Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Behav Pharmacol ; 26(8 Spec No): 748-65, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26287433

RESUMO

Deficiencies in social activities are hallmarks of numerous brain disorders. With respect to schizophrenia, social withdrawal belongs to the category of negative symptoms and is associated with deficits in the cognitive domain. Here, we used the N-methyl-D-aspartate receptor antagonist dizocilpine (MK-801) for induction of social withdrawal in rats and assessed the efficacy of several atypical antipsychotics with different pharmacological profiles as putative treatment. In addition, we reasoned that the marijuana constituent cannabidiol (CBD) may provide benefit or could be proposed as an adjunct treatment in combination with antipsychotics. Hooded Lister rats were tested in the three-chamber version for social interaction, with an initial novelty phase, followed after 3 min by a short-term recognition memory phase. No drug treatment affected sociability. However, distinct effects on social recognition were revealed. MK-801 reduced social recognition memory at all doses (>0.03 mg/kg). Predosing with aripiprazole dose-dependently (2 or 10 mg/kg) prevented the memory decline, but doses of 0.1 mg/kg risperidone or 1 mg/kg olanzapine did not. Intriguingly, CBD impaired social recognition memory (12 and 30 mg/kg) but did not rescue the MK-801-induced deficits. When CBD was combined with protective doses of aripiprazole (CBD-aripiprazole at 12 : or 5 : 2 mg/kg) the benefit of the antipsychotic was lost. At the same time, activity-related changes in behaviour were excluded as underlying reasons for these pharmacological effects. Collectively, the combined activity of aripiprazole on dopamine D2 and serotonin 5HT1A receptors appears to provide a significant advantage over risperidone and olanzapine with respect to the rescue of cognitive deficits reminiscent of schizophrenia. The differential pharmacological properties of CBD, which are seemingly beneficial in human patients, did not back-translate and rescue the MK-801-induced social memory deficit.


Assuntos
Aripiprazol/farmacologia , Benzodiazepinas/farmacologia , Canabidiol/farmacologia , Maleato de Dizocilpina/antagonistas & inibidores , Maleato de Dizocilpina/farmacologia , Memória/efeitos dos fármacos , Reconhecimento Psicológico/efeitos dos fármacos , Risperidona/farmacologia , Animais , Antagonistas de Dopamina/farmacologia , Masculino , Modelos Animais , Olanzapina , Ratos , Receptores de Dopamina D2/agonistas , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia , Antagonistas da Serotonina/farmacologia , Comportamento Social
2.
J Neural Transm (Vienna) ; 119(6): 661-7, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22143406

RESUMO

Schizophrenia is a debilitating mental disorder with a global prevalence of 1% and its etiology remains poorly understood. In the current study we investigated the influence of antipsychotic drugs on the effects of MK-801 administration, which is a drug that mimics biochemical changes observed in schizophrenia, on Na(+), K(+)-ATPase activity and some parameters of oxidative stress in zebrafish brain. Our results showed that MK-801 treatment significantly decreased Na(+), K(+)-ATPase activity, and all antipsychotics tested prevented such effects. Acute MK-801 treatment did not alter reactive oxygen/nitrogen species by 2'7'-dichlorofluorscein (H2DCF) oxidation assay, but increased the levels of thiobarbituric acid reactive substances (TBARS), when compared with controls. Some antipsychotics such as sulpiride, olanzapine, and haloperidol prevented the increase of TBARS caused by MK-801. These findings indicate oxidative damage might be a mechanism involved in the decrease of Na(+), K(+)-ATPase activity induced by MK-801. The parameters evaluated in this study had not yet been tested in this animal model using the MK-801, suggesting that zebrafish is an animal model that can contribute for providing information on potential treatments and disease characteristics.


Assuntos
Antipsicóticos/farmacologia , Química Encefálica/efeitos dos fármacos , Maleato de Dizocilpina/antagonistas & inibidores , Maleato de Dizocilpina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Estresse Oxidativo/efeitos dos fármacos , ATPase Trocadora de Sódio-Potássio/metabolismo , Peixe-Zebra/metabolismo , Animais , Benzodiazepinas/farmacologia , Feminino , Fluoresceínas/metabolismo , Haloperidol/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Membranas/efeitos dos fármacos , Membranas/metabolismo , Proteínas do Tecido Nervoso/análise , Proteínas do Tecido Nervoso/metabolismo , Olanzapina , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sulpirida/farmacologia , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
3.
Bioorg Med Chem Lett ; 22(18): 5876-84, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22902656

RESUMO

The identification of highly potent and orally active triazines for the inhibition of PDE10A is reported. The new analogs exhibit low-nanomolar potency for PDE10A, demonstrate high selectivity against all other members of the PDE family, and show desired drug-like properties. Employing structure-based drug design approaches, we investigated the selectivity of PDE10A inhibitors against other known PDE isoforms, by methodically exploring the various sub-regions of the PDE10A ligand binding pocket. A systematic assessment of the ADME and pharmacokinetic properties of the newly synthesized compounds has led to the design of drug-like candidates with good brain permeability and desirable drug kinetics (t(1/2), bioavailability, clearance). Compound 66 was highly potent for PDE10A (IC(50)=1.4 nM), demonstrated high selectivity (>200×) for the other PDEs, and was efficacious in animal models of psychoses; reversal of MK-801 induced hyperactivity (MED=0.1mg/kg) and conditioned avoidance responding (CAR; ID(50)=0.2 mg/kg).


