RESUMO
Fungi are among the most diverse and ecologically important kingdoms in life. However, the distributional ranges of fungi remain largely unknown as do the ecological mechanisms that shape their distributions1,2. To provide an integrated view of the spatial and seasonal dynamics of fungi, we implemented a globally distributed standardized aerial sampling of fungal spores3. The vast majority of operational taxonomic units were detected within only one climatic zone, and the spatiotemporal patterns of species richness and community composition were mostly explained by annual mean air temperature. Tropical regions hosted the highest fungal diversity except for lichenized, ericoid mycorrhizal and ectomycorrhizal fungi, which reached their peak diversity in temperate regions. The sensitivity in climatic responses was associated with phylogenetic relatedness, suggesting that large-scale distributions of some fungal groups are partially constrained by their ancestral niche. There was a strong phylogenetic signal in seasonal sensitivity, suggesting that some groups of fungi have retained their ancestral trait of sporulating for only a short period. Overall, our results show that the hyperdiverse kingdom of fungi follows globally highly predictable spatial and temporal dynamics, with seasonality in both species richness and community composition increasing with latitude. Our study reports patterns resembling those described for other major groups of organisms, thus making a major contribution to the long-standing debate on whether organisms with a microbial lifestyle follow the global biodiversity paradigms known for macroorganisms4,5.
Assuntos
Microbiologia do Ar , Biodiversidade , DNA Fúngico , Fungos , Estações do Ano , Análise Espaço-Temporal , DNA Fúngico/análise , DNA Fúngico/genética , Fungos/genética , Fungos/classificação , Fungos/isolamento & purificação , Micorrizas/genética , Micorrizas/classificação , Micorrizas/isolamento & purificação , Filogenia , Esporos Fúngicos/classificação , Esporos Fúngicos/isolamento & purificação , Temperatura , Clima Tropical , Mapeamento GeográficoRESUMO
The existence of viable human pathogens in bioaerosols which can cause infection or affect human health has been the subject of little research. In this study, data provided by 10 tropospheric aircraft surveys over Japan in 2014 confirm the existence of a vast diversity of microbial species up to 3,000 m height, which can be dispersed above the planetary boundary layer over distances of up to 2,000 km, thanks to strong winds from an area covered with massive cereal croplands in Northeast (NE) Asia. Microbes attached to aerosols reveal the presence of diverse bacterial and fungal taxa, including potential human pathogens, originating from sewage, pesticides, or fertilizers. Over 266 different fungal and 305 bacterial genera appeared in the 10 aircraft transects. Actinobacteria, Bacillota, Proteobacteria, and Bacteroidetes phyla dominated the bacteria composition and, for fungi, Ascomycota prevailed over Basidiomycota. Among the pathogenic species identified, human pathogens include bacteria such as Escherichia coli, Serratia marcescens, Prevotella melaninogenica, Staphylococcus epidermidis, Staphylococcus haemolyticus, Staphylococcus saprophyticus, Cutibacterium acnes, Clostridium difficile, Clostridium botulinum, Stenotrophomonas maltophilia, Shigella sonnei, Haemophillus parainfluenzae and Acinetobacter baumannii and health-relevant fungi such as Malassezia restricta, Malassezia globosa, Candida parapsilosis and Candida zeylanoides, Sarocladium kiliense, Cladosporium halotolerans, and Cladosporium herbarum. Diversity estimates were similar at heights and surface when entrainment of air from high altitudes occurred. Natural antimicrobial-resistant bacteria (ARB) cultured from air samples were found indicating long-distance spread of ARB and microbial viability. This would represent a novel way to disperse both viable human pathogens and resistance genes among distant geographical regions.
Assuntos
Aerossóis , Microbiologia do Ar , Bactérias , Fungos , Humanos , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Fungos/genética , Fungos/classificação , Fungos/isolamento & purificação , Japão , Aeronaves , Monitoramento Ambiental/métodos , BiodiversidadeRESUMO
The troposphere constitutes the final frontier of global ecosystem research due to technical challenges arising from its size, low biomass, and gaseous state. Using a vertical testing array comprising a meteorological tower and a research aircraft, we conducted synchronized measurements of meteorological parameters and airborne biomass (n = 480) in the vertical air column up to 3,500 m. The taxonomic analysis of metagenomic data revealed differing patterns of airborne microbial community composition with respect to time of day and height above ground. The temporal and spatial resolution of our study demonstrated that the diel cycle of airborne microorganisms is a ground-based phenomenon that is entirely absent at heights >1,000 m. In an integrated analysis combining meteorological and biological data, we demonstrate that atmospheric turbulence, identified by potential temperature and high-frequency three-component wind measurements, is the key driver of bioaerosol dynamics in the lower troposphere. Multivariate regression analysis shows that at least 50% of identified airborne microbial taxa (n = â¼10,000) are associated with either ground or height, allowing for an understanding of dispersal patterns of microbial taxa in the vertical air column. Due to the interconnectedness of atmospheric turbulence and temperature, the dynamics of microbial dispersal are likely to be impacted by rising global temperatures, thereby also affecting ecosystems on the planetary surface.
Assuntos
Microbiologia do Ar , Bactérias/classificação , Bactérias/isolamento & purificação , Aerossóis , Altitude , Atmosfera , HumanosRESUMO
Airborne bacteria are an influential component of the Earth's microbiomes, but their community structure and biogeographic distribution patterns have yet to be understood. We analyzed the bacterial communities of 370 air particulate samples collected from 63 sites around the world and constructed an airborne bacterial reference catalog with more than 27 million nonredundant 16S ribosomal RNA (rRNA) gene sequences. We present their biogeographic pattern and decipher the interlacing of the microbiome co-occurrence network with surface environments of the Earth. While the total abundance of global airborne bacteria in the troposphere (1.72 × 1024 cells) is 1 to 3 orders of magnitude lower than that of other habitats, the number of bacterial taxa (i.e., richness) in the atmosphere (4.71 × 108 to 3.08 × 109) is comparable to that in the hydrosphere, and its maximum occurs in midlatitude regions, as is also observed in other ecosystems. The airborne bacterial community harbors a unique set of dominant taxa (24 species); however, its structure appears to be more easily perturbed, due to the more prominent role of stochastic processes in shaping community assembly. This is corroborated by the major contribution of surface microbiomes to airborne bacteria (averaging 46.3%), while atmospheric conditions such as meteorological factors and air quality also play a role. Particularly in urban areas, human impacts weaken the relative importance of plant sources of airborne bacteria and elevate the occurrence of potential pathogens from anthropogenic sources. These findings serve as a key reference for predicting planetary microbiome responses and the health impacts of inhalable microbiomes with future changes in the environment.
Assuntos
Microbiologia do Ar , Microbiota , Efeitos Antropogênicos , Bactérias/genética , Humanos , Microbiota/genética , RNA Ribossômico 16S/genéticaRESUMO
In this study, we assessed the feasibility of using a surgical face mask as a sampling device to collect airborne antimicrobial resistance genes (ARGs). The method entails collection of ARG-bearing microbes on face masks, followed by their DNA extraction and quantification by qPCR analysis. Analysis of masks worn by volunteers showed an apparent mask wearing time-dependent accumulation of 16S rRNA gene and select ARGs trapped on masks, highlighting the applicability of the method in monitoring personal ARG exposure through inhalation. The sampling method was then validated for reproducibility and compared with a filter-based sampling method before application in different environmental settings to further assess personal exposure to ARGs. In comparison with the filter-based method, our new sampling method does not require a sampling pump and is more user-friendly. More importantly, it records ARG exposure down to the personalized level; thus, it may be used in routine monitoring of occupational exposure and surveillance of ARG concentrations in indoor environments.
Assuntos
Máscaras , Humanos , Microbiologia do Ar , Farmacorresistência Bacteriana/genética , RNA Ribossômico 16S/genética , Monitoramento Ambiental/instrumentação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/efeitos dos fármacos , Genes Bacterianos , Antibacterianos/farmacologiaRESUMO
Airborne triazole-resistant spores of the human fungal pathogen Aspergillus fumigatus are a significant human health problem as the agricultural use of triazoles has been selecting for cross-resistance to life-saving clinical triazoles. However, how to quantify exposure to airborne triazole-resistant spores remains unclear. Here, we describe a method for cost-effective wide-scale outdoor air sampling to measure both spore abundance as well as antifungal resistance fractions. We show that prolonged outdoor exposure of sticky seals placed in delta traps, when combined with a two-layered cultivation approach, can regionally yield sufficient colony-forming units (CFUs) for the quantitative assessment of aerial resistance levels at a spatial scale that was up to now unfeasible. When testing our method in a European pilot sampling 12 regions, we demonstrate that there are significant regional differences in airborne CFU numbers, and the triazole-resistant fraction of airborne spores is widespread and varies between 0 and 0.1 for itraconazole (â¼4 mg/L) and voriconazole (â¼2 mg/L). Our efficient and accessible air sampling protocol opens up extensive options for fine-scale spatial sampling and surveillance studies of airborne A. fumigatus.IMPORTANCEAspergillus fumigatus is an opportunistic fungal pathogen that humans and other animals are primarily exposed to through inhalation. Due to the limited availability of antifungals, resistance to the first choice class of antifungals, the triazoles, in A. fumigatus can make infections by this fungus untreatable and uncurable. Here, we describe and validate a method that allows for the quantification of airborne resistance fractions and quick genotyping of A. fumigatus TR-types. Our pilot study provides proof of concept of the suitability of the method for use by citizen-scientists for large-scale spatial air sampling. Spatial air sampling can open up extensive options for surveillance, health-risk assessment, and the study of landscape-level ecology of A. fumigatus, as well as investigating the environmental drivers of triazole resistance.
Assuntos
Microbiologia do Ar , Antifúngicos , Aspergillus fumigatus , Farmacorresistência Fúngica , Triazóis , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/genética , Triazóis/farmacologia , Antifúngicos/farmacologia , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/genética , Monitoramento Ambiental/métodosRESUMO
BACKGROUND: Foodborne pathogens such as Campylobacter jejuni are responsible for a large proportion of the gastrointestinal infections worldwide associated with poultry meat. Campylobacter spp. can be found in the chicken fecal microbiome and can contaminate poultry meat during the slaughter process. Commonly used sampling methods to detect Campylobacter spp. at poultry farms use fecal droppings or boot swabs in combination with conventional culture techniques or PCR. In this pilot study, we have used air filtering and filters spiked with mock communities in combination with shotgun metagenomics to detect Campylobacter and test the applicability of this approach for the detection and characterization of foodborne pathogens. To the best of our knowledge is this the first study that combines air filtering with shotgun metagenomic sequencing for detection and characterization of Campylobacter. RESULTS: Analysis of air filters spiked with different levels of Campylobacter, into a background of mock or poultry house communities, indicated that we could detect as little as 200 colony forming units (CFU) Campylobacter per sample using our protocols. The results indicate that even with limited sequencing effort we could detect Campylobacter in the samples analysed in this study. We observed significant amounts of Campylobacter in real-life samples from poultry houses using both real-time PCR as well as shotgun metagenomics, suggesting that the flocks in both houses were infected with Campylobacter spp. Interestingly, in both houses we find diverse microbial communities present in the indoor air which reflect the fecal microbiome of poultry. Some of the identified genera such as Staphylococcus, Escherichia and Pseudomonas are known to contain opportunistic pathogenic species. CONCLUSIONS: These results show that air sampling of poultry houses in combination with shotgun metagenomics can detect and identify Campylobacter spp. present at low levels. This is important since early detection of Campylobacter enables measures to be put in place to ensure the safety of broiler products, animal health and public health. This approach has the potential to detect any pathogen present in poultry house air.
Assuntos
Microbiologia do Ar , Campylobacter , Galinhas , Metagenômica , Animais , Projetos Piloto , Metagenômica/métodos , Galinhas/microbiologia , Campylobacter/isolamento & purificação , Campylobacter/genética , Campylobacter/classificação , Aves Domésticas/microbiologia , Fezes/microbiologia , Abrigo para Animais , Reação em Cadeia da Polimerase em Tempo Real/métodos , Infecções por Campylobacter/veterinária , Infecções por Campylobacter/microbiologia , Infecções por Campylobacter/diagnósticoRESUMO
Outbreaks of airborne viral emerging infectious diseases (EIDs) cause an increasing burden on global public health, particularly with a backdrop of intensified climate change. However, infection sources and drivers for outbreaks of airborne viral EIDs remain unknown. Here, we aim to explore the driving mechanisms of outbreaks based on the one health perspective. Outbreak information for 20 types of airborne viral EIDs was collected from the Global Infectious Disease and Epidemiology Network database and a systematic literature review. Four statistically significant and high-risk spatiotemporal clusters for airborne viral EID outbreaks were identified globally using multivariate scan statistic tests. There were 112 outbreaks with clear infection sources, and zoonotic spillover was the most common source (95.54%, 107/112). Since 1970, the majority of outbreaks occurred in healthcare facilities (24.82%), followed by schools (17.93%) and animal-related settings (15.93%). Significant associations were detected between the number of earthquakes, storms, duration of floods, and airborne viral EIDs' outbreaks using a case-crossover study design and multivariable conditional logistic regression. These findings implied that zoonotic spillover and extreme weather events are driving global outbreaks of airborne viral EIDs, and targeted prevention and control measures should be made to reduce the airborne viral EIDs burden.
Assuntos
Doenças Transmissíveis Emergentes , Surtos de Doenças , Tempo (Meteorologia) , Zoonoses , Humanos , Animais , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/virologia , Zoonoses/epidemiologia , Zoonoses/virologia , Zoonoses/transmissão , Saúde Global , Microbiologia do Ar , Viroses/epidemiologia , Viroses/transmissão , Viroses/virologia , Mudança ClimáticaRESUMO
A Gram-negative, ellipsoidal to short-rod-shaped, motile bacterium was isolated from Beijing's urban air. The isolate exhibited the closest kinship with Noviherbaspirillum aerium 122213-3T, exhibiting 98.4â% 16S rRNA gene sequence similarity. Phylogenetic analyses based on 16S rRNA gene sequences and genomes showed that it clustered closely with N. aerium 122213-3T, thus forming a distinct phylogenetic lineage within the genus Noviherbaspirillum. The average nucleotide identity and digital DNA-DNA hybridization values between strain I16B-00201T and N. aerium 122213-3T were 84.6 and 29.4â%, respectively. The respiratory ubiquinone was ubiquinone 8. The major fatty acids (>10â%) were summed feature 3 (C16:1ω6c/C16:1ω7c, 43.3â%), summed feature 8 (C18:1ω7c/C18:1ω6c, 15.9â%) and C12:0 (11.0â%). The polyamine profile showed putrescine as the predominant compound. The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, unknown lipids and unknown phosphatidylaminolipids. The phenotypic, phylogenetic and chemotaxonomic results consistently supported that strain I16B-00201T represented a novel species of the genus Noviherbaspirillum, for which the name Noviherbaspirillum album sp. nov. is proposed, with I16B-00201T (=CPCC 100848T=KCTC 52095T) designated as the type strain. Its DNA G+C content is 59.4 mol%. Pan-genome analysis indicated that some Noviherbaspirillum species possess diverse nitrogen and aromatic compound metabolism pathways, suggesting their potential value in pollutant treatment.
Assuntos
Microbiologia do Ar , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Ácidos Graxos , Hibridização de Ácido Nucleico , Fosfolipídeos , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Ubiquinona , RNA Ribossômico 16S/genética , Pequim , DNA Bacteriano/genética , Ácidos Graxos/análise , Fosfolipídeos/análiseRESUMO
Cultivation-independent molecular biological methods are essential to rapidly quantify pathogens like Legionella pneumophila (L. pneumophila) which is important to control aerosol-generating engineered water systems. A standard addition method was established to quantify L. pneumophila in the very complex matrix of process water and air of exhaust air purification systems in animal husbandry. Therefore, cryopreserved standards of viable L. pneumophila were spiked in air and water samples to calibrate the total bioanalytical process which includes cell lysis, DNA extraction, and qPCR. A standard addition algorithm was employed for qPCR to determine the initial concentration of L. pneumophila. In mineral water, the recovery rate of this approach (73%-134% within the concentration range of 100-5000 Legionella per mL) was in good agreement with numbers obtained from conventional genomic unit (GU) calibration with DNA standards. In air samples of biotrickling filters, in contrast, the conventional DNA standard approach resulted in a significant overestimation of up to 729%, whereas our standard addition gave a more realistic recovery of 131%. With this proof-of-principle study, we were able to show that the molecular biology-based standard addition approach is a suitable method to determine realistic concentrations of L. pneumophila in air and process water samples of biotrickling filter systems. Moreover, this quantification strategy is generally a promising method to quantify pathogens in challenging samples containing a complex microbiota and the classical GU approach used for qPCR leads to unreliable results.
Assuntos
Legionella pneumophila , Reação em Cadeia da Polimerase em Tempo Real , Legionella pneumophila/isolamento & purificação , Legionella pneumophila/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Filtração/métodos , Filtração/instrumentação , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , DNA Bacteriano/análise , Microbiologia da Água , Microbiologia do ArRESUMO
Fungal spores are common airborne allergens, and fungal richness has been implicated in allergic disease. Amplicon sequencing of environmental DNA from air samples is a promising method to estimate fungal spore richness with semi-quantification of hundreds of taxa and can be combined with quantitative PCR to derive abundance estimates. However, it remains unclear how the choice of air sampling method influences these estimates. This study compared active sampling with a portable impactor and passive sampling with a passive trap over different durations to estimate fungal spore richness and the abundance of allergenic taxa. Air sampling was conducted indoors and outdoors at 12 residences, including repeated measurements with a portable impactor and passive traps with 1-day and 7-day durations. ITS2 amplicon sequence data were transformed to spore equivalents estimated by quantitative PCR, repeated active samples were combined, and abundance-based rarefaction was performed to standardize sample coverage for estimation of genus-level richness and spore abundance. Rarefied fungal richness was similar between methods indoors but higher for passive traps with a 7-day duration outdoors. Rarefied abundance of allergenic genera was similar between methods but some genera had lower abundance for passive traps with a 1-day duration, which differed indoors and outdoors indicating stochasticity in the collection of spores on collocated samplers. This study found that similar estimates of fungal spore richness and abundance of allergenic taxa can be obtained using a portable impactor or a passive trap within one day and that increased passive sample duration provides limited additional information.
Assuntos
Alérgenos , Fungos , Esporos Fúngicos/genética , Fungos/genética , Microbiologia do Ar , Monitoramento AmbientalRESUMO
Ultraviolet germicidal irradiation (UVGI) and ozone disinfection are crucial methods for mitigating the airborne transmission of pathogenic microorganisms in high-risk settings, particularly with the emergence of respiratory viral pathogens such as SARS-CoV-2 and avian influenza viruses. This study quantitatively investigates the influence of UVGI and ozone on the viability ofE. coliin bioaerosols, with a particular focus on howE. coliviability depends on the size of the bioaerosols, a critical factor that determines deposition patterns within the human respiratory system and the evolution of bioaerosols in indoor environments. This study used a controlled small-scale laboratory chamber whereE. colisuspensions were aerosolized and subjected to varying levels of UVGI and ozone levels throughout the exposure time (2-6 s). The normalized viability ofE. coliwas found to be significantly reduced by UVGI (60-240µW s cm-2) as the exposure time increased from 2 to 6 s, and the most substantial reduction ofE. colinormalized viability was observed when UVGI and ozone (65-131 ppb) were used in combination. We also found that UVGI reduced the normalized viability ofE. coliin bioaerosols more significantly with smaller sizes (0.25-0.5µm) than with larger sizes (0.5-2.5µm). However, when combining UVGI and ozone, the normalized viability was higher for smaller particle sizes than for the larger ones. The findings provide insights into the development of effective UVGI disinfection engineering methods to control the spread of pathogenic microorganisms in high-risk environments. By understanding the influence of the viability of microorganisms in various bioaerosol sizes, we can optimize UVGI and ozone techniques to reduce the potential risk of airborne transmission of pathogens.
Assuntos
Desinfecção , Ozônio , Animais , Humanos , Desinfecção/métodos , Ozônio/farmacologia , Microbiologia do Ar , Raios UltravioletaRESUMO
Exposure to the indoor airborne microbiome is closely related to the air that individuals breathe. However, the floor dust-borne microbiome is commonly used as a proxy for indoor airborne microbiome, and the spatial distribution of indoor airborne microbiome is less well understood. This study aimed to characterize indoor airborne microorganisms at varying heights and compare them with those in floor dust. An assembly of three horizontally and three vertically positioned Petri dishes coated with mineral oil was applied for passive air sampling continuously at three heights without interruption. The airborne microbiomes at the three different heights showed slight stratification and differed significantly from those found in the floor dust. Based on the apportionment results from the fast expectation-maximization algorithm (FEAST), shoe sole dust contributed approximately 4% to indoor airborne bacteria and 14% to airborne fungi, a contribution that is comparable to that from the floor dust-borne microbiome. The results indicated that floor dust may not be a reliable proxy for indoor airborne microbiome. Moreover, the study highlights the need for height-resolved studies of indoor airborne microbiomes among humans in different activity modes and life states. Additionally, shoe sole-dust-associated microorganisms could potentially be a source to "re-wild" the indoor microbiota.
Assuntos
Microbiologia do Ar , Poluição do Ar em Ambientes Fechados , Poeira , Microbiota , Sapatos , Humanos , Pisos e Cobertura de Pisos , Fungos , BactériasRESUMO
The objectives are to improve the rapid identification method of microbial risk and cut off the route of transmission of resistance genes. When new pathogenic microorganisms are found, intervention can be carried out as early as possible to identify the risk of potential pathogen transmission, and timely cut off the transmission route. Hospital air samples were collected to analyse the distribution of environmental pathogenic microorganisms and the characteristics of ARGs resistance genes. The air samples were collected from 12 sampling sites in the Affiliated Hospital of Yangzhou University. In the infusion room, general ward and intensive care unit, no significant difference was found in microorganisms, and no significant difference was found in microbial resistance genes. There were some differences in resistance genes between east and west districts. Combined with the detection of pathogenic microorganisms and resistance genes in our hospital, it is necessary to improve the daily disinfection measures such as air conditioning and fresh air equipment, cut off the infection route, block the transmission of resistance genes, and monitor pathogens and resistance genes in airborne diseases.
Assuntos
Microbiologia do Ar , Humanos , Bactérias/genética , Bactérias/isolamento & purificação , Hospitais , Resistência Microbiana a Medicamentos/genéticaRESUMO
AIMS: Airborne transmission of diseases presents a serious threat to human health, so effective air disinfection technology to eliminate microorganisms in indoor air is very important. This study evaluated the effectiveness of a non-thermal plasma (NTP) air disinfector in both laboratory experiments and real environments. METHODS AND RESULTS: An experimental chamber was artificially polluted with a bioaerosol containing bacteria or viruses. Additionally, classroom environments with and without people present were used in field tests. Airborne microbial and particle concentrations were quantified. A 3.0 log10 reduction in the initial load was achieved when a virus-containing aerosol was disinfected for 60 min and a bacteria-containing aerosol was disinfected for 90 min. In the field test, when no people were present in the room, NTP disinfection decreased the airborne microbial and particle concentrations (P < 0.05). When people were present in the room, their constant activity continuously contaminated the indoor air, but all airborne indicators decreased (P < 0.05) except for planktonic bacteria (P = 0.094). CONCLUSIONS: NTP effectively inactivated microorganisms and particles in indoor air.
Assuntos
Microbiologia do Ar , Poluição do Ar em Ambientes Fechados , Bactérias , Desinfecção , Gases em Plasma , Desinfecção/métodos , Poluição do Ar em Ambientes Fechados/prevenção & controle , Bactérias/isolamento & purificação , Bactérias/efeitos dos fármacos , Humanos , Gases em Plasma/farmacologia , Aerossóis , Desinfetantes/farmacologia , Vírus/efeitos dos fármacos , Vírus/isolamento & purificaçãoRESUMO
The COVID-19 pandemic has transformed our understanding of aerosol transmissible disease and the measures required to minimise transmission. Anaesthesia providers are often in close proximity to patients and other hospital staff for prolonged periods while working in operating and procedure rooms. Although enhanced ventilation provides some protection from aerosol transmissible disease in these work areas, close proximity and long duration of exposure have the opposite effect. Surgical masks provide only minimal additional protection. Surgical patients are also at risk from viral and bacterial aerosols. Despite having recently experienced the most significant pandemic in 100 yr, we continue to lack adequate understanding of the true risks encountered from aerosol transmissible diseases in the operating room, and the best course of action to protect patients and healthcare workers from them in the future. Nevertheless, hospitals can take specific actions now by providing respirators for routine use, encouraging staff to utilise respirators routinely, establishing triggers for situations that require respirator use, educating staff concerning the prevention of aerosol transmissible diseases, and providing portable air purifiers for perioperative spaces with low levels of ventilation.
Assuntos
Aerossóis , COVID-19 , Salas Cirúrgicas , Humanos , COVID-19/prevenção & controle , COVID-19/transmissão , Controle de Infecções/métodos , Exposição Ocupacional/prevenção & controle , Microbiologia do Ar , Transmissão de Doença Infecciosa do Paciente para o Profissional/prevenção & controle , Dispositivos de Proteção Respiratória , Ventilação/métodos , MáscarasAssuntos
Microbiologia do Ar , Poluição do Ar em Ambientes Fechados , Poluentes Atmosféricos/efeitos adversos , Poluição do Ar em Ambientes Fechados/efeitos adversos , Poluição do Ar em Ambientes Fechados/legislação & jurisprudência , Poluição do Ar em Ambientes Fechados/prevenção & controle , HumanosRESUMO
BACKGROUND: Tuberculosis (TB), a major cause of disease and antimicrobial resistance, is spread via aerosols. Aerosols have diagnostic potential and airborne-microbes other than Mycobacterium tuberculosis complex (MTBC) may influence transmission. We evaluated whether PneumoniaCheck (PMC), a commercial aerosol collection device, captures MTBC and the aeromicrobiome of people with TB. METHODS: PMC was done in sputum culture-positive people (≥ 30 forced coughs each, n = 16) pre-treatment and PMC air reservoir (bag, corresponding to upper airways) and filter (lower airways) washes underwent Xpert MTB/RIF Ultra (Ultra) and 16S rRNA gene sequencing (sequencing also done on sputum). In a subset (n = 6), PMC microbiota (bag, filter) was compared to oral washes and bronchoalveolar lavage fluid (BALF). FINDINGS: 54% (7/13) bags and 46% (6/14) filters were Ultra-positive. Sequencing read counts and microbial diversity did not differ across bags, filters, and sputum. However, microbial composition in bags (Sphingobium-, Corynebacterium-, Novosphingobium-enriched) and filters (Mycobacterium-, Sphingobium-, Corynebacterium-enriched) each differed vs. sputum. Furthermore, sequencing only detected Mycobacterium in bags and filters but not sputum. In the subset, bag and filter microbial diversity did not differ vs. oral washes or BALF but microbial composition differed. Bags vs. BALF were Sphingobium-enriched and Mycobacterium-, Streptococcus-, and Anaerosinus-depleted (Anaerosinus also depleted in filters vs. BALF). Compared to BALF, none of the aerosol-enriched taxa were enriched in oral washes or sputum. INTERPRETATION: PMC captures aerosols with Ultra-detectable MTBC and MTBC is more detectable in aerosols than sputum by sequencing. The aeromicrobiome is distinct from sputum, oral washes and BALF and contains differentially-enriched lower respiratory tract microbes.
Assuntos
Aerossóis , Líquido da Lavagem Broncoalveolar , Tosse , Mycobacterium tuberculosis , RNA Ribossômico 16S , Escarro , Humanos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/isolamento & purificação , Aerossóis/análise , Escarro/microbiologia , Tosse/microbiologia , Masculino , RNA Ribossômico 16S/genética , Adulto , Feminino , Líquido da Lavagem Broncoalveolar/microbiologia , Pessoa de Meia-Idade , Microbiota , Microbiologia do Ar , Tuberculose Pulmonar/diagnóstico , Tuberculose Pulmonar/microbiologia , Tuberculose/diagnóstico , Tuberculose/microbiologia , Manejo de Espécimes/métodos , Manejo de Espécimes/instrumentação , Idoso , Adulto JovemRESUMO
Indigenous health interventions have emerged in New Zealand aimed at increasing people's interactions with and exposure to macro and microbial diversity. Urban greenspaces provide opportunities for people to gain such exposures. However, the dynamics and pathways of microbial transfer from natural environments onto a person remain poorly understood. Here, we analysed bacterial 16S rRNA amplicons in air samples (n = 7) and pre- and post-exposure nasal samples (n = 238) from 35 participants who had 30-min exposures in an outdoor park. The participants were organised into two groups: over eight days each group had two outdoor park exposures and two indoor office exposures, with a cross-over study design and washout days between exposure days. We investigated the effects of participant group, location (outdoor park vs. indoor office), and exposures (pre vs. post) on the nasal bacterial community composition and three key suspected health-associated bacterial indicators (alpha diversity, generic diversity of Gammaproteobacteria, and read abundances of butyrate-producing bacteria). The participants had distinct nasal bacterial communities, but these communities did not display notable shifts in composition following exposures. The community composition and key health bacterial indicators were stable throughout the trial period, with no clear or consistent effects of group, location, or exposure. We conclude that 30-min exposure periods to urban greenspaces are unlikely to create notable changes in the nasal microbiome of visitors, which contrasts with previous research. Our results suggest that longer exposures or activities that involves closer interaction with microbial rich ecological components (e.g., soil) are required for greenspace exposures to result in noteworthy changes in the nasal microbiome.
Assuntos
Microbiota , Nariz , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Microbiologia do Ar , Poluentes Atmosféricos/análise , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Estudos de Coortes , Estudos Cross-Over , Exposição Ambiental , Povo Maori , Nova Zelândia , Nariz/microbiologia , Parques Recreativos , RNA Ribossômico 16S/análiseRESUMO
Transmission of fungi in the air and its impact on health are regarded as important public health issues. Bioaerosols play an important role in causing or exacerbating infectious diseases, acute toxic effects, allergies, and cardiopulmonary symptoms. As many people use the public transportation system daily, it is necessary to determine the type and manner of dispersal and abundance of airborne fungi in public transport places. Three public transportation systems including a bus station, a train station, and an airport in Ahvaz city (Iran) were examined. At each of these stations, the air samples were taken from inside and outside the hall stations, and in-vehicle. A bio-stage Anderson sampler was used by suctioning air and passing it over a Petri dish containing culture medium Sabouraud Dextrose Agar (SDA). Relative humidity (RH, %), temperature (T, â¦C), and mass concentration of particulate matter (PM1, PM2.5, and PM10, µg/m3) at the sampling points were measured. The highest concentration of airborne fungi was observed in the airport. The concentration of fungi in the ambient air was higher than that in the indoor air of halls and in-vehicle. In all sampling points, the ambient predominant airborne fungi were Cladosporium and Alternaria, while the indoor predominant airborne fungi were Cladosporium, Aspergillus, and Penicillium. The indoor to outdoor ratio showed that the fungi were of an external origin. Due to the influence of the ambient air on indoor air, it is recommended to use proper ventilation and enhance the hygiene level of vehicles in public transportation systems to reduce exposure to environmentally pathogenic bioaerosols.