, an AMPK agonist. In conclusion, L. citreum is a novel probiotic strain that can be used to treat obesity and its associated metabolic disorders.


Assuntos
Adipogenia , Lipogênese , Camundongos , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Diferenciação Celular , Transdução de Sinais , Obesidade , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Leuconostoc/metabolismo , Células 3T3-L1 , PPAR gama/metabolismo
4.
J Sci Food Agric ; 103(7): 3521-3530, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36799142

RESUMO

BACKGROUND: In industrial production of suancai, baijiu is commonly used to inhibit the spoilage bacteria and enhance the flavor. However, the effects of baijiu on the microbial diversity and metabolic pathways of suancai are rarely reported in the literature. This study aimed to explore the microbial community, its predicted functional roles, and the metabolites formed during fermentation of Chinese Dongbei suancai fermented using a mixed starter with Chinese baijiu as supplementary material. RESULTS: Results showed that Lactobacillus, Enterobacter, and Leuconostoc were the major bacterial genera in the Dongbei suancai fermented by adding baijiu. Linear discriminant analysis effect size indicated that Leuconostoc was the major biomarker in the early stage of fermentation, whereas Lactococcus, Weissella, and Lactobacillus plantarum were biomarkers in the middle and later stages of fermentation. A total of 638 metabolites were detected in suancai fermented by adding baijiu. However, the principal component analysis showed that baijiu significantly affected the metabolites of suancai in the early and later stages of fermentation. Furthermore, 58, 22, and 26 significantly differential metabolites (P < 0.01) were found on day 0, day 2, and day 30 of fermentation respectively. Moreover, Lactobacillus, Lactococcus, and Enterobacter had positive correlations with amino acids, nucleotides, organic acids, alcohols, and esters. Functional analysis implied that carbohydrate, amino acid, energy, and nucleotide metabolism were the major determinants of the characteristics of suancai fermented with baijiu as supplementary material. CONCLUSION: Baijiu changed the metabolites of inoculated fermented Dongbei suancai. © 2023 Society of Chemical Industry.


Assuntos
Lactobacillus plantarum , Microbiota , Fermentação , Bactérias , Lactobacillus/metabolismo , Leuconostoc/metabolismo
5.
Chem Pharm Bull (Tokyo) ; 70(2): 155-161, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35110436

RESUMO

Exopolysaccharides (EPSs) occur widely in natural products made by bacteria, fungi and algae. Some EPSs have intriguing biological properties such as anticancer and immunomodulatory activities. Our group has recently found that EPSs generated from Leuconostoc mesenteroides ssp. mesenteroides strain NTM048 (NTM048 EPS) enhanced a production of mucosal immunoglobulin A (IgA) of mouse. Herein, we described the synthesis and evaluation of the tetrasaccharide fragments of NTM048 EPS to obtain information about the molecular mechanism responsible for the IgA-inducing activity.


Assuntos
Produtos Biológicos/síntese química , Produtos Biológicos/metabolismo , Leuconostoc/química , Polissacarídeos/biossíntese , Polissacarídeos/síntese química , Produtos Biológicos/química , Configuração de Carboidratos , Leuconostoc/metabolismo , Polissacarídeos/química
6.
Prep Biochem Biotechnol ; 52(3): 245-252, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34092177

RESUMO

Leuconostoc pseudomesenteroides belongs to a group of lactic acid bacteria normally isolated from fruits, which has the capacity to produce exopolysaccharides (EPS). The present study aimed to optimize the EPS production of L. pseudomesenteroides JF17, isolated from juçara fruits (palm trees threatened with extinction in the Atlantic Forest), using the response surface methodology (RSM), besides evaluating the fermentation kinetics. The maximum production of EPS 53.77 mg/mL was obtained under ideal conditions of MRS broth supplemented with sucrose at 18%, w/v, fermentation temperature of 20 °C and initial pH of 7.30. The Luedeking-Piret model suggested that the production of EPS by the JF17 strain appeared to be associated with the cell growth of the microorganism, in addition to having high efficiency in the production of the polysaccharide from the substrate (Yp/s = 17.85 ± 0.74 mg EPS/log CFU ). Thus, the ideal optimization conditions and kinetic parameters can be useful for increasing the scale up of the fermentation process in the industrial production of EPS by L. pseudomesenteroides JF17.


Assuntos
Leuconostoc/metabolismo , Polissacarídeos/biossíntese , Fermentação , Florestas , Concentração de Íons de Hidrogênio , Temperatura
7.
J Sci Food Agric ; 102(5): 2023-2031, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-34558071

RESUMO

BACKGROUND: Type 1 diabetes is an autoimmune disease that results in the specific destruction of insulin-producing beta cells in the pancreas. The aim of this study was to investigate the mechanism of exopolysaccharide from Leuconostoc pseudomesenteroides XG5 (XG5 EPS) against type 1 diabetes. RESULTS: Long-term drench of XG5 EPS delayed the onset of autoimmune diabetes and had fewer islets with high-grade infiltration (an insulitis score of 3 or 4) than untreated NOD mice. Oral administration of 50 mg kg-1  d-1 XG5 EPS increased the insulin and glucagon-like peptide-1 (GLP-1) levels of serum, stimulated GLP-1 secretion and upregulated gcg mRNA expression of colon in NOD mice. Moreover, oral administration of 50 mg kg-1  d-1 XG5 EPS significantly increased total short-chain fatty acids levels in the colon contents, especially those of acetic acid and butyric acid. In NCI-H716 cells, 500 and 1000 µmol L-1 sodium butyrate promoted the secretion of GLP-1 and upregulated the mRNA expression of gcg and PC3, while XG5 EPS and sodium acetate did not stimulate the GLP-1 secretion. Therefore, long-term drench of XG5 EPS delayed the onset of autoimmune diabetes, which may be directly correlated with the increase of butyrate in the colon of NOD mice. CONCLUSION: Long-term drench of 50 mg kg-1  d-1 XG5 EPS promoted the expression and secretion of GLP-1 by increasing the production of butyric acid, thereby delaying T1D onset in NOD mice. © 2021 Society of Chemical Industry.


Assuntos
Diabetes Mellitus Tipo 1 , Peptídeo 1 Semelhante ao Glucagon , Animais , Diabetes Mellitus Tipo 1/prevenção & controle , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Insulina/metabolismo , Leuconostoc/metabolismo , Camundongos , Camundongos Endogâmicos NOD
8.
BMC Biotechnol ; 21(1): 14, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33541325

RESUMO

BACKGROUND: Levan is a well-known homopolymer of fructose composed predominantly of ß-(2, 6) fructofuranosyl linkages in the backbone with occasional ß-(2, 1) linkages in the branch chains with varied applications. However, high production cost due to low yield of microbial levan has become a bottleneck for its practical applications. Furthermore, factors affecting the molecular mass of the synthesized levan by Leuconostoc spp. during prolonged cultivation is not fully elucidated. METHODS: The cultivation condition for Leuconostoc citreum BD1707 to synthesize levan was optimized by single-factor experiments and subsequently with response surface methodology (RSM). The average molecular weight (Mw) of levan synthesized by the strain L.citreum BD1707 under the optimized cultivation conditions was monitored by high-performance size exclusion chromatography (HPSEC). Finally, the enzyme with levan-degrading activity was determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). RESULTS: The levan yield of BD1707 reached 34.86 g/L with a corresponding productivity of 7.47 g/L/d under the optimal cultivation conditions deduced by RSM, i.e., cultivation at 26 °C and 200 rpm for 112 h in tomato juice supplemented with 172 g/L sucrose with an initial pH value of 6.12. The Mw of levan reached a peak value of 2.320 × 107 Da at 6 h of cultivation under the optimized cultivation conditions and then gradually decreased to 8.809 × 106 Da after 120 h of cultivation. CONCLUSION: The levan yield of the strain L.citreum BD1707 could be sufficiently enhanced via cultivation condition optimization. The decrease in molecular mass of the synthesized levan was attributed predominantly to the hydrolytic activity of levansucrase secreted by L.citreum BD1707 during cultivation, with an estimated Mw of 130 KD by SDS-PAGE, while the effect of acid hydrolysis could be nearly neglected.


Assuntos
Frutanos/química , Frutanos/metabolismo , Leuconostoc/genética , Leuconostoc/metabolismo , Frutanos/genética , Frutose/metabolismo , Glucose , Hexosiltransferases/genética , Hexosiltransferases/metabolismo , Concentração de Íons de Hidrogênio , Solanum lycopersicum , Peso Molecular , Sacarose/metabolismo , Temperatura
9.
Microb Cell Fact ; 20(1): 23, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33482833

RESUMO

BACKGROUND: Lactic acid bacteria can synthesize dextran and oligosaccharides with different functionality, depending on the strain and fermentation conditions. As natural structure-forming agent, dextran has proven useful as food additive, improving the properties of several raw materials with poor technological quality, such as cereal by-products, fiber-and protein-rich matrices, enabling their use in food applications. In this study, we assessed dextran biosynthesis in situ during fermentation of brewers´ spent grain (BSG), the main by-product of beer brewing industry, with Leuconostoc pseudomesenteroides DSM20193 and Weissella confusa A16. The starters performance and the primary metabolites formed during 24 h of fermentation with and without 4% sucrose (w/w) were followed. RESULTS: The starters showed similar growth and acidification kinetics, but different sugar utilization, especially in presence of sucrose. Viscosity increase in fermented BSG containing sucrose occurred first after 10 h, and it kept increasing until 24 h concomitantly with dextran formation. Dextran content after 24 h was approximately 1% on the total weight of the BSG. Oligosaccharides with different degree of polymerization were formed together with dextran from 10 to 24 h. Three dextransucrase genes were identified in L. pseudomesenteroides DSM20193, one of which was significantly upregulated and remained active throughout the fermentation time. One dextransucrase gene was identified in W. confusa A16 also showing a typical induction profile, with highest upregulation at 10 h. CONCLUSIONS: Selected lactic acid bacteria starters produced significant amount of dextran in brewers' spent grain while forming oligosaccharides with different degree of polymerization. Putative dextransucrase genes identified in the starters showed a typical induction profile. Formation of dextran and oligosaccharides in BSG during lactic acid bacteria fermentation can be tailored to achieve specific technological properties of this raw material, contributing to its reintegration into the food chain.


Assuntos
Dextranos/biossíntese , Grão Comestível/metabolismo , Fermentação , Leuconostoc/metabolismo , Weissella/metabolismo , Cerveja , Regulação Enzimológica da Expressão Gênica , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Concentração de Íons de Hidrogênio , Lactobacillales/genética , Lactobacillales/metabolismo , Leuconostoc/genética , Leuconostoc/crescimento & desenvolvimento , Manitol/metabolismo , Oligossacarídeos/metabolismo , Polissacarídeos/metabolismo , Sacarose/metabolismo , Viscosidade , Weissella/genética , Weissella/crescimento & desenvolvimento
10.
Microbiol Immunol ; 64(2): 133-142, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31625616