Assuntos
Inibidores de Fosfodiesterase/farmacologia , Diester Fosfórico Hidrolases/metabolismo , Triazinas/farmacologia , Administração Oral , Animais , Cristalografia por Raios X , Maleato de Dizocilpina/antagonistas & inibidores , Maleato de Dizocilpina/farmacologia , Relação Dose-Resposta a Droga , Humanos , Hipercinese/induzido quimicamente , Hipercinese/tratamento farmacológico , Modelos Moleculares , Estrutura Molecular , Inibidores de Fosfodiesterase/administração & dosagem , Inibidores de Fosfodiesterase/química , Ratos , Relação Estrutura-Atividade , Triazinas/administração & dosagem , Triazinas/química
4.
Bioorg Med Chem Lett ; 22(2): 1019-22, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22222034

RESUMO

High-throughput screening identified a series of pyrazoloquinolines as PDE10A inhibitors. The SAR development led to the discovery of compound 27 as a potent, selective, and orally active PDE10A inhibitor. Compound 27 inhibits MK-801 induced hyperactivity at 3mg/kg with an ED(50) of 4mg/kg and displays a ∼6-fold separation between the ED(50) for inhibition of MK-801 induced hyperactivity and hypolocomotion in rats.


Assuntos
Inibidores Enzimáticos/farmacologia , Diester Fosfórico Hidrolases/metabolismo , Pirazolonas/farmacologia , Quinolinas/farmacologia , Esquizofrenia/tratamento farmacológico , Administração Oral , Animais , Cristalografia por Raios X , Maleato de Dizocilpina/antagonistas & inibidores , Maleato de Dizocilpina/farmacologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/química , Ensaios de Triagem em Larga Escala , Humanos , Modelos Moleculares , Estrutura Molecular , Pirazolonas/administração & dosagem , Pirazolonas/química , Quinolinas/administração & dosagem , Quinolinas/química , Ratos , Estereoisomerismo , Relação Estrutura-Atividade
5.
Science ; 254(5037): 1515-8, 1991 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-1835799

RESUMO

Antagonists of the N-methyl-D-aspartate (NMDA) subtype of glutamate receptor, including phencyclidine (PCP) and ketamine, protect against brain damage in neurological disorders such as stroke. However, these agents have psychotomimetic properties in humans and morphologically damage neurons in the cerebral cortex of rats. It is now shown that the morphological damage can be prevented by certain anticholinergic drugs or by diazepam and barbiturates, which act at the gamma-aminobutyric acid (GABA) receptor-channel complex and are known to suppress the psychotomimetic symptoms caused by ketamine. Thus, it may be possible to prevent the unwanted side effects of NMDA antagonists, thereby enhancing their utility as neuroprotective drugs.


Assuntos
Maleato de Dizocilpina/antagonistas & inibidores , Neurotoxinas/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Animais , Barbitúricos/farmacologia , Embrião de Galinha , Parassimpatolíticos/farmacologia , Pilocarpina/farmacologia , Ratos , Escopolamina/farmacologia , Vacúolos/ultraestrutura
6.
Bioorg Med Chem ; 17(9): 3456-62, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19345586

RESUMO

We resolved 1,2-diphenylethylamine (DPEA) into its (S)- and (R)-enantiomer and used them as precursors for synthesis of (S)- and (R)-1-(1,2-diphenylethyl)piperidine, flexible homeomorphs of the NMDA channel blocker MK-801. We also describe the synthesis of the dicyclohexyl analogues of DPEA. These and related compounds were tested as inhibitors of [(3)H]MK-801 binding to rat brain membranes. Stereospecificity ranged between factors of 0.5 and 50. Some blockers exhibited stereospecific sensitivity to the modulator spermine. Our results may help to elucidate in more detail the NMDA channel pharmacophore.


Assuntos
Fenetilaminas/química , Piperidinas/química , Receptores de N-Metil-D-Aspartato/química , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Maleato de Dizocilpina/antagonistas & inibidores , Maleato de Dizocilpina/metabolismo , Maleato de Dizocilpina/farmacologia , Cinética , Membranas/efeitos dos fármacos , Membranas/metabolismo , Fenetilaminas/farmacologia , Piperidinas/farmacologia , Ratos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Estereoisomerismo
7.
Pharmacol Biochem Behav ; 91(4): 495-502, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18834899

RESUMO

Cognitive deficits are a core feature of schizophrenia that may be linked to abnormalities in GABA and nitric oxide (NO). Subchronic treatment with glutamate receptor antagonists produces similar deficits, providing a useful model to examine potential therapeutics. The present study investigated the effects of subchronic MK-801 (intraperitoneally; 0.5 mg/kg twice daily for 7 days) on amphetamine-induced locomotor activity and reversal learning in the water maze in rats, and the ability of the novel compound GT 1061 (4-methyl-5-(2-nitroxyethyl) thiazole HCl), containing dual pharmacophores producing NO- and GABA-mimetic activity, to ameliorate these effects. MK-801 enhanced locomotor responses to amphetamine. GT 1061 (0.1; not 0.0001, 0.001, 0.01, 1.0 mg/kg) further enhanced locomotion; the pro-GABA drug chlormethiazole (0.1, 1.0 mg/kg) had no significant effect. In saline-pretreated rats GT 1061 (0.1; not 0.0001, 0.001 mg/kg) increased amphetamine-induced locomotion; chlormethiazole (0.1, 1.0 mg/kg) had no effect. In the water maze, MK-801 impaired reversal learning after platform relocation. GT 1061 (0.001, 0.01, 0.1; not 0.0001 or 1.0 mg/kg) attenuated this impairment; chlormethiazole had no significant effect. These ameliorative effects of GT 1061 may be linked to the activation of NO- and GABA-dependent signaling and suggests a new direction for treating cognitive dysfunction in schizophrenia.


Assuntos
Comportamento Animal/efeitos dos fármacos , Transtornos Cognitivos/induzido quimicamente , Transtornos Cognitivos/psicologia , Maleato de Dizocilpina/antagonistas & inibidores , Maleato de Dizocilpina/toxicidade , Antagonistas de Aminoácidos Excitatórios/toxicidade , Nitratos/uso terapêutico , Anfetamina/farmacologia , Animais , Estimulantes do Sistema Nervoso Central/farmacologia , Clormetiazol/uso terapêutico , Interpretação Estatística de Dados , Hipnóticos e Sedativos/uso terapêutico , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Reversão de Aprendizagem/efeitos dos fármacos
8.
Pharmacol Biochem Behav ; 91(4): 549-53, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18854198

RESUMO

Excitatory amino acids (EAAs) and their receptors play a central role in the mechanisms underlying pain transmission. NMDA-receptor antagonists such as MK-801 produce antinociceptive effects against experimental models of chronic pain, but results in acute pain models are conflicting, perhaps due to increased glutamate availability induced by the NMDA-receptor antagonists. Since guanosine and riluzole have recently been shown to stimulate glutamate uptake, the aim of this study was to examine the effects of guanosine or riluzole on changes in nociceptive signaling induced by MK-801 in an acute pain model. Rats received an i.p. injection of vehicle, morphine, guanosine, riluzole or MK-801 or a combined treatment (vehicle, morphine, guanosine or riluzole+MK-801) and were evaluated in the tail flick test, or had a CSF sample drawn after 30 min. Riluzole, guanosine, and MK-801 (0.01 or 0.1 mg/kg) did not affect basal nociceptive responses or CSF EAAs levels. However, MK-801 (0.5 mg/kg) induced hyperalgesia and increased the CSF EAAs levels; both effects were prevented by guanosine, riluzole or morphine. Hyperalgesia was correlated with CSF aspartate and glutamate levels. This study provides additional evidence for the mechanism of action of MK-801, showing that MK-801 induces hyperalgesia with parallel increase in CSF EAAs levels.


Assuntos
Maleato de Dizocilpina/antagonistas & inibidores , Maleato de Dizocilpina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Aminoácidos Excitatórios/líquido cefalorraquidiano , Guanosina/farmacologia , Hiperalgesia/induzido quimicamente , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Animais , Cromatografia Líquida de Alta Pressão , Hiperalgesia/psicologia , Masculino , Morfina/farmacologia , Entorpecentes/farmacologia , Medição da Dor/efeitos dos fármacos , Ratos , Ratos Wistar , Tempo de Reação/efeitos dos fármacos , Riluzol/farmacologia
9.
Br J Pharmacol ; 176(20): 4002-4018, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31347694

RESUMO

BACKGROUND AND PURPOSE: Lurasidone is an atypical mood-stabilizing antipsychotic with a unique receptor-binding profile, including 5-HT7 receptor antagonism; however, the detailed effects of 5-HT7 receptor antagonism on various transmitter systems relevant to schizophrenia, particularly the thalamo-insular glutamatergic system and the underlying mechanisms, are yet to be clarified. EXPERIMENTAL APPROACH: We examined the mechanisms underlying the clinical effects of lurasidone by measuring the release of l-glutamate, GABA, dopamine, and noradrenaline in the reticular thalamic nucleus (RTN), mediodorsal thalamic nucleus (MDTN) and insula of freely moving rats in response to systemic injection or local infusion of lurasidone or MK-801 using multiprobe microdialysis with ultra-HPLC. KEY RESULTS: Systemic MK-801 (0.5 mg·kg-1 ) administration increased insular release of l-glutamate, dopamine, and noradrenaline but decreased GABA release. Systemic lurasidone (1 mg·kg-1 ) administration also increased insular release of l-glutamate, dopamine, and noradrenaline but without affecting GABA. Local lurasidone administration into the insula (3 µM) did not affect MK-801-induced insular release of l-glutamate or catecholamine, whereas local lurasidone administration into the MDTN (1 µM) inhibited MK-801-induced insular release of l-glutamate and catecholamine, similar to the 5-HT7 receptor antagonist SB269970. CONCLUSIONS AND IMPLICATIONS: The present results indicate that MK-801-induced insular l-glutamate release is generated by activation of thalamo-insular glutamatergic transmission via MDTN GABAergic disinhibition resulting from NMDA receptor inhibition in the MDTN and RTN. Lurasidone inhibited this MK-801-evoked insular l-glutamate release through inhibition of excitatory 5-HT7 receptor in the MDTN. These effects on thalamo-insular glutamatergic transmission may contribute to the antipsychotic and mood-stabilizing actions of lurasidone.


Assuntos
Antipsicóticos/farmacologia , Maleato de Dizocilpina/antagonistas & inibidores , Cloridrato de Lurasidona/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de Serotonina/metabolismo , Antagonistas da Serotonina/farmacologia , Animais , Antipsicóticos/administração & dosagem , Maleato de Dizocilpina/farmacologia , Ácido Glutâmico/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Cloridrato de Lurasidona/administração & dosagem , Masculino , Núcleo Mediodorsal do Tálamo/efeitos dos fármacos , Perfusão , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Antagonistas da Serotonina/administração & dosagem , Transmissão Sináptica/efeitos dos fármacos , Tálamo/efeitos dos fármacos , Tálamo/metabolismo
10.
Psychopharmacology (Berl) ; 198(3): 363-74, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18437299

RESUMO

RATIONALE: Several agents that stimulate the glycine site of N-methyl-D: -aspartate (NMDA) receptors have been reported to moderately improve both negative symptoms and cognitive dysfunctions in patients with schizophrenia. However, differences in efficacy have also been reported, and further comparative pharmacological studies are still needed. OBJECTIVES: We aimed to explore the effects of two glycine site agonists of the NMDA receptor, glycine and D: -serine, and a partial agonist, D: -cycloserine, on prepulse inhibition (PPI) deficits induced by a NMDA receptor antagonist, MK-801, in mice. Furthermore, we performed in vivo microdialysis and additional PPI measurements using a selective glycine site antagonist to verify if the beneficial effects observed after the systemic administration of glycine were due to glycine itself via its activity at the glycine site. RESULTS: High doses of glycine (1.6 g/kg) and D: -serine (1.8 and 2.7 g/kg) significantly attenuated MK-801-induced PPI deficits. In contrast, D: -cycloserine did not show any amelioration of MK-801-induced PPI deficits at doses ranging from 7.5 mg/kg to 60 mg/kg. The selective glycine site antagonist, L-701,324 (10 mg/kg), antagonized the effect of glycine on MK-801-induced PPI deficits. Furthermore, in vivo microdialysis demonstrated that intraperitoneal injection of glycine significantly increased glycine and L: -serine levels, but decreased D: -serine levels in the prefrontal cortex. CONCLUSIONS: The findings of the present study suggest that glycine and D: -serine but not D: -cycloserine could attenuate PPI deficits associated with NMDA receptor hypofunction via NMDA glycine sites in the brain.


Assuntos
Antimetabólitos/farmacologia , Ciclosserina/farmacologia , Maleato de Dizocilpina/antagonistas & inibidores , Maleato de Dizocilpina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Glicina/farmacologia , Reflexo de Sobressalto/efeitos dos fármacos , Serina/farmacologia , Animais , Cromatografia Líquida de Alta Pressão , Interpretação Estatística de Dados , Relação Dose-Resposta a Droga , Injeções Intraperitoneais , Masculino , Camundongos , Microdiálise , Quinolonas/farmacologia
11.
Neuropharmacology ; 141: 260-271, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30201210

RESUMO

Dopamine (DA)-replacement therapy utilizing l-DOPA is the gold standard symptomatic treatment for Parkinson's disease (PD). A critical complication of this therapy is the development of l-DOPA-induced dyskinesia (LID). The endogenous opioid peptides, including enkephalins and dynorphin, are co-transmitters of dopaminergic, GABAergic, and glutamatergic transmission in the direct and indirect striatal output pathways disrupted in PD, and alterations in expression levels of these peptides and their precursors have been implicated in LID genesis and expression. We have previously shown that the opioid glycopeptide drug MMP-2200 (a.k.a. Lactomorphin), a glycosylated derivative of Leu-enkephalin mediates potent behavioral effects in two rodent models of striatal DA depletion. In this study, the mixed mu-delta agonist MMP-2200 was investigated in standard preclinical rodent models of PD and of LID to evaluate its effects on abnormal involuntary movements (AIMs). MMP-2200 showed antiparkinsonian activity, while increasing l-DOPA-induced limb, axial, and oral (LAO) AIMs by ∼10%, and had no effect on dopamine receptor 1 (D1R)-induced LAO AIMs. In contrast, it markedly reduced dopamine receptor 2 (D2R)-like-induced LAO AIMs. The locomotor AIMs were reduced by MMP-2200 in all three conditions. The N-methyl-d-aspartate receptor (NMDAR) antagonist MK-801 has previously been shown to be anti-dyskinetic, but only at doses that induce parkinsonism. When MMP-2200 was co-administered with MK-801, MK-801-induced pro-parkinsonian activity was suppressed, while a robust anti-dyskinetic effect remained. In summary, the opioid glycopeptide MMP-2200 reduced AIMs induced by a D2R-like agonist, and MMP-2200 modified the effect of MK-801 to result in a potent reduction of l-DOPA-induced AIMs without induction of parkinsonism.


Assuntos
Benzazepinas/farmacologia , Discinesia Induzida por Medicamentos/prevenção & controle , Glicopeptídeos/farmacologia , Levodopa/efeitos adversos , Doença de Parkinson Secundária/prevenção & controle , Quimpirol/antagonistas & inibidores , Animais , Antiparkinsonianos/farmacologia , Benzazepinas/antagonistas & inibidores , Maleato de Dizocilpina/antagonistas & inibidores , Maleato de Dizocilpina/farmacologia , Sinergismo Farmacológico , Levodopa/antagonistas & inibidores , Masculino , Oxidopamina , Doença de Parkinson Secundária/induzido quimicamente , Quimpirol/farmacologia , Ratos
12.
J Psychopharmacol ; 32(9): 1027-1036, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29897000

RESUMO

Deficits in hippocampal-mediated pattern separation are one aspect of cognitive function affected in schizophrenia (SZ) or Alzheimer's disease (AD). To develop novel therapies, it is beneficial to explore this specific aspect of cognition preclinically. The location discrimination reversal (LDR) task is a hippocampal-dependent operant paradigm that evaluates spatial learning and cognitive flexibility using touchscreens. Here we assessed baseline performance as well as multimodal disease-relevant manipulations in mice. Mice were trained to discriminate between the locations of two images where the degree of separation impacted performance. Administration of putative pro-cognitive agents was unable to improve performance at narrow separation. Furthermore, a range of disease-relevant manipulations were characterized to assess whether performance could be impaired and restored. Pertinent to the cholinergic loss in AD, scopolamine (0.1 mg/kg) produced a disruption in LDR, which was attenuated by donepezil (1 mg/kg). Consistent with NMDA hypofunction in cognitive impairment associated with SZ, MK-801 (0.1 mg/kg) also disrupted performance; however, this deficit was not modified by rolipram. Microdeletion of genes associated with SZ (22q11) resulted in impaired performance, which was restored by rolipram (0.032 mg/kg). Since aging and inflammation affect cognition and are risk factors for AD, these aspects were also evaluated. Aged mice were slower to acquire the task than young mice and did not reach the same level of performance. A systemic inflammatory challenge (lipopolysaccharide (LPS), 1 mg/kg) produced prolonged (7 days) deficits in the LDR task. These data suggest that LDR task is a valuable platform for evaluating disease-relevant deficits in pattern separation and offers potential for identifying novel therapies.


Assuntos
Envelhecimento/psicologia , Condicionamento Operante/efeitos dos fármacos , Discriminação Psicológica/efeitos dos fármacos , Maleato de Dizocilpina/farmacologia , Inflamação/psicologia , Escopolamina/farmacologia , Animais , Maleato de Dizocilpina/antagonistas & inibidores , Donepezila/farmacologia , Inflamação/induzido quimicamente , Lipopolissacarídeos , Masculino , Camundongos , Rolipram/farmacologia , Escopolamina/antagonistas & inibidores , Percepção Espacial/efeitos dos fármacos
13.
Neuropharmacology ; 140: 217-232, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30099049

RESUMO

N-methyl-d-aspartate receptors (NMDARs) are ionotropic glutamate receptors that mediate excitatory neurotransmission in the mammalian central nervous system (CNS), and their dysregulation results in the aetiology of many CNS syndromes. Several NMDAR modulators have been used successfully in clinical trials (including memantine) and NMDARs remain a promising pharmacological target for the treatment of CNS syndromes. 1,2,3,4-Tetrahydro-9-aminoacridine (tacrine; THA) was the first approved drug for Alzheimer's disease (AD) treatment. 7-methoxyderivative of THA (7-MEOTA) is less toxic and showed promising results in patients with tardive dyskinesia. We employed electrophysiological recordings in HEK293 cells and rat neurones to examine the mechanism of action of THA and 7-MEOTA at the NMDAR. We showed that both THA and 7-MEOTA are "foot-in-the-door" open-channel blockers of GluN1/GluN2 receptors and that 7-MEOTA is a more potent but slower blocker than THA. We found that the IC50 values for THA and 7-MEOTA exhibited the GluN1/GluN2A < GluN1/GluN2B < GluN1/GluN2C = GluN1/GluN2D relationship and that 7-MEOTA effectively inhibits human GluN1/GluN2A-M817V receptors that carry a pathogenic mutation. We also showed that 7-MEOTA is a "foot-in-the-door" open-channel blocker of GluN1/GluN3 receptors, although these receptors were not inhibited by memantine. In addition, the inhibitory potency of 7-MEOTA at synaptic and extrasynaptic hippocampal NMDARs was similar, and 7-MEOTA exhibited better neuroprotective activity when compared with THA and memantine in rats with NMDA-induced lesions of the hippocampus. Finally, intraperitoneal administration of 7-MEOTA attenuated MK-801-induced hyperlocomotion and pre-pulse inhibition deficit in rats. We conclude that 7-MEOTA may be considered for the treatment of diseases associated with the dysfunction of NMDARs.


Assuntos
Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Tacrina/análogos & derivados , Animais , Células Cultivadas , Maleato de Dizocilpina/antagonistas & inibidores , Maleato de Dizocilpina/farmacologia , Relação Dose-Resposta a Droga , Hipocampo/efeitos dos fármacos , Humanos , Locomoção/efeitos dos fármacos , Masculino , Memantina/farmacologia , Mutação , Neurônios/fisiologia , Inibição Pré-Pulso/efeitos dos fármacos , Ratos , Receptores de N-Metil-D-Aspartato/genética , Tacrina/farmacologia
14.
Neurotoxicology ; 28(1): 161-7, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17141325

RESUMO

Oxidative stress has been implicated in the pathogenesis of several neurodegenerative diseases and may result from excessive free radical production due to increased local metabolism. Non-competitive N-methyl-D-aspartate (NMDA) antagonists (MK-801 and phencyclidine) increase glucose metabolism in many brain areas and induce cytoplasmic vacuoles, heat shock protein and necrotic cell death in neurones of the rodent posterior cingulate and retrosplenial cortex. We have investigated the effect of several antioxidants with differing properties on MK-801-induced neuronal loss. Free radical scavengers (dimethyl sulfoxide (DMSO) and alpha-tocopherol) and spin traps (N-tert-butyl-alpha-(2-sulfophenyl)-nitrone (S-PBN) and 5-(diethoxyphosphoryl)-5-methyl-1-pyrrole N-oxide (DEPMPO)), produced marked attenuation of MK-801-induced neuronal necrosis in the rat posterior cingulate and retrosplenial cortex. Further, administration of DMSO could be delayed by up to 4 h after MK-801 dosing and still achieve between 80 and 86% reduction in neuronal loss. We also show that MK-801 administration rapidly induced a four-fold and prolonged increase in cerebral blood flow in the posterior cingulate. This elevated regional blood flow was only transiently reduced by DMSO administration. The anterior cingulate, a region which undergoes no neuronal loss, showed only a two-fold increase in regional blood flow following MK-801 administration. These results support a hypothesis that oxidative stress plays a role in MK-801-induced neuronal necrosis since pathological changes can be attenuated by several antioxidants.


Assuntos
Antioxidantes/farmacologia , Córtex Cerebral/patologia , Maleato de Dizocilpina/antagonistas & inibidores , Maleato de Dizocilpina/toxicidade , Antagonistas de Aminoácidos Excitatórios/toxicidade , Neurônios/patologia , Animais , Morte Celular/efeitos dos fármacos , Circulação Cerebrovascular/efeitos dos fármacos , Óxidos N-Cíclicos/farmacologia , Dimetil Sulfóxido/farmacologia , Relação Dose-Resposta a Droga , Feminino , Sequestradores de Radicais Livres/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Pirróis/farmacologia , Ratos , Ratos Endogâmicos F344 , Vitamina E/farmacologia
15.
Psychopharmacology (Berl) ; 234(7): 1079-1091, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28180960

RESUMO

RATIONALE: The search for novel antipsychotic drugs to treat schizophrenia is driven by the poor treatment efficacy, serious side effects, and poor patient compliance of current medications. Recently, a class of compounds known as tetrahydroprotoberberines, which includes the compound d,l-govadine, have shown promise in preclinical rodent tests relevant to schizophrenia. To date, the effect of govadine on prepulse inhibition (PPI), a test for sensorimotor gating commonly used to assess the effects of putative treatments for schizophrenia, has not been determined. OBJECTIVES: The objective of the present study was to determine the effects of each enantiomer of govadine (d- and l-govadine) on PPI alone and its disruption by the distinct pharmacological compounds apomorphine and MK-801. METHODS: Male Long-Evans rats were treated systemically with d- or l-govadine and apomorphine or MK-801 prior to PPI. The PPI paradigm employed here included parametric manipulations of the prepulse intensity and the interval between the prepulse and pulse. RESULTS: Acute MK-801 (0.15 mg/kg) significantly increased the startle response to startle pulses alone, while both MK-801 and apomorphine (0.2 mg/kg) significantly increased reactivity to prepulse-alone trials. Both MK-801 and apomorphine disrupted PPI. In addition, d-govadine alone significantly disrupted PPI in the apomorphine experiment. Pretreatment with l-, but not d-, govadine (1.0 mg/kg) blocked the effect of apomorphine and MK-801 on PPI. Treatment of rats with l-govadine alone (0.3, 1.0, 3.0 mg/kg) also dose-dependently increased PPI. CONCLUSIONS: Given the high affinity of l-govadine for dopamine D2 receptors, these results suggest that further testing of l-govadine as an antipsychotic is warranted.


Assuntos
Antipsicóticos/farmacologia , Apomorfina/farmacologia , Alcaloides de Berberina/farmacologia , Maleato de Dizocilpina/farmacologia , Agonistas de Dopamina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Inibição Pré-Pulso/efeitos dos fármacos , Animais , Antipsicóticos/química , Apomorfina/antagonistas & inibidores , Alcaloides de Berberina/química , Maleato de Dizocilpina/antagonistas & inibidores , Relação Dose-Resposta a Droga , Masculino , Ratos , Ratos Long-Evans , Receptores de Dopamina D2/efeitos dos fármacos , Reflexo de Sobressalto/efeitos dos fármacos , Esquizofrenia/tratamento farmacológico , Estereoisomerismo
16.
J Basic Clin Physiol Pharmacol ; 28(6): 601-608, 2017 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-28902622

RESUMO

BACKGROUND: Neuropathic pain is a chronic pain condition, which is resistant to therapy. Ascorbate was released because of the activation of glutaminergic neurons. Due to the important role of N-methyl-D-aspartate (NMDA) receptors in the pathophysiology of neuropathic pain, this study investigated the analgesic efficacy of ascorbic acid (AA) in neuropathic pain condition and the role of NMDA receptors in this effect. METHODS: For this purpose, adult male rats were randomly allocated to experimental groups (n=8 in each group). Neuropathic pain was induced by chronic constriction injury (CCI) of the sciatic nerve. During the second week after CCI, animals received a single injection of 1, 3, 5, or 10 mg/kg of AA intraperitoneally and pain threshold was determined 15 and 60 min later. The antinociceptive effect of chronic administration was also evaluated by intraperitoneal injection (IP) of 3 mg/kg AA for 3 weeks. To determine the role of NMDA receptors, separate groups of animals 30 min after single injection of AA (1 mg/kg) animals received i.p. injection of ketamine (5 mg/kg), MK-801 (0.01 mg/kg), or glutamate (1000 nmol) and were tested 20 min afterwards. Data analyzed by ANOVA and Newman-Keuls tests and p<0.05 were considered as significant. RESULTS: IP of 3, 5 and 10 mg/kg increased the pain threshold during the second week after CCI (p<0.05, F=3 in tactile allodynia and p<0.01, F=3.2 in thermal and mechanical hyperalgeisa). Chronic administration of AA also produced antinociceptive effect. Ascorbic acid (1 mg/kg, i.p.) inhibited MK-801 and ketamine-induced antinociception response significantly (p<0.001, F=2). It also prevented the analgesic effect of glutamate administration (p<0.001, F=2). CONCLUSIONS: The results indicated that AA produced a dose-dependent antinociceptive effect that seems to mediate through its interaction with NMDA receptors.


Assuntos
Analgésicos/farmacologia , Ácido Ascórbico/farmacologia , Neuralgia/tratamento farmacológico , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Nervo Isquiático/lesões , Analgésicos/uso terapêutico , Animais , Ácido Ascórbico/uso terapêutico , Maleato de Dizocilpina/antagonistas & inibidores , Maleato de Dizocilpina/farmacologia , Relação Dose-Resposta a Droga , Agonistas de Aminoácidos Excitatórios/farmacologia , Agonistas de Aminoácidos Excitatórios/uso terapêutico , Antagonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/uso terapêutico , Ácido Glutâmico/farmacologia , Ketamina/antagonistas & inibidores , Ketamina/farmacologia , Ligadura/efeitos adversos , Masculino , Neuralgia/complicações , Limiar da Dor/efeitos dos fármacos , Traumatismos dos Nervos Periféricos/complicações , Traumatismos dos Nervos Periféricos/tratamento farmacológico , Ratos , Nervo Isquiático/cirurgia
17.
Neuropsychopharmacology ; 31(4): 795-803, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16052245

RESUMO

Cannabidiol, a nonpsychoactive constituent of the Cannabis sativa plant, has been reported to act as an agonist of the vanilloid 1 channel in the transient receptor potential family (TRPV1) and also to inhibit the hydrolysis and cellular uptake of the endogenous cannabinoid anandamide. Cannabidiol has also been reported to have potential as an antipsychotic. We investigated the effect of cannabidiol on sensorimotor gating deficits in mice induced by the noncompetitive NMDA receptor antagonist, MK-801. Sensorimotor gating is deficient in psychotic disorders such as schizophrenia and may be reliably measured by prepulse inhibition (PPI) of the startle response in rodents and humans. MK-801 (0.3-1 mg/kg i.p.) dose dependently disrupted PPI while cannabidiol (1-15 mg/kg i.p.), when administered with vehicle, had no effect on PPI. Cannabidiol (5 mg/kg i.p.) successfully reversed disruptions in PPI induced by MK-801 (1 mg/kg i.p.), as did the atypical antipsychotic clozapine (4 mg/kg i.p.). Pretreatment with capsazepine (20 mg/kg i.p.) prevented the reversal of MK-801-induced disruption of PPI by cannabidiol, providing preliminary evidence that TRPV1 receptors are involved in the reversal of MK-801-induced sensorimotor gating deficits by cannabidiol.


Assuntos
Canabidiol/farmacologia , Maleato de Dizocilpina/antagonistas & inibidores , Antagonistas de Aminoácidos Excitatórios/farmacologia , Inibição Psicológica , Reflexo de Sobressalto/efeitos dos fármacos , Análise de Variância , Animais , Comportamento Animal/efeitos dos fármacos , Capsaicina/análogos & derivados , Capsaicina/farmacologia , Clozapina/farmacologia , Condicionamento Clássico/efeitos dos fármacos , Maleato de Dizocilpina/farmacologia , Relação Dose-Resposta a Droga , Interações Medicamentosas , Masculino , Camundongos , Antagonistas da Serotonina/farmacologia
18.
Behav Brain Res ; 168(1): 144-9, 2006 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-16343655

RESUMO

The present study was undertaken to investigate the effects of pharmacological modulation of the NMDA receptors on spontaneous alternation behaviour. The performance of rats treated with MK-801 and kynurenic acid (KYNA) was assessed in the cross-arm-maze. We evaluated: (a) the total number of arm entries representing locomotor activity, (b) spontaneous variation of different arms thought to reflect alternation performance. In the first experiment, MK-801 (0.01, 0.025, 0.05, 0.1 and 0.2 mg/kg, i.p.) was given 30 min prior to the testing. Beginning the dose of 0.05 mg/kg the drug increased locomotion and impaired alternation performance. An ability of animals to enter subsequently three or four different arms was reduced significantly. In the second experiment, the dose of 0.05 mg/kg was chosen as the lowest possible dose of MK-801 producing marked behavioural impairment. KYNA (0.3, 3 and 30 mg/kg, s.c.) was administered 60 min prior to the MK-801. While all KYNA doses prevented hyperlocomotion, only the highest dose (30 mg/kg) maintained alternation score at the control levels, i.e. the KYNA plus MK-801 treated animals alternated regularly three or four different arms. The results suggest different sensitivity of the two behavioural systems, i.e. locomotion and space orientation, towards pharmacological insult. In conclusion, the study confirmed protective behavioural effects of KYNA given in sufficient amounts and sufficiently long prior MK-801.


Assuntos
Maleato de Dizocilpina/antagonistas & inibidores , Maleato de Dizocilpina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Comportamento Exploratório/efeitos dos fármacos , Ácido Cinurênico/farmacologia , Atividade Motora/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Ácido Glutâmico/fisiologia , Masculino , Nootrópicos/farmacologia , Piracetam/farmacologia , Ratos , Ratos Wistar
19.
Neuropsychopharmacology ; 30(12): 2135-43, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15956997

RESUMO

Enhancing cholinergic function has been suggested as a possible strategy for ameliorating the cognitive deficits of schizophrenia. The purpose of this study was to examine the effects of acetylcholinesterase (AChE) inhibitors in mice treated with the noncompetitive N-methyl-d-aspartate (NMDA) receptor antagonist, MK-801, which has been suggested as an animal model of the cognitive deficits of schizophrenia. Three separate experiments were conducted to test the effects of physostigmine, donepezil, or galantamine on deficits in learning and memory induced by MK-801. In each experiment, MK-801 (0.05 or 0.10 mg/kg) or saline was administered i.p. 20 min prior to behavioral testing over a total of 12 days. At 30 min prior to administration of MK-801 or saline, one of three doses of the AChE inhibitor (ie physostigmine-0.03, 0.10, or 0.30 mg/kg; donepezil-0.10, 0.30, or 1.00 mg/kg; or galantamine-0.25, 0.50, or 1.00 mg/kg) or saline was administered s.c. Behavioral testing was performed in all experimental animals using the following sequence: (1) spatial reversal learning, (2) locomotion, (3) fear conditioning, and (4) shock sensitivity. Both doses of MK-801 produced impairments in spatial reversal learning and in contextual and cued memory, as well as hyperlocomotion. Physostigmine and donepezil, but not galantamine, ameliorated MK-801-induced deficits in spatial reversal learning and in contextual and cued memory in a dose-dependent manner. Also, physostigmine, but not donepezil or galantamine, reversed MK-801-induced hyperlocomotion. Galantamine, but not physostigmine or donepezil, altered shock sensitivity. These results suggest that AChE inhibitors may differ in their capacity to ameliorate learning and memory deficits produced by MK-801 in mice, which may have relevance for the cognitive effects of cholinomimetic drugs in patients with schizophrenia.


Assuntos
Comportamento Animal/efeitos dos fármacos , Inibidores da Colinesterase/farmacologia , Maleato de Dizocilpina/antagonistas & inibidores , Maleato de Dizocilpina/toxicidade , Antagonistas de Aminoácidos Excitatórios/toxicidade , Animais , Cognição/efeitos dos fármacos , Donepezila , Relação Dose-Resposta a Droga , Galantamina/farmacologia , Indanos/farmacologia , Aprendizagem/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Fisostigmina/farmacologia , Piperidinas/farmacologia , Receptores Nicotínicos/efeitos dos fármacos
20.
Psychopharmacology (Berl) ; 177(3): 344-8, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15290004

RESUMO

RATIONALE: Flunarizine is known as a calcium channel blocker commonly used in many countries to treat migraine and vertigo. Parkinsonism has been described as one of its side-effects in the elderly, which is in agreement with its recently characterized moderate D2 receptor antagonism. OBJECTIVES: To perform a pre-clinical evaluation of flunarizine as a potential antipsychotic. METHODS: We evaluated the action of orally administered flunarizine in mice against hyperlocomotion induced by amphetamine and dizocilpine (MK-801) as pharmacological models of schizophrenia, induction of catalepsy as a measure for extrapyramidal symptoms and impairment induced by dizocilpine on the delayed alternation task for working memory. RESULTS: Flunarizine robustly inhibited hyperlocomotion induced by both amphetamine and dizocilpine at doses that do not reduce spontaneous locomotion (3-30 mg/kg). Mild catalepsy was observed at 30 mg/kg, being more pronounced at 50 mg/kg and 100 mg/kg. Flunarizine (30 mg/kg) improved dizocilpine-induced impairment on the delayed alternation test. CONCLUSIONS: These results suggest a profile comparable to atypical antipsychotics. The low cost, good tolerability and long half-life (over 2 weeks) of flunarizine are possible advantages for its use as an atypical antipsychotic. These results warrant clinical trials with flunarizine for the treatment of schizophrenia.


Assuntos
Modelos Animais de Doenças , Flunarizina/farmacocinética , Administração Oral , Animais , Catalepsia/induzido quimicamente , Dextroanfetamina/administração & dosagem , Dextroanfetamina/efeitos adversos , Dextroanfetamina/antagonistas & inibidores , Maleato de Dizocilpina/administração & dosagem , Maleato de Dizocilpina/efeitos adversos , Maleato de Dizocilpina/antagonistas & inibidores , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Flunarizina/administração & dosagem , Flunarizina/efeitos adversos , Haloperidol/administração & dosagem , Haloperidol/efeitos adversos , Camundongos , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Receptores de N-Metil-D-Aspartato/administração & dosagem , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA