RESUMO
The evolution of limb reduction in squamates is a classic example of convergence, but the skeletal morphological patterns associated with it are underexplored. To provide insights on the biomechanical and developmental consequences of transitions to limb reduction, we use geometric morphometrics to examine the morphology of pectoral and pelvic girdles in 90 species of limb-reduced skinks and their fully limbed relatives. Clavicle shapes converge towards an acute anterior bend when forelimbs are lost but hindlimbs are retained-a morphology typical of sand-swimmers. This may either indicate functional adaptations to locomotion in fine substrates, or a developmental consequence of complete limb loss. The shape of limb-bearing elements of both girdles (coracoid and pelvis) instead closely mirrors limb reduction, becoming more simplified as undulation replaces limbed locomotion. Integration between girdles decreases in taxa lacking elements of the forelimbs but not hindlimbs, indicating differential selection on each girdle in response to distinct locomotory strategies. However, this pattern becomes less clear when considering phylogenetic history, perhaps because it is limited to one specific clade (Lerista). We show how the functional demands of locomotion can induce changes at different levels of organismal organization, including both external and internal structures.
Assuntos
Evolução Biológica , Lagartos , Locomoção , Filogenia , Animais , Lagartos/anatomia & histologia , Lagartos/fisiologia , Austrália , Fenômenos Biomecânicos , Extremidades/anatomia & histologia , Membro Posterior/anatomia & histologia , Membro Posterior/fisiologiaRESUMO
Piatnitzkysauridae were Jurassic theropods that represented the earliest diverging branch of Megalosauroidea, being one of the earliest lineages to have evolved moderate body size. This clade's typical body size and some unusual anatomical features raise questions about locomotor function and specializations to aid in body support; and other palaeobiological issues. Biomechanical models and simulations can illuminate how extinct animals may have moved, but require anatomical data as inputs. With a phylogenetic context, osteological evidence, and neontological data on anatomy, it is possible to infer the musculature of extinct taxa. Here, we reconstructed the hindlimb musculature of Piatnitzkysauridae (Condorraptor, Marshosaurus, and Piatnitzkysaurus). We chose this clade for future usage in biomechanics, for comparisons with myological reconstructions of other theropods, and for the resulting evolutionary implications of our reconstructions; differential preservation affects these inferences, so we discuss these issues as well. We considered 32 muscles in total: for Piatnitzkysaurus, the attachments of 29 muscles could be inferred based on the osteological correlates; meanwhile, in Condorraptor and Marshosaurus, we respectively inferred 21 and 12 muscles. We found great anatomical similarity within Piatnitzkysauridae, but differences such as the origin of M. ambiens and size of M. caudofemoralis brevis are present. Similarities were evident with Aves, such as the division of the M. iliofemoralis externus and M. iliotrochantericus caudalis and a broad depression for the M. gastrocnemius pars medialis origin on the cnemial crest. Nevertheless, we infer plesiomorphic features such as the origins of M. puboischiofemoralis internus 1 around the "cuppedicus" fossa and M. ischiotrochantericus medially on the ischium. As the first attempt to reconstruct muscles in early tetanurans, our study allows a more complete understanding of myological evolution in theropod pelvic appendages.
Assuntos
Evolução Biológica , Dinossauros , Animais , Filogenia , Extremidade Inferior , Membro Posterior/anatomia & histologia , Dinossauros/anatomia & histologia , Músculo Esquelético/anatomia & histologiaRESUMO
The anatomy of the archosaurian pelvis and hindlimb has adopted a diversity of successful configurations allowing a wide range of postures during the evolution of the group (e.g., erect, sprawling). For this reason, thorough studies of the structure and function of the pelvic and hindlimb musculature of crocodylians are required and provide the possibility to expand their implications for the evolution of archosaurian locomotion, as well as to identify potential new characters based on muscles and their bony correlates. In this study, we give a detailed description of the pelvic and hindlimb musculature of the South American alligator Caiman yacare, providing comprehensive novel information regarding lower limb and autopodial muscles. Particularly for the pedal muscles, we propose a new classification for the dorsal and ventral muscles of the autopodium based on the organisation of these muscles in successive layers. We have studied the myology in a global background in which we have compared the Caiman yacare musculature with other crocodylians. In this sense, differences in the arrangement of m. flexor tibialis internus 1, m. flexor tibialis externus, m. iliofibularis, mm. puboischiofemorales internii 1 and 2, between Ca. yacare and other crocodylians were found. We also discuss the muscle attachments that have different bony correlates among the crocodylian species and their morphological variation. Most of the correlates did not exhibit great variation among the species compared. The majority of the recognised correlates were identified in the pelvic girdle; additionally, some bony correlates associated with the pedal muscles are highlighted here for the first time. This research provides a wide framework for future studies on comparative anatomy and functional morphology, which could contribute to improving the character definition used in phylogenetic analyses and to understand the patterns of musculoskeletal hindlimb evolution.
Assuntos
Jacarés e Crocodilos , Animais , Jacarés e Crocodilos/anatomia & histologia , Filogenia , Músculo Esquelético/anatomia & histologia , Extremidade Inferior , Membro Posterior/anatomia & histologia , Pelve/anatomia & histologiaRESUMO
Heavy animals incur large forces on their limb bones, due to the transmission of body weight and ground reaction forces, and the contractions of the various muscles of the limbs. This is particularly true for rhinoceroses, the heaviest extant animals capable of galloping. Several studies have examined their musculoskeletal system and the forces their bones incur, but no detailed quantification has ever been attempted. Such quantification could help understand better the link between form and function in giant land animals. Here we constructed three-dimensional musculoskeletal models of the forelimb and hindlimb of Ceratotherium simum, the heaviest extant rhino species, and used static optimisation (inverse) simulations to estimate the forces applied on the bones when standing at rest, including magnitudes and directions. Overall, unsurprisingly, the most active muscles were antigravity muscles, which generate moments opposing body weight (thereby incurring the ground reaction force), and thus keep the joints extended, avoiding joint collapse via flexion. Some muscles have an antigravity action around several joints, and thus were found to be highly active, likely specialised in body weight support (ulnaris lateralis; digital flexors). The humerus was subjected to the greatest amount of forces in terms of total magnitude; forces on the humerus furthermore came from a great variety of directions. The radius was mainly subject to high-magnitude compressive joint reaction forces, but to little muscular tension, whereas the opposite pattern was observed for the ulna. The femur had a pattern similar to that of the humerus, and the tibia's pattern was intermediate, being subject to great compression in its caudal side but to great tension in its cranial side (i.e. bending). The fibula was subject to by far the lowest force magnitude. Overall, the forces estimated were consistent with the documented morphofunctional adaptations of C. simum's long bones, which have larger insertion areas for several muscles and a greater robusticity overall than those of lighter rhinos, likely reflecting the intense forces we estimated here. Our estimates of muscle and bone (joint) loading regimes for this giant tetrapod improve the understanding of the links between form and function in supportive tissues and could be extended to other aspects of bone morphology, such as microanatomy.
Assuntos
Músculo Esquelético , Perissodáctilos , Animais , Perissodáctilos/fisiologia , Perissodáctilos/anatomia & histologia , Fenômenos Biomecânicos/fisiologia , Músculo Esquelético/fisiologia , Músculo Esquelético/anatomia & histologia , Membro Anterior/fisiologia , Membro Anterior/anatomia & histologia , Membro Posterior/fisiologia , Membro Posterior/anatomia & histologia , Simulação por ComputadorRESUMO
Frogs have a highly conserved body plan, yet they employ a diverse array of locomotor modes, making them ideal organisms for investigating the relationships between morphology and locomotor function, in particular whether anatomical complexity is a prerequisite for functional complexity. We use diffusible iodine contrast-enhanced microCT (diceCT) imaging to digitally dissect the gross muscle anatomy of the pelvis and hindlimbs for 30 species of frogs representing five primary locomotor modes, including the first known detailed dissection for some of the world's smallest frogs, forming the largest digital comparative analysis of musculoskeletal structure in any vertebrate clade to date. By linking musculoskeletal dissections and phylogenetic comparative methods, we then quantify and compare relationships between anatomy and function across over 160 million years of anuran evolution. In summary, we have found that bone lengths and pelvic crest sizes are generally not reliable predictors of muscle sizes, which highlights important implications for future palaeontological studies. Our investigation also presents previously unreported differences in muscle anatomy between frogs specialising in different locomotor modes, including several of the smallest frog hindlimb muscles, which are extremely difficult to extract and measure using traditional approaches. Furthermore, we find evidence of many-to-one and one-to-many mapping of form to function across the phylogeny. Additionally, we perform the first quantitative analysis of how the degree of muscle separation can differ between frogs. We find evidence that phylogenetic history is the key contributing factor to muscle separation in the pelvis and thigh, while the separation of shank muscles is influenced more strongly by locomotor mode. Finally, our anatomical 3D reconstructions are published alongside this manuscript to contribute towards future research and serve as educational materials.
Assuntos
Anuros , Membro Posterior , Locomoção , Músculo Esquelético , Pelve , Filogenia , Animais , Anuros/anatomia & histologia , Membro Posterior/anatomia & histologia , Membro Posterior/diagnóstico por imagem , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/diagnóstico por imagem , Pelve/anatomia & histologia , Pelve/diagnóstico por imagem , Locomoção/fisiologia , Evolução Biológica , Microtomografia por Raio-XRESUMO
Distantly related mammals (e.g. jerboa, tarsiers, kangaroos) have convergently evolved elongated hindlimbs relative to body size. Limb elongation is hypothesized to make these species more effective jumpers by increasing their kinetic energy output (through greater forces or acceleration distances), thereby increasing take-off velocity and jump distance. This hypothesis, however, has rarely been tested at the population level, where natural selection operates. We examined the relationship between limb length, muscular traits and dynamics using Longshanks mice, which were selectively bred over 22 generations for longer tibiae. Longshanks mice have approximately 15% longer tibiae and 10% longer femora compared with random-bred Control mice from the same genetic background. We collected in vivo measures of locomotor kinematics and force production, in combination with behavioral data and muscle morphology, to examine how changes in bone and muscle structure observed in Longshanks mice affect their hindlimb dynamics during jumping and clambering. Longshanks mice achieved higher mean and maximum lunge-jump heights than Control mice. When jumping to a standardized height (14â cm), Longshanks mice had lower maximum ground reaction forces, prolonged contact times and greater impulses, without significant differences in average force, power or whole-body velocity. While Longshanks mice have longer plantarflexor muscle bodies and tendons than Control mice, there were no consistent differences in muscular cross-sectional area or overall muscle volume; improved lunge-jumping performance in Longshanks mice is not accomplished by simply possessing larger muscles. Independent of other morphological or behavioral changes, our results point to the benefit of longer hindlimbs for performing dynamic locomotion.
Assuntos
Membro Posterior , Locomoção , Animais , Membro Posterior/fisiologia , Membro Posterior/anatomia & histologia , Fenômenos Biomecânicos , Camundongos/fisiologia , Músculo Esquelético/fisiologia , Músculo Esquelético/anatomia & histologia , Masculino , Feminino , Tíbia/fisiologia , Tíbia/anatomia & histologia , Fêmur/fisiologia , Fêmur/anatomia & histologiaRESUMO
There are few studies related to the biological and ecological aspects of the glass snake, a limbless lizard and with a wide geographic distribution. The aim of this study was to analyze the locomotion mode of specimens of Ophiodes cf. fragilis in different substrates and to investigate the morphological adaptations associated with this type of behavior. We observed that the analyzed specimens presented slide-push locomotion modes and lateral undulation in different substrates, using their hind limbs to aid locomotion in three of the four substrates analyzed. The bones of the hind limbs (proximal - femur - and distal - tibia and fibula) were present and highly reduced and the femur is connected to a thin pelvic girdle. Our data support that hind limbs observed in species of this genus are reduced rather than vestigial. The costocutaneous musculature was macroscopically absent. This is the first study of locomotor behavior and morphology associated with locomotion in Ophiodes, providing important information for studies on morphological evolution in the genus.
Assuntos
Adaptação Fisiológica , Lagartos , Locomoção , Animais , Lagartos/anatomia & histologia , Lagartos/fisiologia , Lagartos/classificação , Locomoção/fisiologia , Adaptação Fisiológica/fisiologia , Membro Posterior/anatomia & histologia , Membro Posterior/fisiologiaRESUMO
Many questions in human movement sciences are addressed by exploiting the advantages of animal models. However, a 3D graphical model of the musculoskeletal system of the frequently used rat model that includes a sufficient level of detail does not exist. Therefore, the aim of the present work was to develop an freely accessible 3D graphical model of the rat hindlimb. Using the anatomical data of the Wistar rat (Mus norvegicus albinus) published by Greene [1935], a 3D representation of 34 muscles of the hindlimb was drawn. Two models were created, one using muscle-like appearances and one using different colors. Each muscle can be viewed separately or within the context of its synergistic and antagonistic muscles. This model can serve to train new students before starting their experiments but also for producing illustrations of experimental conditions or results. Further development of the model will be needed to equip it with the same advanced functionalities of some of the human anatomy atlases.
Assuntos
Músculo Esquelético , Músculos , Animais , Ratos , Membro Posterior/anatomia & histologia , Modelos Animais , Músculo Esquelético/fisiologia , Ratos WistarRESUMO
The physical properties of the environment impose strong selection on organisms and their form-function relationships. In water and on land, selective pressures differ, with water being more viscous and denser than air, and gravity being the most important external force on land for relatively large animals such as vertebrates. These different properties of the environment could drive variation in the design and mechanics of the locomotor system of organisms. Animals that use multiple environments can consequently exhibit locomotion conflicts between the demands imposed by the media, leading to potential trade-offs. Here, we tested for the presence of such locomotor trade-offs depending on the environment (water or land) in a largely aquatic frog, Xenopus laevis. We focused on terrestrial and aquatic exertion capacity (time and distance swum or jumped until exhaustion) and aquatic and terrestrial burst capacity (maximal instantaneous swimming velocity and maximal force jump) given the ecological relevance of these traits. We tested these performance traits for trade-offs, depending on environments (water versus air) and locomotor modes (i.e. exertion and burst performance). Finally, we assessed the contribution of morphological traits to each performance trait. Our data show no trade-offs between the performance traits and between the environments, suggesting that X. laevis is equally good at swimming and jumping thanks to the same underlying morphological specialisations. We did observe, however, that morphological predictors differed depending on the environment, with variation in head shape and forelimb length being good predictors for aquatic locomotion and variation in hindlimb and forelimb segments predicting variation in jumping performance on land.
Assuntos
Locomoção , Natação , Animais , Xenopus laevis , Membro Posterior/anatomia & histologia , ÁguaRESUMO
The relationship between dinosaurs and other reptiles is well established, but the sequence of acquisition of dinosaurian features has been obscured by the scarcity of fossils with transitional morphologies. The closest extinct relatives of dinosaurs either have highly derived morphologies or are known from poorly preserved or incomplete material. Here we describe one of the stratigraphically lowest and phylogenetically earliest members of the avian stem lineage (Avemetatarsalia), Teleocrater rhadinus gen. et sp. nov., from the Middle Triassic epoch. The anatomy of T. rhadinus provides key information that unites several enigmatic taxa from across Pangaea into a previously unrecognized clade, Aphanosauria. This clade is the sister taxon of Ornithodira (pterosaurs and birds) and shortens the ghost lineage inferred at the base of Avemetatarsalia. We demonstrate that several anatomical features long thought to characterize Dinosauria and dinosauriforms evolved much earlier, soon after the bird-crocodylian split, and that the earliest avemetatarsalians retained the crocodylian-like ankle morphology and hindlimb proportions of stem archosaurs and early pseudosuchians. Early avemetatarsalians were substantially more species-rich, widely geographically distributed and morphologically diverse than previously recognized. Moreover, several early dinosauromorphs that were previously used as models to understand dinosaur origins may represent specialized forms rather than the ancestral avemetatarsalian morphology.
Assuntos
Aves/classificação , Dinossauros/anatomia & histologia , Dinossauros/classificação , Fósseis , Filogenia , Jacarés e Crocodilos/anatomia & histologia , Jacarés e Crocodilos/classificação , Animais , Aves/anatomia & histologia , Membro Posterior/anatomia & histologia , Esqueleto/anatomia & histologia , TanzâniaRESUMO
The last common ancestor of birds and crocodylians plus all of its descendants (clade Archosauria) dominated terrestrial Mesozoic ecosystems, giving rise to disparate body plans, sizes, and modes of locomotion. As in the fields of vertebrate morphology and paleontology more generally, studies of archosaur skeletal structure have come to depend on tools for acquiring, measuring, and exploring three-dimensional (3-D) digital models. Such models, in turn, form the basis for many analyses of musculoskeletal function. A set of shared conventions for describing 3-D pose (joint or limb configuration) and 3-D kinematics (change in pose through time) is essential for fostering comparison of posture/movement among such varied species, as well as for maximizing communication among scientists. Following researchers in human biomechanics, we propose a standard methodological approach for measuring the relative position and orientation of the major segments of the archosaur pelvis and hindlimb in 3-D. We describe the construction of anatomical and joint coordinate systems using the extant guineafowl and alligator as examples. Our new standards are then applied to three extinct taxa sampled from the wider range of morphological, postural, and kinematic variation that has arisen across >250 million years of archosaur evolution. These proposed conventions, and the founding principles upon which they are based, can also serve as starting points for measuring poses between elements within a hindlimb segment, for establishing coordinate systems in the forelimb and axial skeleton, or for applying our archosaurian system more broadly to different vertebrate clades.
Assuntos
Jacarés e Crocodilos , Evolução Biológica , Jacarés e Crocodilos/anatomia & histologia , Animais , Fenômenos Biomecânicos , Ecossistema , Membro Posterior/anatomia & histologia , Humanos , Extremidade Inferior , VertebradosRESUMO
Body size is a key factor that influences antipredator behavior. For animals that rely on jumping to escape from predators, there is a theoretical trade-off between jump distance and acceleration as body size changes at both the inter- and intraspecific levels. Assuming geometric similarity, acceleration will decrease with increasing body size due to a smaller increase in muscle cross-sectional area than body mass. Smaller animals will likely have a similar jump distance as larger animals due to their shorter limbs and faster accelerations. Therefore, in order to maintain acceleration in a jump across different body sizes, hind limbs must be disproportionately bigger for larger animals. We explored this prediction using four species of kangaroo rats (Dipodomys spp.), a genus of bipedal rodent with similar morphology across a range of body sizes (40-150 g). Kangaroo rat jump performance was measured by simulating snake strikes to free-ranging individuals. Additionally, morphological measurements of hind limb muscles and segment lengths were obtained from thawed frozen specimens. Overall, jump acceleration was constant across body sizes and jump distance increased with increasing size. Additionally, kangaroo rat hind limb muscle mass and cross-sectional area scaled with positive allometry. Ankle extensor tendon cross-sectional area also scaled with positive allometry. Hind limb segment length scaled isometrically, with the exception of the metatarsals, which scaled with negative allometry. Overall, these findings support the hypothesis that kangaroo rat hind limbs are built to maintain jump acceleration rather than jump distance. Selective pressure from single-strike predators, such as snakes and owls, likely drives this relationship.
Assuntos
Dipodomys , Músculo Esquelético , Animais , Articulação do Tornozelo/fisiologia , Dipodomys/fisiologia , Membro Posterior/anatomia & histologia , Locomoção/fisiologia , Músculo Esquelético/anatomia & histologia , Tendões/anatomia & histologiaRESUMO
Animals rely on their ability to perform certain tasks sufficiently well to survive, secure mates and reproduce. Performance traits depend on morphology, and so morphological traits should predict performance, yet this relationship is often confounded by multiple competing performance demands. Males and females experience different selection pressures on performance, and the consequent sexual conflict over performance expression can either constrain performance evolution or drive sexual dimorphism in both size and shape. Furthermore, change in a single morphological trait may benefit some performance traits at the expense of others, resulting in functional trade-offs. Identifying general or sex-specific relationships between morphology and performance at the organismal level thus requires a multivariate approach, as individuals are products of both an integrated phenotype and the ecological environment in which they have developed and evolved. We estimated the multivariate morphologyâperformance gradient in wild-caught, green anoles (Anolis carolinensis) by measuring external morphology and forelimb and hindlimb musculature, and mapping these morphological traits to seven measured performance traits that cover the broad range of ecological challenges faced by these animals (sprint speed, endurance, exertion distance, climbing power, jump power, cling force and bite force). We demonstrate that males and females differ in their multivariate mapping of traits on performance, indicating that sex-specific ecological demands likely shape these relationships, but do not differ in performance integration.
Assuntos
Lagartos , Animais , Evolução Biológica , Força de Mordida , Feminino , Membro Anterior , Membro Posterior/anatomia & histologia , Lagartos/anatomia & histologia , Masculino , Caracteres SexuaisRESUMO
The arrangement and physiology of muscle fibres can strongly influence musculoskeletal function and whole-organismal performance. However, experimental investigation of muscle function during in vivo activity is typically limited to relatively few muscles in a given system. Computational models and simulations of the musculoskeletal system can partly overcome these limitations, by exploring the dynamics of muscles, tendons and other tissues in a robust and quantitative fashion. Here, a high-fidelity, 26-degree-of-freedom musculoskeletal model was developed of the hindlimb of a small ground bird, the elegant-crested tinamou (Eudromia elegans, ~550 g), including all the major muscles of the limb (36 actuators per leg). The model was integrated with biplanar fluoroscopy (XROMM) and forceplate data for walking and running, where dynamic optimization was used to estimate muscle excitations and fibre length changes throughout both gaits. Following this, a series of static simulations over the total range of physiological limb postures were performed, to circumscribe the bounds of possible variation in fibre length. During gait, fibre lengths for all muscles remained between 0.5 to 1.21 times optimal fibre length, but operated mostly on the ascending limb and plateau of the active force-length curve, a result that parallels previous experimental findings for birds, humans and other species. However, the ranges of fibre length varied considerably among individual muscles, especially when considered across the total possible range of joint excursion. Net length change of muscle-tendon units was mostly less than optimal fibre length, sometimes markedly so, suggesting that approaches that use muscle-tendon length change to estimate optimal fibre length in extinct species are likely underestimating this important parameter for many muscles. The results of this study clarify and broaden understanding of muscle function in extant animals, and can help refine approaches used to study extinct species.
Assuntos
Simulação por Computador , Extinção Biológica , Membro Posterior/fisiologia , Locomoção , Modelos Biológicos , Fibras Musculares Esqueléticas/fisiologia , Paleógnatas/fisiologia , Algoritmos , Animais , Fenômenos Biomecânicos , Membro Posterior/anatomia & histologia , Tendões/fisiologiaRESUMO
Seahorses have a specialized morphology that includes a toothless tubular mouth, a body covered with bony plates, a male brood pouch, and the absence of caudal and pelvic fins. Here we report the sequencing and de novo assembly of the genome of the tiger tail seahorse, Hippocampus comes. Comparative genomic analysis identifies higher protein and nucleotide evolutionary rates in H. comes compared with other teleost fish genomes. We identified an astacin metalloprotease gene family that has undergone expansion and is highly expressed in the male brood pouch. We also find that the H. comes genome lacks enamel matrix protein-coding proline/glutamine-rich secretory calcium-binding phosphoprotein genes, which might have led to the loss of mineralized teeth. tbx4, a regulator of hindlimb development, is also not found in H. comes genome. Knockout of tbx4 in zebrafish showed a 'pelvic fin-loss' phenotype similar to that of seahorses.
Assuntos
Evolução Biológica , Proteínas de Peixes/genética , Genoma/genética , Smegmamorpha/anatomia & histologia , Smegmamorpha/genética , Nadadeiras de Animais/anatomia & histologia , Nadadeiras de Animais/metabolismo , Animais , Sequência Conservada/genética , Proteínas de Peixes/deficiência , Deleção de Genes , Genômica , Membro Posterior/anatomia & histologia , Membro Posterior/metabolismo , Masculino , Anotação de Sequência Molecular , Família Multigênica/genética , Taxa de Mutação , Filogenia , Reprodução/fisiologia , Proteínas com Domínio T/deficiência , Proteínas com Domínio T/genética , Fatores de Tempo , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genéticaRESUMO
The knowledge of anatomy and imaging exams emerges as an important tool in the study of evolutionary processes of a species, in the elaboration of diagnosis, and the successful choice of the appropriate clinical and surgical procedures. Therefore, this study aims to describe the osteology of the hind limb of Sapajus libidinosus by means of gross, radiographic, and tomographic images. Four cadavers were used in the macroscopic analysis and five animals for the imaging exams, of which four were eventually euthanized and added to the macroscopic study. For imaging exams, they were kept anesthetized. All bones of the hind limb were documented, their structures were described, and compared with data in the literature from human and nonhuman primates. We have performed Student's t test for independent samples. There was no statistical difference between the sexes regarding the length of the hind limb bones. The coxal bone was largely well described using imaging methods. A small penile bone was present at the tip of the penis and it could be identified by all analysis methods. The femur, as well as the tibia and fibula, were not well portrayed in their proximal and distal epiphyses by radiography (Rx). However, they were well identified on tomography. No third trochanter was observed in the femur and the patella had a triangular shape. All the structures described by gross anatomy of the tarsus and metatarsus could be identified by Rx and tomography. More subtle structures, such as the popliteal notch on the tibia, and the gluteal tuberosity pectineal line and facies aspera on the coxal bone, were not identified by medical imaging. S. libidinosus presented anatomical characteristics that were similar to those of larger New World and Old World monkeys, including man. This suggests it's value as an experimental model for studies in recent primates.
Assuntos
Cebinae , Animais , Membro Posterior/anatomia & histologia , MasculinoRESUMO
Mammals and their closest fossil relatives are unique among tetrapods in expressing a high degree of pectoral girdle and forelimb functional diversity associated with fully pelagic, cursorial, subterranean, volant, and other lifestyles. However, the earliest members of the mammalian stem lineage, the "pelycosaur"-grade synapsids, present a far more limited range of morphologies and inferred functions. The more crownward nonmammaliaform therapsids display novel forelimb morphologies that have been linked to expanded functional diversity, suggesting that the roots of this quintessentially mammalian phenotype can be traced to the pelycosaur-therapsid transition in the Permian period. We quantified morphological disparity of the humerus in pelycosaur-grade synapsids and therapsids using geometric morphometrics. We found that disparity begins to increase concurrently with the emergence of Therapsida, and that it continues to rise until the Permo-Triassic mass extinction. Further, therapsid exploration of new regions of morphospace is correlated with the evolution of novel ecomorphologies, some of which are characterized by changes to overall limb morphology. This evolutionary pattern confirms that nonmammaliaform therapsid forelimbs underwent ecomorphological diversification throughout the Permian, with functional elaboration initially being more strongly expressed in the proximal end of the humerus than the distal end. The role of the forelimbs in the functional diversification of therapsids foreshadows the deployment of forelimb morphofunctional diversity in the evolutionary radiation of mammals.
Assuntos
Evolução Biológica , Linhagem da Célula/fisiologia , Extinção Biológica , Membro Posterior , Mamíferos , Células-Tronco/fisiologia , Animais , Membro Posterior/anatomia & histologia , Membro Posterior/fisiologia , Mamíferos/anatomia & histologia , Mamíferos/fisiologiaRESUMO
Therizinosaurs are highly modified, probably herbivorous, theropods from the Upper Cretaceous of Asia and North America. They are characterized by an extensively pneumatized axial skeleton, and in the derived forms, an incipiently opisthopubic pelvis. The evolution of such a pelvis is expected to be associated with extensive modification of the muscular system. The muscular system is reconstructed using observed muscle scars, reconstructions of the theropods Staurikosaurus and Tyrannosaurus, the ornithischian Maiasaura, and extant crocodilians and birds. The results indicate convergence with birds and ornithischian dinosaurs, such that the retroverted pubis in some maniraptorans can be regarded as analogous with the postacetabular bar in ornithischians. Functional implications also make derived therizinosaurs, such as Nothronychus, in some respects convergent with birds as the pubis is retroverted, becoming fused with the ischium, a laterally flaring synsacrum, and an avian-like pes.
Assuntos
Evolução Biológica , Dinossauros/anatomia & histologia , Fósseis , Membro Posterior/anatomia & histologia , Pelve/anatomia & histologia , Animais , AvesRESUMO
Osteological correlates preserve more readily than their soft tissue counterparts in the fossil record; therefore, they can more often provide insight into the soft tissue anatomy of the organism. These insights can in turn elucidate the biology of these extinct organisms. In this study, we reconstruct the pelvic girdle and hind limb musculature of the giant titanosaurian sauropod Dreadnoughtus schrani based on observations of osteological correlates and Extant Phylogenetic Bracket comparisons. Recovered fossils of Dreadnoughtus exhibit remarkably well-preserved, well-developed, and extensive muscle scars. Furthermore, this taxon is significantly larger bodied than any titanosaurian for which a myological reconstruction has previously been performed, rendering this contribution highly informative for the group. All 20 of the muscles investigated in this study are sufficiently well supported to enable reconstruction of at least one division, including reconstruction of the M. ischiocaudalis for the first time in a sauropod dinosaur. In total, 34 osteological correlates were identified on the pelvic girdle and hind limb remains of Dreadnoughtus, allowing the reconstruction of 14 muscles on the basis of Level I or Level II inferences (i.e., not Level I' or Level II' inferences). Comparisons among titanosaurians suggest widespread myological variation, yet potential phylogenetic and other paleobiologic patterns are often obscured by fragmentary preservation, infrequent myological studies, and lack of consensus on the phylogenetic placement of many taxa. However, a ventrolateral accessory process is present on the preacetabular lobe of the ilium in all of the largest titanosauriforms that preserve this skeletal element, suggesting that the presence of this process (representing the origin of the M. puboischiofemoralis internus part II) may be associated with extreme body size. By identifying such myological patterns among titanosauriforms, we can begin to address specific evolutionary and biomechanical questions related to their skeletal anatomy, how they were capable of leaving wide-gauge trackways, and resulting locomotor attributes unique to this clade.
Assuntos
Dinossauros/anatomia & histologia , Membro Posterior/anatomia & histologia , Músculo Esquelético/anatomia & histologia , AnimaisRESUMO
Reduced limbs and limblessness have evolved independently in many lizard clades. Scincidae exhibit a wide range of limb-reduced morphologies, but only some species have been used to study the embryology of limb reduction (e.g., digit reduction in Chalcides and limb reduction in Scelotes). The genus Brachymeles, a Southeast Asian clade of skinks, includes species with a range of limb morphologies, from pentadactyl to functionally and structurally limbless species. Adults of the small, snake-like species Brachymeles lukbani show no sign of external limbs in the adult except for small depressions where they might be expected to occur. Here, we show that embryos of B. lukbani in early stages of development, on the other hand, show a truncated but well-developed limb with a stylopod and a zeugopod, but no signs of an autopod. As development proceeds, the limb's small size persists even while the embryo elongates. These observations are made based on external morphology. We used florescent whole-mount immunofluorescence to visualize the morphology of skeletal elements and muscles within the embryonic limb of B. lukabni. Early stages have a humerus and separated ulna and radius cartilages; associated with these structures are dorsal and ventral muscle masses as those found in the embryos of other limbed species. While the limb remains small, the pectoral girdle grows in proportion to the rest of the body, with well-developed skeletal elements and their associated muscles. In later stages of development, we find the small limb is still present under the skin, but there are few indications of its presence, save for the morphology of the scale covering it. By use of CT scanning, we find that the adult morphology consists of a well-developed pectoral girdle, small humerus, extremely reduced ulna and radius, and well-developed limb musculature connected to the pectoral girdle. These muscles form in association with a developing limb during embryonic stages, a hint that "limbless" lizards that possess these muscles may have or have had at least transient developing limbs, as we find in B. lukbani. Overall, this newly observed pattern of ontogenetic reduction leads to an externally limbless adult in which a limb rudiment is hidden and covered under the trunk skin, a situation called cryptomelia. The results of this work add to our growing understanding of clade-specific patterns of limb reduction and the convergent evolution of limbless phenotypes through different developmental processes.