RESUMO

Dysregulation of immune responses to environmental antigens by the intestine leads to the chronic inflammatory disease, inflammatory bowel disease (IBD). Recent studies have thus sought to identify a dietary component that can inhibit lipopolysaccharide (LPS)-induced nuclear factor-kappa beta (NF-κB) signaling to ameliorate IBD. This study assessed if the lactic acid bacteria (LAB) from kimchi, suppresses the expression of tumor necrosis factor-alpha (TNF-α) in peritoneal macrophages induced by LPS. Leuconostoc lactis EJ-1, an isolate from LAB, reduced the expression of interleukin-6 (IL-6) and IL-1ß in peritoneal macrophages induced by LPS. The study further tested whether EJ-1 alleviates colitis induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS) in mice. TNBS significantly increased myeloperoxidase (MPO) expression, macroscopic colitis scores, and colon shortening. Oral administration of L. lactis EJ-1 resulted in an inhibited in TNBS-induced loss in body weight, colon shortening, MPO activity, and NF-κB and inducible nitric oxide synthase expression; it also led to a marked reduction in cyclooxygenase-2 expression. L. lactis EJ-1 also inhibited the TNBS-induced expression of TNF-α, IL-1ß, and IL-6; however, it induced the expression of IL-10. The M2 macrophage markers arginase I, IL-10, and CD206 were elevated by EJ-1. Collectively, these results suggest that EJ-1 inhibits the NF-κB signaling and polarizes M1- to M2-macrophage transition, which help in ameliorating colitis.


Assuntos
Colite/terapia , Leuconostoc , Lipopolissacarídeos/imunologia , Macrófagos Peritoneais/metabolismo , Plantas Comestíveis/microbiologia , Animais , Colite/induzido quimicamente , Colo/metabolismo , Modelos Animais de Doenças , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/terapia , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Leuconostoc/imunologia , Leuconostoc/metabolismo , Lipopolissacarídeos/metabolismo , Camundongos , NF-kappa B/metabolismo , Transdução de Sinais/imunologia , Ácido Trinitrobenzenossulfônico/efeitos adversos
11.
Food Microbiol ; 89: 103410, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32138982

RESUMO

This study explores the ability of lactic acid bacteria (LAB) to ferment soy juice. The ability of 276 LAB strains from 25 species to ferment the principal soy carbohydrates, sucrose, raffinose or stachyose was tested in synthetic media and a soy juice. Fermented soy juices (FSJs) were characterized for their odor. Selected FSJs were characterized by targeted metabolomics. All Streptococcus, 83% of Leuconostoc and Lactobacillus and 41% of Lactococcus strains were sucrose-positive, while only 36% of all the LAB strains tested were raffinose-positive and 6% stachyose-positive. Nearly all (97%) the sucrose-positive strains fermented soy juice, indicating that an ability to use sucrose is a good criterion to select strains for soy juice fermentation. Among the most efficient acidifying strains, 46 FSJs had an odor deemed to be acceptable. FSJ composition was dependent on both species and strains: 17/46 strains deglycosylated soy juice isoflavones, the 27 S. thermophilus strains converted a mean 4.4 ± 0.1 g/L of sucrose into 3.0 ± 0.1 g/L of lactic acid versus 5.2 ± 0.1 g/L into 2.2 ± 0.1 g/L for the 18 Lactobacillus and one Lactococcus strains. This study highlights the diversity of the metabolic profiles of LAB strains in soy juice fermentation.


Assuntos
Fermentação , Alimentos Fermentados/microbiologia , Sucos de Frutas e Vegetais/microbiologia , Lactobacillales/metabolismo , Odorantes/análise , Manipulação de Alimentos , Microbiologia de Alimentos , Lactobacillus/metabolismo , Lactococcus/metabolismo , Leuconostoc/metabolismo , Glycine max
12.
Food Microbiol ; 90: 103491, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32336362

RESUMO

The suitability of forty-one non-Lactobacillus strains to be used as selected starters for sourdough fermentation was evaluated. According to the data collected, Pediococcus pentosaceus OA1 and S3N3 and Leuconostoc citreum PRO17 were selected based on the optimal acidification and growth performances and the intense proteolytic activity (increase of TFFA up to 80%) on whole wheat flour doughs. A relevant degradation of phytic acid (up to 58%) and the increase of phenols content and scavenging activity (4- and 2-folds, respectively) were also observed. The technological performances were compared to two representative Lactobacillus strains (Lactobacillus plantarum and Lactobacillus sanfranciscensis). The investigation of the robustness of the selected strains during the propagation (back-slopping procedure) showed their long-term dominance only when singly-inoculated; while Leuc. citreum PRO17 dominated the fermentation when the strains were co-inoculated. The sourdoughs obtained by the non-Lactobacillus selected strains (singly or pooled) were used for breadmaking. Selected sourdoughs allowed the production of breads characterized by in-vitro protein digestibility (IVPD) higher than that of breads obtained with Lactobacillus strains or baker's yeast. The aroma profile, estimated by GC/MS, was complex and characterized by high concentration of the typical compounds (hexanol, 3-methylbutanol and 2-pentylfuran) of sourdough bread.


Assuntos
Bactérias/metabolismo , Pão/microbiologia , Fermentação , Farinha/microbiologia , Microbiologia de Alimentos/métodos , Bactérias/classificação , Concentração de Íons de Hidrogênio , Ácido Láctico , Lactobacillus/metabolismo , Leuconostoc/metabolismo , Pediococcus pentosaceus/metabolismo , Saccharomyces cerevisiae/metabolismo , Triticum/metabolismo
13.
Food Microbiol ; 86: 103349, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31703858

RESUMO

Pistachio powder was added to flour or semolina to evaluate its contribution to increase the amount of lysine in bread. Bread production was carried out by sourdough technology using a selected 3-species (Lactobacillus sanfranciscensis/Leuconostoc citreum/Weissella cibaria) lactic acid bacterial (LAB) starter culture. All sourdoughs were subjected to a long-time fermentation (21 h) and showed levels of LAB around 109 CFU/g, indicating the suitability of pistachio powder for lactic fermentation. Yeasts were also detected, in particular in semolina trials. MiSeq Illumina technology was applied to investigate the bacterial composition of sourdoughs evidencing a different distribution of LAB species among the trials with Lactobacillus as major LAB group in almost all sourdoughs. Physicochemical parameters were comparable among the trials. After baking, pistachio powder was found not to influence the height of the breads, but pistachio breads were more firm than control breads. Color of the breads, void fraction and cell density, were influenced by pistachio powder. The amount of lysine increased consistently thanks to pistachio supplementation which also determined a higher presence of o-xylene, p-cymene and limonene and the appearance of α-pinene and 1-octen-3-ol in breads. Sensory tests showed the best appreciation scores for the breads produced with flour and pistachio powder.


Assuntos
Pão/análise , Aditivos Alimentares/análise , Lactobacillus/metabolismo , Leuconostoc/metabolismo , Lisina/análise , Pistacia/química , Weissella/metabolismo , Pão/microbiologia , Fermentação , Farinha/análise , Aditivos Alimentares/metabolismo , Alimentos Fortificados/análise , Alimentos Fortificados/microbiologia , Humanos , Lisina/metabolismo , Paladar
14.
Food Microbiol ; 90: 103464, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32336355

RESUMO

Achieving a high monosaccharide composition in malt wort is instrumental to achieve successful lactic acid bacteria fermentation of malt based beverages. The conversion of monosaccharides to alternative metabolites such as the sweet polyol, mannitol with heterofermentative strains presents a novel approach for sugar reduction and to compensate for the loss of sweetness. This work outlines the application of an adopted mashing regimen with the addition of exogenous enzymes to produce wort with high fructose content which can be applied to different malted grain types with consistently efficacious monosaccharide production for bacterial fermentation. The so produced worts are then fermented with Leuconostoc citreum TR116 a mannitol hyper-producer. Malted barley, oat and wheat were mashed to stimulate protein degradation and release of free amino acids along with the enzymatic conversion of starch to fermentable sugars. Amyloglucosidase and glucose isomerase treatment converted di- and oligo-saccharides to glucose and provided a moderate fructose concentration in malt worts which was consistent across the three cereals. Fructose was completely depleted during fermentation with Lc. Citreum TR116 and converted to mannitol with high efficiency (>90%) while overall sugar reduction was >25% in all malt worts. Differences in amino acid composition of malt worts did not significantly affect growth of Lc. Citreum TR116 but did affect the formation of the aroma compounds diacetyl and isoamyl alcohol. Organic acid production and acidification of wort was similar across cereal substrates and acetic acid formation was linked to yield of mannitol. The results suggest that differences in amino acid and fructose content of malt worts considerably change metabolite formation during fermentation with Lc. Citreum TR116, a mannitol hyper-producer. This work gives new insight into the development of consumer acceptable malt based beverages which will provide further options for the health conscious and diabetic consumer, an important step in the age of sugar overconsumption.


Assuntos
Grão Comestível/microbiologia , Fermentação , Alimentos Fermentados/microbiologia , Leuconostoc/metabolismo , Manitol/metabolismo , Açúcares/metabolismo , Avena/química , Avena/microbiologia , Reatores Biológicos , Frutose/metabolismo , Hordeum/química , Hordeum/microbiologia , Lactobacillales/metabolismo , Leuconostoc/crescimento & desenvolvimento , Triticum/química , Triticum/microbiologia
15.
Int J Mol Sci ; 21(16)2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32764465

RESUMO

Leuconostoccitreum, a hetero-fermentative type of lactic acid bacteria, is a crucial probiotic candidate because of its ability to promote human health. However, inefficient gene manipulation tools limit its utilization in bioindustries. We report, for the first time, the development of a CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) interference (CRISPRi) system for engineering L. citreum. For reliable expression, the expression system of synthetic single guide RNA (sgRNA) and the deactivated Cas9 of Streptococcus pyogenes (SpdCas9) were constructed in a bicistronic design (BCD) platform using a high-copy-number plasmid. The expression of SpdCas9 and sgRNA was optimized by examining the combination of two synthetic promoters and Shine-Dalgarno sequences; the strong expression of sgRNA and the weak expression of SpdCas9 exhibited the most significant downregulation (20-fold decrease) of the target gene (sfGFP), without cell growth retardation caused by SpdCas9 overexpression. The feasibility of the optimized CRISPRi system was demonstrated by modulating the biosynthesis of riboflavin. Using the CRISPRi system, the expression of ribF and folE genes was downregulated (3.3-fold and 5.6-fold decreases, respectively), thereby improving riboflavin production. In addition, the co-expression of the rib operon was introduced and the production of riboflavin was further increased up to 1.7 mg/L, which was 1.53 times higher than that of the wild-type strain.


Assuntos
Sistemas CRISPR-Cas/genética , Leuconostoc/genética , Engenharia Metabólica , Riboflavina/genética , Humanos , Ácido Láctico/metabolismo , Leuconostoc/metabolismo , Plasmídeos/genética , Probióticos/metabolismo , RNA Guia de Cinetoplastídeos/genética , Riboflavina/biossíntese , Streptococcus pyogenes/genética
16.
World J Microbiol Biotechnol ; 36(11): 161, 2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-32989599

RESUMO

Structurally diverse biopolymers, including extracellular polysaccharides (EPS), synthesized by bacteria can possess physicochemical and functional properties that make them important products of microbial synthesis with a broad and versatile biotechnological potential. Leuconostoc spp. belongs to the group of lactic acid bacteria as one of the predominant members and are relevant not only in varied food fermentations, but also can be employed in the production of extracellular homopolysaccharides (HoPS) such as α-glucans (dextran, alternan) and ß-fructans (levan,inulin) from the sucrose-containing substrates. EPS are synthesized by specific Leuconostoc spp. extracellular glycosyltransferases [dextran sucrase, alternansucrase (ASR)] and fructosyltransferases (levansucrase, inulosucrase) and enzymatic reactions can be performed in whole culture systems as well as using cell-free enzymes. Both α-glucans and ß-fructans have a wide range of properties, mostly depending on their pattern of linkages, which, although differing in some respects, make suitable prerequisites for their versatile application in many fields, especially in the food industry and biomedicine. As a rule, these properties (polymer type, molecular mass, rheological parameters), as well as the overall EPS yield, are strain-specific for the selected producers and depend to a large extent on the nutritional and growth conditions used, which in many cases remain not sufficiently optimized for Leuconostoc spp. This review summarizes the current knowledge on the potential of Leuconostoc spp. to produce commercially relevant EPS, including information on their applications in various fields, producer strains, production methods and techniques used, selected conditions, the productivity of bioprocesses as well as the possible use of renewable resources for their development.


Assuntos
Leuconostoc/metabolismo , Polissacarídeos Bacterianos/metabolismo , Antígenos T-Independentes/metabolismo , Dextranos/metabolismo , Frutanos/metabolismo , Glucanos/metabolismo , Glicosiltransferases/metabolismo , Inulina/metabolismo , Peso Molecular , Sacarase/metabolismo , Sacarose/metabolismo
17.
World J Microbiol Biotechnol ; 36(5): 64, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32314089

RESUMO

To document and speed up research on the usefulness and selection of potential health-promoting bacterial starter cultures from unexplored fermented saps of various palm species in Côte d'Ivoire, benchmark tapping processes were successfully developed and implemented at field level. Therefore, spontaneously fermented saps of three palm species (Elaeis guineensis, Raphia hookeri, Borassus aethiopum) were collected throughout tapping process and lactic acid bacteria (LAB) diversity and dynamics were studied through a multiphasic approach. Overall microbiological analysis revealed a LAB species diversity throughout tapping process. LAB isolates belonged to two main (GTG)5-PCR clusters, namely Fructobacillus durionis (40.33%) and Leuconostoc mesenteroides (45.66%), with Leuconostoc pseudomesenteroides, Lactobacillus paracasei, Lactobacillus fermentum Weissella cibaria, Enterococcus casseliflavus and Lactococcus lactis occurring occasionally. LAB diversity was higher in fermented saps from E. guineensis (8 species) than those of R. hookeri (5 species) and B. aethiopum (3 species). Dynamic study revealed that F. durionis and L. mesenteroides dominated the fermentations from the beginning until the end of tapping process in all palm wine types. But the earlier stages of the process were also populated by some species like W. cibaria, L. pseudomesenteroides and L. fermentum, which population decreased or disappeared after some days. Also, species of Enterococcus and Lactococcus genera were sporadically detected uniquely in sap from E. guineensis. This study is the first to investigate extensively the LAB diversity and dynamics throughout palm trees tapping process in Côte d'Ivoire and is relevant for future selection of health promoting bacteria.


Assuntos
Lactobacillales/classificação , Lactobacillales/metabolismo , Vinho/microbiologia , Arecaceae/microbiologia , Côte d'Ivoire , Enterococcus/isolamento & purificação , Enterococcus/metabolismo , Fermentação , Microbiologia de Alimentos , Limosilactobacillus fermentum/isolamento & purificação , Limosilactobacillus fermentum/metabolismo , Lacticaseibacillus paracasei/isolamento & purificação , Lacticaseibacillus paracasei/metabolismo , Lactococcus lactis/isolamento & purificação , Lactococcus lactis/metabolismo , Leuconostoc/isolamento & purificação , Leuconostoc/metabolismo , Leuconostocaceae/isolamento & purificação , Leuconostocaceae/metabolismo , Weissella/isolamento & purificação , Weissella/metabolismo
18.
Lett Appl Microbiol ; 68(5): 430-436, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30663071

RESUMO

Leuconostoc citreum EFEL2700 isolated from kimchi was used as a host strain for genetic and metabolic engineering in our previous studies, but the cells of EFEL2700 contained a cryptic plasmid (P-cells). Thus, we created plasmid-free cells (F-cells) using the CRISPR/Cas9 system. In this study, we compared the microbial characteristics of P- and F-cells in terms of growth rate, biochemical properties, transformation efficiency, plasmid copy number and protein expression level. When the growth rate was measured in MRS medium at 30°C, no significant difference (P > 0·01) was observed. Biochemical properties, tested using an API 50CHL kit, showed no differences. Transformation efficiency of F-cells, measured using pCB4270, was higher (1·3 × 104 CFU per µg DNA) than that of P-cells (5·0 × 103 CFU per µg DNA). Copy number after transformation of pCBBgl was 4-fold higher for F-cells than for P-cells. When ß-glucosidase activity was assayed in the above experiment, F-cells showed 3·4-fold higher values than P-cells. In conclusion, this study demonstrates that plasmid curing in L. citreum EFEL2700 improves its characteristics as a gene expression host. SIGNIFICANCE AND IMPACT OF THE STUDY: Leuconostoc citreum EFEL2700 (P-cell) isolated from kimchi is a useful food-grade host for expressing heterologous genes. The presence of a cryptic plasmid is thought to limit efficient gene expression. In this study, we compared the microbial and genetic changes after plasmid curing in this strain. The plasmid-free strain showed improved levels of transformation efficiency, copy number and heterologous gene expression without alterations in phenotypes such as the growth rates and biochemical properties. The resulting strain of L. citreum EFEL2701 (F-cell) can be used as an efficient host for genetic engineering.


Assuntos
Regulação Bacteriana da Expressão Gênica/genética , Leuconostoc/genética , Leuconostoc/metabolismo , Plasmídeos/genética , Sistemas CRISPR-Cas/genética , Expressão Gênica/genética , Engenharia Metabólica , beta-Glucosidase/metabolismo
19.
Molecules ; 24(21)2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31694205

RESUMO

Leuconostoc lactis CCK940, which exhibits glycosyltransferase activity, produces oligosaccharides using sucrose and maltose as donor and receptor molecules, respectively. The oligosaccharides produced were purified by Bio-gel P2 chromatography and the purified oligosaccharides (CCK-oligosaccharides) consisted of only glucose. 1H-NMR analysis revealed that the CCK-oligosaccharides were composed of 77.6% α-1,6 and 22.4% α-1,4 glycosidic linkages, and the molecular weight of the CCK-oligosaccharides was found to be 9.42 × 102 Da. To determine the prebiotic effect of the CCK-oligosaccharides, various carbon sources were added in modified media. Growth of six probiotic strains, Lactobacillus casei, L. pentosus, L. plantarum, Weissella cibaria, Bifidobacterim animalis, and Saccharomyces cerevisiae, was better when the CCK-oligosaccharides were used as the sole carbon source compared to fructo-oligosaccharides, which are widely used as prebiotics. These results showed that the CCK-oligosaccharides produced from Leu. lactis CCK940 could serve as good candidates for novel prebiotics.


Assuntos
Leuconostoc/metabolismo , Oligossacarídeos/química , Bifidobacterium/metabolismo , Fermentação/fisiologia , Lactobacillus/metabolismo , Maltose/química , Prebióticos , Probióticos/química , Sacarose/química
20.
Molecules ; 24(21)2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31694180

RESUMO

Glycosyltransferase-producing Leuconostoc lactis CCK940 produces CCK- oligosaccharides, gluco-oligosaccharide molecules, using sucrose and maltose as donor and acceptor molecules, respectively. In this study, the immunostimulatory activities of CCK-oligosaccharides on RAW264.7 macrophages and BALB/c mice were evaluated. CCK-oligosaccharides induced the expression of phosphorylated-p38, extracellular-signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK) and upregulation of phagocytic activity in RAW264.7 macrophages, suggesting their involvement in mitogen-activated protein kinase (MAPK) signaling pathway and phagocytosis. When CCK-oligosaccharides were administered to mice intraperitoneally injected with cyclophosphamide (CY), spleen indices and expressions of interleukin (IL)-6, IL-10, and tumor necrosis factor-α increased, compared with those in only CY-treated group. These findings suggest that CCK-oligosaccharides can be used as an effective immunostimulating agent.


Assuntos
Leuconostoc/metabolismo , Oligossacarídeos/farmacologia , Animais , Linhagem Celular , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Imunização/métodos , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fagocitose/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA