Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.703
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Immunity ; 56(6): 1187-1203.e12, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37160118

RESUMO

B7 ligands (CD80 and CD86), expressed by professional antigen-presenting cells (APCs), activate the main co-stimulatory receptor CD28 on T cells in trans. However, in peripheral tissues, APCs expressing B7 ligands are relatively scarce. This raises the questions of whether and how CD28 co-stimulation occurs in peripheral tissues. Here, we report that CD8+ T cells displayed B7 ligands that interacted with CD28 in cis at membrane invaginations of the immunological synapse as a result of membrane remodeling driven by phosphoinositide-3-kinase (PI3K) and sorting-nexin-9 (SNX9). cis-B7:CD28 interactions triggered CD28 signaling through protein kinase C theta (PKCθ) and promoted CD8+ T cell survival, migration, and cytokine production. In mouse tumor models, loss of T cell-intrinsic cis-B7:CD28 interactions decreased intratumoral T cells and accelerated tumor growth. Thus, B7 ligands on CD8+ T cells can evoke cell-autonomous CD28 co-stimulation in cis in peripheral tissues, suggesting cis-signaling as a general mechanism for boosting T cell functionality.


Assuntos
Antígenos CD28 , Linfócitos T CD8-Positivos , Camundongos , Animais , Antígenos CD28/metabolismo , Antígenos CD/metabolismo , Ligantes , Membranas Sinápticas/metabolismo , Antígeno B7-2 , Glicoproteínas de Membrana/metabolismo , Antígeno B7-1/metabolismo , Moléculas de Adesão Celular , Ativação Linfocitária
2.
Cell ; 166(5): 1295-1307.e21, 2016 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-27565350

RESUMO

Cellular compartments that cannot be biochemically isolated are challenging to characterize. Here we demonstrate the proteomic characterization of the synaptic clefts that exist at both excitatory and inhibitory synapses. Normal brain function relies on the careful balance of these opposing neural connections, and understanding how this balance is achieved relies on knowledge of their protein compositions. Using a spatially restricted enzymatic tagging strategy, we mapped the proteomes of two of the most common excitatory and inhibitory synaptic clefts in living neurons. These proteomes reveal dozens of synaptic candidates and assign numerous known synaptic proteins to a specific cleft type. The molecular differentiation of each cleft allowed us to identify Mdga2 as a potential specificity factor influencing Neuroligin-2's recruitment of presynaptic neurotransmitters at inhibitory synapses.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Neurônios GABAérgicos/metabolismo , Imunoglobulinas/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteoma/metabolismo , Membranas Sinápticas/metabolismo , Animais , Antígenos CD/metabolismo , Ácido Glutâmico/metabolismo , Células HEK293 , Humanos , Camundongos , Moléculas de Adesão de Célula Nervosa/metabolismo , Peroxidase/genética , Peroxidase/metabolismo , Proteômica , Ratos , Receptores de GABA/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Tálamo/metabolismo
3.
Nature ; 627(8004): 604-611, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38448582

RESUMO

Human brains vary across people and over time; such variation is not yet understood in cellular terms. Here we describe a relationship between people's cortical neurons and cortical astrocytes. We used single-nucleus RNA sequencing to analyse the prefrontal cortex of 191 human donors aged 22-97 years, including healthy individuals and people with schizophrenia. Latent-factor analysis of these data revealed that, in people whose cortical neurons more strongly expressed genes encoding synaptic components, cortical astrocytes more strongly expressed distinct genes with synaptic functions and genes for synthesizing cholesterol, an astrocyte-supplied component of synaptic membranes. We call this relationship the synaptic neuron and astrocyte program (SNAP). In schizophrenia and ageing-two conditions that involve declines in cognitive flexibility and plasticity1,2-cells divested from SNAP: astrocytes, glutamatergic (excitatory) neurons and GABAergic (inhibitory) neurons all showed reduced SNAP expression to corresponding degrees. The distinct astrocytic and neuronal components of SNAP both involved genes in which genetic risk factors for schizophrenia were strongly concentrated. SNAP, which varies quantitatively even among healthy people of similar age, may underlie many aspects of normal human interindividual differences and may be an important point of convergence for multiple kinds of pathophysiology.


Assuntos
Envelhecimento , Astrócitos , Neurônios , Córtex Pré-Frontal , Esquizofrenia , Adulto , Idoso , Idoso de 80 Anos ou mais , Humanos , Pessoa de Meia-Idade , Adulto Jovem , Envelhecimento/metabolismo , Envelhecimento/patologia , Astrócitos/citologia , Astrócitos/metabolismo , Astrócitos/patologia , Colesterol/metabolismo , Cognição , Neurônios GABAérgicos/metabolismo , Predisposição Genética para Doença , Glutamina/metabolismo , Saúde , Individualidade , Inibição Neural , Plasticidade Neuronal , Neurônios/citologia , Neurônios/metabolismo , Neurônios/patologia , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Esquizofrenia/genética , Esquizofrenia/metabolismo , Esquizofrenia/patologia , Análise da Expressão Gênica de Célula Única , Sinapses/genética , Sinapses/metabolismo , Sinapses/patologia , Membranas Sinápticas/química , Membranas Sinápticas/metabolismo
4.
PLoS Biol ; 22(3): e3002006, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38452102

RESUMO

Proteome analyses of the postsynaptic density (PSD), a proteinaceous specialization beneath the postsynaptic membrane of excitatory synapses, have identified several thousands of proteins. While proteins with predictable functions have been well studied, functionally uncharacterized proteins are mostly overlooked. In this study, we conducted a comprehensive meta-analysis of 35 PSD proteome datasets, encompassing a total of 5,869 proteins. Employing a ranking methodology, we identified 97 proteins that remain inadequately characterized. From this selection, we focused our detailed analysis on the highest-ranked protein, FAM81A. FAM81A interacts with PSD proteins, including PSD-95, SynGAP, and NMDA receptors, and promotes liquid-liquid phase separation of those proteins in cultured cells or in vitro. Down-regulation of FAM81A in cultured neurons causes a decrease in the size of PSD-95 puncta and the frequency of neuronal firing. Our findings suggest that FAM81A plays a crucial role in facilitating the interaction and assembly of proteins within the PSD, and its presence is important for maintaining normal synaptic function. Additionally, our methodology underscores the necessity for further characterization of numerous synaptic proteins that still lack comprehensive understanding.


Assuntos
Separação de Fases , Proteoma , Proteoma/metabolismo , Proteína 4 Homóloga a Disks-Large/metabolismo , Sinapses/metabolismo , Membranas Sinápticas
5.
Mol Cell ; 73(5): 971-984.e5, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30661983

RESUMO

Both the timing and kinetics of neurotransmitter release depend on the positioning of clustered Ca2+ channels in active zones to docked synaptic vesicles on presynaptic plasma membranes. However, how active zones form is not known. Here, we show that RIM and RIM-BP, via specific multivalent bindings, form dynamic and condensed assemblies through liquid-liquid phase separation. Voltage-gated Ca2+ channels (VGCCs), via C-terminal-tail-mediated direct binding to both RIM and RIM-BP, can be enriched to the RIM and RIM-BP condensates. We further show that RIM and RIM-BP, together with VGCCs, form dense clusters on the supported lipid membrane bilayers via phase separation. Therefore, RIMs and RIM-BPs are plausible organizers of active zones, and the formation of RIM and RIM-BP condensates may cluster VGCCs into nano- or microdomains and position the clustered Ca2+ channels with Ca2+ sensors on docked vesicles for efficient and precise synaptic transmissions.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Canais de Cálcio Tipo N/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Terminações Pré-Sinápticas/metabolismo , Membranas Sinápticas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Sítios de Ligação , Canais de Cálcio Tipo N/genética , Proteínas de Ligação ao GTP/genética , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Cinética , Microdomínios da Membrana/genética , Microdomínios da Membrana/metabolismo , Camundongos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Ratos , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Solubilidade , Membranas Sinápticas/genética , Transmissão Sináptica
6.
EMBO J ; 39(16): e103631, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32643828

RESUMO

Priming of synaptic vesicles involves Munc13-catalyzed transition of the Munc18-1/syntaxin-1 complex to the SNARE complex in the presence of SNAP-25 and synaptobrevin-2; Munc13 drives opening of syntaxin-1 via the MUN domain while Munc18-1 primes SNARE assembly via domain 3a. However, the underlying mechanism remains unclear. In this study, we have identified a number of residues in domain 3a of Munc18-1 that are crucial for Munc13 and Munc18-1 actions in SNARE complex assembly and synaptic vesicle priming. Our results showed that two residues (Q301/K308) at the side of domain 3a mediate the interaction between the Munc18-1/syntaxin-1 complex and the MUN domain. This interaction enables the MUN domain to drive the opening of syntaxin-1 linker region, thereby leading to the extension of domain 3a and promoting synaptobrevin-2 binding. In addition, we identified two residues (K332/K333) at the bottom of domain 3a that mediate the interaction between Munc18-1 and the SNARE motif of syntaxin-1. This interaction ensures Munc18-1 to persistently associate with syntaxin-1 during the conformational change of syntaxin-1 from closed to open, which reinforces the role of Munc18-1 in templating SNARE assembly. Taken together, our data suggest a mechanism by which Munc13 activates the Munc18-1/syntaxin-1 complex and enables Munc18-1 to prime SNARE assembly.


Assuntos
Proteínas Munc18 , Proteínas do Tecido Nervoso , Proteínas SNARE , Membranas Sinápticas , Sintaxina 1 , Animais , Células HEK293 , Humanos , Camundongos , Proteínas Munc18/química , Proteínas Munc18/genética , Proteínas Munc18/metabolismo , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Domínios Proteicos , Ratos , Proteínas SNARE/química , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Membranas Sinápticas/química , Membranas Sinápticas/genética , Membranas Sinápticas/metabolismo , Sintaxina 1/química , Sintaxina 1/genética , Sintaxina 1/metabolismo
7.
Mol Cell Neurosci ; 124: 103816, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36649812

RESUMO

Molecular interactions between pre- and postsynaptic membranes play critical roles during the development, function and maintenance of synapses. Synaptic interactions are mediated by cell surface receptors that may be held in place by trans-synaptic adhesion or intracellular binding to membrane-associated scaffolding and signaling complexes. Despite their role in stabilizing synaptic contacts, synaptic adhesion molecules undergo turnover and degradation during all stages of a neuron's life. Here we review current knowledge about membrane trafficking mechanisms that regulate turnover of synaptic adhesion molecules and the functional significance of turnover for synapse development and function. Based on recent proteomics, genetics and imaging studies, synaptic adhesion molecules exhibit remarkably high turnover rates compared to other synaptic proteins. Degradation occurs predominantly via endolysosomal mechanisms, with little evidence for roles of proteasomal or autophagic degradation. Basal turnover occurs both during synaptic development and maintenance. Neuronal activity typically stabilizes synaptic adhesion molecules while downregulating neurotransmitter receptors based on turnover. In conclusion, constitutive turnover of synaptic adhesion molecules is not a necessarily destabilizing factor, but a basis for the dynamic regulation of trans-synaptic interactions during synapse formation and maintenance.


Assuntos
Sinapses , Membranas Sinápticas , Sinapses/metabolismo , Neurônios/metabolismo , Adesão Celular , Transdução de Sinais , Moléculas de Adesão Celular Neuronais/metabolismo
8.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33875591

RESUMO

Long-term potentiation (LTP) is a cellular mechanism of learning and memory that results in a sustained increase in the probability of vesicular release of neurotransmitter. However, previous work in hippocampal area CA1 of the adult rat revealed that the total number of vesicles per synapse decreases following LTP, seemingly inconsistent with the elevated release probability. Here, electron-microscopic tomography (EMT) was used to assess whether changes in vesicle density or structure of vesicle tethering filaments at the active zone might explain the enhanced release probability following LTP. The spatial relationship of vesicles to the active zone varies with functional status. Tightly docked vesicles contact the presynaptic membrane, have partially formed SNARE complexes, and are primed for release of neurotransmitter upon the next action potential. Loosely docked vesicles are located within 8 nm of the presynaptic membrane where SNARE complexes begin to form. Nondocked vesicles comprise recycling and reserve pools. Vesicles are tethered to the active zone via filaments composed of molecules engaged in docking and release processes. The density of tightly docked vesicles was increased 2 h following LTP compared to control stimulation, whereas the densities of loosely docked or nondocked vesicles congregating within 45 nm above the active zones were unchanged. The tethering filaments on all vesicles were shorter and their attachment sites shifted closer to the active zone. These findings suggest that tethering filaments stabilize more vesicles in the primed state. Such changes would facilitate the long-lasting increase in release probability following LTP.


Assuntos
Hipocampo/fisiologia , Potenciação de Longa Duração/fisiologia , Vesículas Sinápticas/ultraestrutura , Animais , Encéfalo/metabolismo , Encéfalo/fisiologia , Citoesqueleto , Tomografia com Microscopia Eletrônica/métodos , Hipocampo/metabolismo , Potenciação de Longa Duração/genética , Masculino , Neurotransmissores , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/fisiologia , Ratos , Ratos Long-Evans , Sinapses/fisiologia , Membranas Sinápticas/fisiologia , Membranas Sinápticas/ultraestrutura , Vesículas Sinápticas/fisiologia
9.
Int J Mol Sci ; 25(18)2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39337704

RESUMO

N-methyl-D-aspartate receptors (NMDARs) are glutamate receptors with key roles in synaptic communication and plasticity. The activation of synaptic NMDARs initiates plasticity and stimulates cell survival. In contrast, the activation of extrasynaptic NMDARs can promote cell death underlying a potential mechanism of neurodegeneration occurring in Alzheimer's disease (AD). The distribution of synaptic versus extrasynaptic NMDARs has emerged as an important parameter contributing to neuronal dysfunction in neurodegenerative diseases including AD. Here, we review the concept of extrasynaptic NMDARs, as this population is present in numerous neuronal cell membranes but also in the membranes of various non-neuronal cells. Previous evidence regarding the membranal distribution of synaptic versus extrasynaptic NMDRs in relation to AD mice models and in the brains of AD patients will also be reviewed.


Assuntos
Doença de Alzheimer , Receptores de N-Metil-D-Aspartato , Sinapses , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Humanos , Animais , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo , Sinapses/patologia , Membrana Celular/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Plasticidade Neuronal , Membranas Sinápticas/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia
10.
Biochem Biophys Res Commun ; 610: 8-14, 2022 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-35430450

RESUMO

Peripheral nerve injury (PNI) can disintegrate acetylcholine receptor (AChR) clusters in the postsynaptic membrane. In our previous research, lncRNAs that were differentially expressed in the whole transcriptome sequencing of denervated muscle atrophy after PNI were screened. By utilizing Gene Ontology (GO) analysis and protein-protein interaction (PPI) networks, a novel lncRNA LNC_000280 was predicted to be associated with neuromuscular junction (NMJ). The myotubes were used to assess the connection between LNC_000280 and AChR cluster formation in vitro by overexpression and knockdown of LNC_000280 in the C2C12 cell line. Our findings demonstrated that the overexpression of LNC_000280 repressed the gene expression and protein level of AChR subunits in myotubes and further reduced the area of AChR aggregates on the cell membrane. In contrast, the knockdown of LNC_000280 brought about opposite results. In addition, the transcriptional level of Sorbs2 changed inversely with the quantity change of LNC_000280. In conclusion, LNC_000280 may associate with the formation of AChR clusters.


Assuntos
RNA Longo não Codificante , Receptores Colinérgicos , Fibras Musculares Esqueléticas/metabolismo , Junção Neuromuscular/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Receptores Colinérgicos/genética , Receptores Colinérgicos/metabolismo , Membranas Sinápticas/metabolismo
11.
PLoS Biol ; 17(10): e3000466, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31658245

RESUMO

The pre- and postsynaptic membranes comprising the synaptic junction differ in protein composition. The membrane trafficking mechanisms by which neurons control surface polarization of synaptic receptors remain poorly understood. The sorting receptor Sortilin-related CNS expressed 1 (SorCS1) is a critical regulator of trafficking of neuronal receptors, including the presynaptic adhesion molecule neurexin (Nrxn), an essential synaptic organizer. Here, we show that SorCS1 maintains a balance between axonal and dendritic Nrxn surface levels in the same neuron. Newly synthesized Nrxn1α traffics to the dendritic surface, where it is endocytosed. Endosomal SorCS1 interacts with the Rab11 GTPase effector Rab11 family-interacting protein 5 (Rab11FIP5)/Rab11 interacting protein (Rip11) to facilitate the transition of internalized Nrxn1α from early to recycling endosomes and bias Nrxn1α surface polarization towards the axon. In the absence of SorCS1, Nrxn1α accumulates in early endosomes and mispolarizes to the dendritic surface, impairing presynaptic differentiation and function. Thus, SorCS1-mediated sorting in dendritic endosomes controls Nrxn axonal surface polarization required for proper synapse development and function.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Córtex Cerebral/metabolismo , Moléculas de Adesão de Célula Nervosa/genética , Neurônios/metabolismo , Receptores de Superfície Celular/genética , Membranas Sinápticas/metabolismo , Transmissão Sináptica/genética , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Polaridade Celular , Córtex Cerebral/citologia , Embrião de Mamíferos , Endocitose , Endossomos/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Neurônios/ultraestrutura , Cultura Primária de Células , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte Proteico , Ratos , Ratos Wistar , Receptores de Superfície Celular/metabolismo , Membranas Sinápticas/ultraestrutura , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
12.
Mol Cell Proteomics ; 19(9): 1418-1435, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32518069

RESUMO

Synaptic transmission leading to release of neurotransmitters in the nervous system is a fast and highly dynamic process. Previously, protein interaction and phosphorylation have been thought to be the main regulators of synaptic transmission. Here we show that sialylation of N-linked glycosylation is a novel potential modulator of neurotransmitter release mechanisms by investigating depolarization-dependent changes of formerly sialylated N-linked glycopeptides. We suggest that negatively charged sialic acids can be modulated, similarly to phosphorylation, by the action of sialyltransferases and sialidases thereby changing local structure and function of membrane glycoproteins. We characterized site-specific alteration in sialylation on N-linked glycoproteins in isolated rat nerve terminals after brief depolarization using quantitative sialiomics. We identified 1965 formerly sialylated N-linked glycosites in synaptic proteins and found that the abundances of 430 glycosites changed after 5 s depolarization. We observed changes on essential synaptic proteins such as synaptic vesicle proteins, ion channels and transporters, neurotransmitter receptors and cell adhesion molecules. This study is to our knowledge the first to describe ultra-fast site-specific modulation of the sialiome after brief stimulation of a biological system.


Assuntos
Glicoproteínas de Membrana/metabolismo , Neurotransmissores/metabolismo , Nervos Periféricos/metabolismo , Proteoma/metabolismo , Ácidos Siálicos/metabolismo , Sinapses/metabolismo , Membranas Sinápticas/metabolismo , Animais , Cloratos/farmacologia , Cromatografia Líquida , Glicosídeos/metabolismo , Glicosilação , Masculino , Glicoproteínas de Membrana/química , Nervos Periféricos/enzimologia , Nervos Periféricos/fisiologia , Proteoma/química , Proteoma/efeitos dos fármacos , Proteoma/fisiologia , Proteômica , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/química , Ácidos Siálicos/química , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Sinapses/química , Sinapses/efeitos dos fármacos , Sinapses/fisiologia , Membranas Sinápticas/efeitos dos fármacos , Membranas Sinápticas/enzimologia , Espectrometria de Massas em Tandem
13.
Arch Biochem Biophys ; 709: 108966, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34139199

RESUMO

Chemical neurotransmission is the major mechanism of neuronal communication. Neurotransmitters are released from secretory organelles, the synaptic vesicles (SVs) via exocytosis into the synaptic cleft. Fusion of SVs with the presynaptic plasma membrane is balanced by endocytosis, thus maintaining the presynaptic membrane at steady-state levels. The protein machineries responsible for exo- and endocytosis have been extensively investigated. In contrast, less is known about the role of lipids in synaptic transmission and how the lipid composition of SVs is affected by dynamic exo-endocytotic cycling. Here we summarize the current knowledge about the composition, organization, and function of SV membrane lipids. We also cover lipid biogenesis and maintenance during the synaptic vesicle cycle.


Assuntos
Membranas Sinápticas/química , Vesículas Sinápticas/química , Animais , Endocitose/fisiologia , Exocitose/fisiologia , Humanos , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Membranas Sinápticas/metabolismo , Vesículas Sinápticas/metabolismo
14.
Neurochem Res ; 46(12): 3159-3165, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34370167

RESUMO

Glutamate (Glu) is considered the most important excitatory amino acid neurotransmitter in the mammalian Central Nervous System. Zinc (Zn) is co-released with Glu during synaptic transmission and interacts with Glutamate receptors and transporters. We performed binding experiments using [3H]MK-801 (NMDA), and [3H]Fluorowillardine (AMPA) as ligands to study Zn-Glutamate interactions in rat cortical synaptic membranes. We also examined the effects of mercury and lead on NMDA or AMPA receptors. Zinc at 1 nM, significantly potentiates [3H]MK-801 binding. Lead inhibits [3H]MK-801 binding at micromolar concentrations. At millimolar concentrations, Hg also has a significant inhibitory effect. These effects are not reversed by Zn (1 nM). Zinc displaces the [3H]FW binding curve to the right. Lead (nM) and Hg (µM) inhibit [3H]FW binding. At certain concentrations, Zn reverses the effects of these metals on [3H]FW binding. These specific interactions serve to clarify the role of Zn, Hg, and Pb in physiological and pathological conditions.


Assuntos
Alanina/análogos & derivados , Maleato de Dizocilpina/metabolismo , Chumbo/farmacologia , Mercúrio/farmacologia , Pirimidinas/metabolismo , Membranas Sinápticas/metabolismo , Zinco/farmacologia , Alanina/metabolismo , Animais , Fármacos Neuroprotetores/metabolismo , Ratos , Membranas Sinápticas/efeitos dos fármacos
15.
Proc Natl Acad Sci U S A ; 115(40): 10166-10171, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30224498

RESUMO

The type 2 K+/Cl- cotransporter (KCC2) allows neurons to maintain low intracellular levels of Cl-, a prerequisite for efficient synaptic inhibition. Reductions in KCC2 activity are evident in epilepsy; however, whether these deficits directly contribute to the underlying pathophysiology remains controversial. To address this issue, we created knock-in mice in which threonines 906 and 1007 within KCC2 have been mutated to alanines (KCC2-T906A/T1007A), which prevents its phospho-dependent inactivation. The respective mice appeared normal and did not show any overt phenotypes, and basal neuronal excitability was unaffected. KCC2-T906A/T1007A mice exhibited increased basal neuronal Cl- extrusion, without altering total or plasma membrane accumulation of KCC2. Critically, activity-induced deficits in synaptic inhibition were reduced in the mutant mice. Consistent with this, enhanced KCC2 was sufficient to limit chemoconvulsant-induced epileptiform activity. Furthermore, this increase in KCC2 function mitigated induction of aberrant high-frequency activity during seizures, highlighting depolarizing GABA as a key contributor to the pathological neuronal synchronization seen in epilepsy. Thus, our results demonstrate that potentiating KCC2 represents a therapeutic strategy to alleviate seizures.


Assuntos
Epilepsia/metabolismo , Neurônios/metabolismo , Convulsões/metabolismo , Simportadores/metabolismo , Membranas Sinápticas/metabolismo , Ácido gama-Aminobutírico/metabolismo , Substituição de Aminoácidos , Animais , Epilepsia/genética , Epilepsia/patologia , Técnicas de Introdução de Genes , Camundongos , Mutação de Sentido Incorreto , Neurônios/patologia , Convulsões/genética , Convulsões/patologia , Simportadores/genética , Membranas Sinápticas/genética , Membranas Sinápticas/patologia , Ácido gama-Aminobutírico/genética , Cotransportadores de K e Cl-
16.
J Lipid Res ; 61(12): 1747-1763, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32963038

RESUMO

The plasma membrane of neurons consists of distinct domains, each of which carries specialized functions and a characteristic set of membrane proteins. While this compartmentalized membrane organization is essential for neuronal functions, it remains controversial how neurons establish these domains on the laterally fluid membrane. Here, using immunostaining, lipid-MS analysis and gene ablation with the CRISPR/Cas9 system, we report that the pancreatic lipase-related protein 2 (PLRP2), a phospholipase A1 (PLA1), is a key organizer of membrane protein localization at the neurite tips of PC12 cells. PLRP2 produced local distribution of 1-oleoyl-2-palmitoyl-PC at these sites through acyl-chain remodeling of membrane phospholipids. The resulting lipid domain assembled the syntaxin 4 (Stx4) protein within itself by selectively interacting with the transmembrane domain of Stx4. The localized Stx4, in turn, facilitated the fusion of transport vesicles that contained the dopamine transporter with the domain of the plasma membrane, which led to the localized distribution of the transporter to that domain. These results revealed the pivotal roles of PLA1, specifically PLRP2, in the formation of functional domains in the plasma membrane of neurons. In addition, our results suggest a mode of membrane organization in which the local acyl-chain remodeling of membrane phospholipids controls the selective localization of membrane proteins by regulating both lipid-protein interactions and the fusion of transport vesicles to the lipid domain.


Assuntos
Lipase/metabolismo , Fosfolipídeos/metabolismo , Membranas Sinápticas/metabolismo , Animais , Transporte Proteico , Ratos
17.
Alcohol Clin Exp Res ; 44(7): 1344-1355, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32424866

RESUMO

BACKGROUND: EtOH has a significant effect on synaptic plasticity. Munc13-1 is an essential presynaptic active zone protein involved in priming the synaptic vesicle and releasing neurotransmitter in the brain. It is a peripheral membrane protein and binds to the activator, diacylglycerol (DAG)/phorbol ester at its membrane-targeting C1 domain. Our previous studies identified Glu-582 of C1 domain as the alcohol-binding residue (Das, J. et al, J. Neurochem., 126, 715-726, 2013). METHODS: Here, we describe a 250 ns molecular dynamics (MD) simulation study on the interaction of EtOH and the activator-bound Munc13-1 C1 in the presence of varying concentrations of phosphatidylserine (PS). RESULTS: In this study, Munc13-1 C1 shows higher conformational stability in EtOH than in water. It forms fewer hydrogen bonds with phorbol 13-acetate in the presence of EtOH than in water. EtOH also affected the interaction between the protein and the membrane and between the activator and the membrane. Similar studies in a E582A mutant suggest that these effects of EtOH are mostly mediated through Glu-582. CONCLUSIONS: EtOH forms hydrogen bonds with Glu-582. While occupancy of the EtOH molecules at the vicinity (4Å) of Glu-582 is 34.4%, the occupancy in the E582A mutant is 26.5% of the simulation time. In addition, the amount of PS in the membrane influences the conformational stability of the C1 domain and interactions in the ternary complex. This study is important in providing the structural basis of EtOH's effects on synaptic plasticity.


Assuntos
Depressores do Sistema Nervoso Central/metabolismo , Etanol/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Membranas Sinápticas/metabolismo , Humanos , Simulação de Dinâmica Molecular , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/ultraestrutura , Ésteres de Forbol , Terminações Pré-Sinápticas/metabolismo , Conformação Proteica , Domínios Proteicos/genética
18.
Proc Natl Acad Sci U S A ; 114(34): 9110-9115, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28739947

RESUMO

Neurotransmitter release is orchestrated by synaptic proteins, such as SNAREs, synaptotagmin, and complexin, but the molecular mechanisms remain unclear. We visualized functionally active synaptic proteins reconstituted into proteoliposomes and their interactions in a native membrane environment by electron cryotomography with a Volta phase plate for improved resolvability. The images revealed individual synaptic proteins and synaptic protein complex densities at prefusion contact sites between membranes. We observed distinct morphologies of individual synaptic proteins and their complexes. The minimal system, consisting of neuronal SNAREs and synaptotagmin-1, produced point and long-contact prefusion states. Morphologies and populations of these states changed as the regulatory factors complexin and Munc13 were added. Complexin increased the membrane separation, along with a higher propensity of point contacts. Further inclusion of the priming factor Munc13 exclusively restricted prefusion states to point contacts, all of which efficiently fused upon Ca2+ triggering. We conclude that synaptic proteins have evolved to limit possible contact site assemblies and morphologies to those that promote fast Ca2+-triggered release.


Assuntos
Proteínas de Fusão de Membrana/metabolismo , Fusão de Membrana , Neurônios/metabolismo , Membranas Sinápticas/metabolismo , Animais , Cálcio/metabolismo , Microscopia Crioeletrônica/métodos , Proteínas de Fusão de Membrana/química , Modelos Moleculares , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Ligação Proteica , Domínios Proteicos , Proteolipídeos/metabolismo , Proteolipídeos/ultraestrutura , Proteínas SNARE/química , Proteínas SNARE/metabolismo , Membranas Sinápticas/ultraestrutura , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/ultraestrutura , Sinaptotagmina I/química , Sinaptotagmina I/metabolismo
19.
Biophys J ; 117(4): 627-630, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31378313

RESUMO

Fusion of secretory granules and synaptic vesicles with the plasma membrane is driven by SNARE protein interactions. Intensive investigations in vitro, which include x-ray crystallography, cryoelectron microscopy, and NMR analyses by numerous groups, have elucidated structures relevant to the function of these proteins. Although function depends on the proteins being membrane bound, for experimental reasons, most of the studies have used cytosolic domains, as exemplified by the groundbreaking studies that elucidated the structure of a tetrapeptide helical bundle formed by interaction of the cytosolic domains of syntaxin1A, SNAP25 (two peptides) and synaptobrevin 2. Because the cytosolic fragments were unfettered by membrane attachments, it is likely that the tetrapeptide helical bundle reflects the lowest energy state, such as that found in the "cis" interactions of the SNARE motifs after fusion when they co-localize in the plasma membrane. Much more difficult to study and still poorly understood are critical "trans" interactions between the synaptic vesicle SNARE protein synaptobrevin 2 and the plasma membrane syntaxin1A/SNAP25 complex that initiate the fusion event. In a series of articles from the laboratory of Lukas Tamm, the spontaneous orientation of the SNARE motif of membrane-bound, full-length syntaxin1A with respect to the membrane hosting syntaxin's transmembrane domain was investigated with nanometer precision under a variety of conditions, including those that model aspects of the "trans" configuration. The studies rely on fluorescence interference-contrast microscopy, a technique that utilizes the pattern of constructive and destructive interference arising from incoming and reflected excitation and emission light at the surface of a silicon chip that has been layered with oxidized silicon of varying depths. This Perspective discusses their findings, including the unexpected influence of the degree of lipid unsaturation on the orientation of the SNARE complex.


Assuntos
Proteínas SNARE/metabolismo , Membranas Sinápticas/metabolismo , Animais , Humanos , Proteínas SNARE/química , Vesículas Sinápticas/metabolismo
20.
J Biol Chem ; 293(5): 1568-1569, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29414768

RESUMO

Long-term depression (LTD) is a reduction in the efficacy of neuronal synapses, but the molecular basis of LTD signaling and how these signals lead to phenotypic outcomes, such as the shrinkage of synaptic regions, is not clear. In a new report, Woolfrey et al use chemically-induced LTD and a multitude of in vitro biochemical assays to provide evidence that synaptic removal of the scaffolding protein AKAP79/150 promotes LTD-induced spine shrinkage. The further identification of CaMKII, a kinase primarily associated with long-term potentiation (LTP), as a requirement for AKAP79/150 removal, uncovers unexpected interplay between different post-translational modifications and points to a new model of LTD.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Depressão Sináptica de Longo Prazo , Fosfolipídeos/metabolismo , Membranas Sinápticas/metabolismo , Animais , Lipoilação , Fosforilação , Domínios Proteicos , Transporte Proteico , Ratos , Ratos Sprague-Dawley , Coluna Vertebral/metabolismo , Coluna Vertebral/patologia , Membranas Sinápticas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA