Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Plant J ; 119(4): 2033-2044, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38949911

RESUMO

Plant fungal parasites manipulate host metabolism to support their own survival. Among the many central metabolic pathways altered during infection, the glyoxylate cycle is frequently upregulated in both fungi and their host plants. Here, we examined the response of the glyoxylate cycle in bread wheat (Triticum aestivum) to infection by the obligate biotrophic fungal pathogen Puccinia striiformis f. sp. tritici (Pst). Gene expression analysis revealed that wheat genes encoding the two unique enzymes of the glyoxylate cycle, isocitrate lyase (TaICL) and malate synthase, diverged in their expression between susceptible and resistant Pst interactions. Focusing on TaICL, we determined that the TaICL B homoeolog is specifically upregulated during early stages of a successful Pst infection. Furthermore, disruption of the B homoeolog alone was sufficient to significantly perturb Pst disease progression. Indeed, Pst infection of the TaICL-B disruption mutant (TaICL-BY400*) was inhibited early during initial penetration, with the TaICL-BY400* line also accumulating high levels of malic acid, citric acid, and aconitic acid. Exogenous application of malic acid or aconitic acid also suppressed Pst infection, with trans-aconitic acid treatment having the most pronounced effect by decreasing fungal biomass 15-fold. Thus, enhanced TaICL-B expression during Pst infection may lower accumulation of malic acid and aconitic acid to promote Pst proliferation. As exogenous application of aconitic acid and malic acid has previously been shown to inhibit other critical pests and pathogens, we propose TaICL as a potential target for disruption in resistance breeding that could have wide-reaching protective benefits for wheat and beyond.


Assuntos
Glioxilatos , Isocitrato Liase , Malato Sintase , Doenças das Plantas , Puccinia , Triticum , Triticum/microbiologia , Triticum/genética , Triticum/metabolismo , Triticum/enzimologia , Isocitrato Liase/metabolismo , Isocitrato Liase/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Glioxilatos/metabolismo , Malato Sintase/metabolismo , Malato Sintase/genética , Puccinia/fisiologia , Puccinia/patogenicidade , Regulação da Expressão Gênica de Plantas , Resistência à Doença/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Arch Microbiol ; 206(3): 126, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38411730

RESUMO

Glyoxylate shunt is an important pathway for microorganisms to survive under multiple stresses. One of its enzymes, malate synthase (encoded by aceB gene), has been widely speculated for its contribution to both the pathogenesis and virulence of various microorganisms. We have previously demonstrated that malate synthase (MS) is required for the growth of Salmonella Typhimurium (S. Typhimurium) under carbon starvation and survival under oxidative stress conditions. The aceB gene is encoded by the acetate operon in S. Typhimurium. We attempted to study the activity of acetate promoter under both the starvation and oxidative stress conditions in a heterologous system. The lac promoter of the pUC19 plasmid was substituted with the putative promoter sequence of the acetate operon of S. Typhimurium upstream to the lacZ gene and transformed the vector construct into E. coli NEBα cells. The transformed cells were subjected to the stress conditions mentioned above. We observed a fourfold increase in the ß-galactosidase activity in these cells resulting from the upregulation of the lacZ gene in the stationary phase of cell growth (nutrient deprived) as compared to the mid-log phase. Following exposure of stationary phase cells to hypochlorite-induced oxidative stress, we further observed a 1.6-fold increase in ß galactosidase activity. These data suggest the induction of promoter activity of the acetate operon under carbon starvation and oxidative stress conditions. Thus, these observations corroborate our previous findings regarding the upregulation of aceB expression under stressful environments.


Assuntos
Escherichia coli , Salmonella typhimurium , Salmonella typhimurium/genética , Malato Sintase , Óperon , Estresse Oxidativo/genética , Acetatos , Carbono , Nutrientes
3.
Int J Mol Sci ; 25(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38203573

RESUMO

Trichophyton rubrum is the primary causative agent of dermatophytosis worldwide. This fungus colonizes keratinized tissues and uses keratin as a nutritional source during infection. In T. rubrum-host interactions, sensing a hostile environment triggers the adaptation of its metabolic machinery to ensure its survival. The glyoxylate cycle has emerged as an alternative metabolic pathway when glucose availability is limited; this enables the conversion of simple carbon compounds into glucose via gluconeogenesis. In this study, we investigated the impact of stuA deletion on the response of glyoxylate cycle enzymes during fungal growth under varying culture conditions in conjunction with post-transcriptional regulation through alternative splicing of the genes encoding these enzymes. We revealed that the ΔstuA mutant downregulated the malate synthase and isocitrate lyase genes in a keratin-containing medium or when co-cultured with human keratinocytes. Alternative splicing of an isocitrate lyase gene yielded a new isoform. Enzymatic activity assays showed specific instances where isocitrate lyase and malate synthase activities were affected in the mutant strain compared to the wild type strain. Taken together, our results indicate a relevant balance in transcriptional regulation that has distinct effects on the enzymatic activities of malate synthase and isocitrate lyase.


Assuntos
Arthrodermataceae , Fatores de Transcrição , Humanos , Isocitrato Liase/genética , Malato Sintase/genética , Gluconeogênese/genética , Processamento Alternativo , Carbono , Glucose , Queratinas , Glioxilatos
4.
Chem Biol Drug Des ; 103(4): e14512, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570316

RESUMO

A thorough search for the development of innovative drugs to treat tuberculosis, especially considering the urgent need to address developing drug resistance, we report here a synthetic series of ethyl 3-benzoyl-7-morpholinoindolizine-1-carboxylate analogues (5a-o) as potent anti-tubercular agents. These morpholino-indolizines were synthesized by reacting 4-morpholino pyridinium salts, with various electron-deficient acetylenes to afford the ethyl 3-benzoyl-7-morpholinoindolizine-1-carboxylate analogues (5a-o). All synthesized intermediate and final compounds are characterized by spectroscopic methods such as 1H NMR, 13C NMR and HRMS and further examined for their anti-tubercular activity against the M. tuberculosis H37Rv strain (ATCC 27294-American type cell culture). All the compounds screened for anti-tubercular activity in the range of 6.25-50 µM against the H37Rv strain of Mycobacterium tuberculosis. Compound 5g showed prominent activity with MIC99 2.55 µg/mL whereas compounds 5d and 5j showed activity with MIC99 18.91 µg/mL and 25.07 µg/mL, respectively. In silico analysis of these compounds revealed drug-likeness. Additionally, the molecular target identification for Malate synthase (PDB 5CBB) is attained by computational approach. The compound 5g with a MIC99 value of 2.55 µg/mL against M. tuberculosis H37Rv emerged as the most promising anti-TB drug and in silico investigations suggest Malate synthase (5CBB) might be the compound's possible target.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Antituberculosos , Relação Estrutura-Atividade , Malato Sintase , Morfolinos , Simulação de Acoplamento Molecular , Testes de Sensibilidade Microbiana
5.
Nat Commun ; 15(1): 5073, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871714

RESUMO

Methyl-TROSY nuclear magnetic resonance (NMR) spectroscopy is a powerful technique for characterising large biomolecules in solution. However, preparing samples for these experiments is demanding and entails deuteration, limiting its use. Here we demonstrate that NMR spectra recorded on protonated, uniformly 13C labelled samples can be processed using deep neural networks to yield spectra that are of similar quality to typical deuterated methyl-TROSY spectra, potentially providing information for proteins that cannot be produced in bacterial systems. We validate the methodology experimentally on three proteins with molecular weights in the range 42-360 kDa. We further demonstrate the applicability of our methodology to 3D NOESY spectra of Escherichia coli Malate Synthase G (81 kDa), where observed NOE cross-peaks are in good agreement with the available structure. The method represents an advance in the field of using deep learning to analyse complex magnetic resonance data and could have an impact on the study of large biomolecules in years to come.


Assuntos
Escherichia coli , Escherichia coli/metabolismo , Ressonância Magnética Nuclear Biomolecular/métodos , Aprendizado Profundo , Malato Sintase/química , Malato Sintase/metabolismo , Redes Neurais de Computação , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Isótopos de Carbono/química , Proteínas/química , Proteínas/metabolismo
6.
Mem. Inst. Oswaldo Cruz ; 109(1): 29-37, 02/2014. tab, graf
Artigo em Inglês | LILACS | ID: lil-703641

RESUMO

Rheumatoid arthritis (RA) is an autoimmune disease characterised by the destruction of articular cartilage and bone damage. The chronic treatment of RA patients causes a higher susceptibility to infectious diseases such as tuberculosis (TB); one-third of the world’s population is latently infected (LTBI) with Mycobacterium tuberculosis (Mtb). The tuberculin skin test is used to identify individuals LTBI, but many studies have shown that this test is not suitable for RA patients. The goal of this work was to test the specific cellular immune responses to the Mtb malate synthase (GlcB) and heat shock protein X (HspX) antigens of RA patients and to correlate those responses with LTBI status. The T-helper (Th)1, Th17 and Treg-specific immune responses to the GlcB and HspX Mtb antigens were analysed in RA patients candidates for tumour necrosis factor-α blocker treatment. Our results demonstrated that LTBI RA patients had Th1-specific immune responses to GlcB and HspX. Patients were followed up over two years and 14.3% developed active TB. After the development of active TB, RA patients had increased numbers of Th17 and Treg cells, similar to TB patients. These results demonstrate that a GlcB and HspX antigen assay can be used as a diagnostic test to identify LTBI RA patients.


Assuntos
Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Antígenos de Bactérias/imunologia , Artrite Reumatoide/imunologia , Proteínas de Bactérias/imunologia , Tuberculose Latente/diagnóstico , Malato Sintase/imunologia , Mycobacterium tuberculosis/imunologia , Linfócitos T Reguladores/imunologia , Análise de Variância , Artrite Reumatoide/complicações , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Imunidade Celular/imunologia , /sangue , Estudos Longitudinais , Tuberculose Latente/complicações , Tuberculose Latente/imunologia , Leucócitos Mononucleares/imunologia , Células Th1/imunologia , /imunologia , Fator de Crescimento Transformador beta/análise , Fator de Necrose Tumoral alfa/imunologia
7.
Braz. j. infect. dis ; 13(6): 417-421, Dec. 2009. tab, ilus
Artigo em Inglês | LILACS | ID: lil-546010

RESUMO

Tuberculosis (TB) is one of the oldest human infectious diseases and one third of the world's population is latently infected. Brazil is an endemic area for TB. One of the most important challenges in TB control is the identification of latently infected individuals. Health Care Workers (HCW) are at high risk of being infected with Mycobacterium tuberculosis and even to become TB latently infected. The aim of this study was to increase knowledge about humoral immune response in TB latently infected individuals. HCW were classified according to their tuberculin skin test (TST), as positive or negative. The antibody response to GLcB, MPT51 and HSPX from Mycobacterium tuberculosis was evaluated. TST negative HCW constituted the majority of those who showed a humoral immune response. Antibody levels varied according to antigen characteristics, TST and BCG status. We suggest that possibly the presence of those antibodies could have a function in the protective immune response against Mycobacterium tuberculosis.


Assuntos
Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Tuberculose Latente/imunologia , Malato Sintase/imunologia , Mycobacterium tuberculosis/imunologia , Recursos Humanos em Hospital , Ensaio de Imunoadsorção Enzimática , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Tuberculose Latente/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA