RESUMO
Microbial communities perform many important functions, such as carbon sequestration, decomposition, pathogen resistance, etc., but quantitatively predicting functions of new communities remains a major challenge. In this issue of Cell, Diaz-Colunga et al. report a new simple statistical regularity that enables such predictions.
Assuntos
Microbiologia Ambiental , Microbiota , Bactérias/metabolismo , Bactérias/genética , Microbiota/fisiologia , Modelos BiológicosRESUMO
The human microbiome encodes a second genome that dwarfs the genetic capacity of the host. Microbiota-derived small molecules can directly target human cells and their receptors or indirectly modulate host responses through functional interactions with other microbes in their ecological niche. Their biochemical complexity has profound implications for nutrition, immune system development, disease progression, and drug metabolism, as well as the variation in these processes that exists between individuals. While the species composition of the human microbiome has been deeply explored, detailed mechanistic studies linking specific microbial molecules to host phenotypes are still nascent. In this review, we discuss challenges in decoding these interaction networks, which require interdisciplinary approaches that combine chemical biology, microbiology, immunology, genetics, analytical chemistry, bioinformatics, and synthetic biology. We highlight important classes of microbiota-derived small molecules and notable examples. An understanding of these molecular mechanisms is central to realizing the potential of precision microbiome editing in health, disease, and therapeutic responses.
Assuntos
Metagenômica/métodos , Microbiota/fisiologia , Peptídeos/metabolismo , Policetídeos/metabolismo , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiologia , Humanos , Microbiota/genética , FenótipoRESUMO
Sulfonates include diverse natural products and anthropogenic chemicals and are widespread in the environment. Many bacteria can degrade sulfonates and obtain sulfur, carbon, and energy for growth, playing important roles in the biogeochemical sulfur cycle. Cleavage of the inert sulfonate C-S bond involves a variety of enzymes, cofactors, and oxygen-dependent and oxygen-independent catalytic mechanisms. Sulfonate degradation by strictly anaerobic bacteria was recently found to involve C-S bond cleavage through O2-sensitive free radical chemistry, catalyzed by glycyl radical enzymes (GREs). The associated discoveries of new enzymes and metabolic pathways for sulfonate metabolism in diverse anaerobic bacteria have enriched our understanding of sulfonate chemistry in the anaerobic biosphere. An anaerobic environment of particular interest is the human gut microbiome, where sulfonate degradation by sulfate- and sulfite-reducing bacteria (SSRB) produces H2S, a process linked to certain chronic diseases and conditions.
Assuntos
Carbono-Carbono Liases/metabolismo , Microbioma Gastrointestinal/fisiologia , Ácidos Sulfônicos/metabolismo , Acetiltransferases/química , Acetiltransferases/metabolismo , Alcanossulfonatos/metabolismo , Anaerobiose , Bactérias/metabolismo , Carbono-Carbono Liases/química , Glicina/metabolismo , Humanos , Sulfeto de Hidrogênio/metabolismo , Ácido Isetiônico/metabolismo , Microbiota/fisiologia , Taurina/metabolismoRESUMO
Infants born by vaginal delivery are colonized with maternal fecal microbes. Cesarean section (CS) birth disturbs mother-to-neonate transmission. In this study (NCT03568734), we evaluated whether disturbed intestinal microbiota development could be restored in term CS-born infants by postnatal, orally delivered fecal microbiota transplantation (FMT). We recruited 17 mothers, of whom seven were selected after careful screening. Their infants received a diluted fecal sample from their own mothers, taken 3 weeks prior to delivery. All seven infants had an uneventful clinical course during the 3-month follow-up and showed no adverse effects. The temporal development of the fecal microbiota composition of FMT-treated CS-born infants no longer resembled that of untreated CS-born infants but showed significant similarity to that of vaginally born infants. This proof-of-concept study demonstrates that the intestinal microbiota of CS-born infants can be restored postnatally by maternal FMT. However, this should only be done after careful clinical and microbiological screening.
Assuntos
Transplante de Microbiota Fecal/métodos , Fezes/microbiologia , Microbioma Gastrointestinal/fisiologia , Adulto , Cesárea/efeitos adversos , Parto Obstétrico , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Microbiota/fisiologia , Mães , Gravidez , Estudo de Prova de Conceito , Vagina/microbiologiaRESUMO
Human diseases are increasingly linked with an altered or "dysbiotic" gut microbiota, but whether such changes are causal, consequential, or bystanders to disease is, for the most part, unresolved. Human microbiota-associated (HMA) rodents have become a cornerstone of microbiome science for addressing causal relationships between altered microbiomes and host pathology. In a systematic review, we found that 95% of published studies (36/38) on HMA rodents reported a transfer of pathological phenotypes to recipient animals, and many extrapolated the findings to make causal inferences to human diseases. We posit that this exceedingly high rate of inter-species transferable pathologies is implausible and overstates the role of the gut microbiome in human disease. We advocate for a more rigorous and critical approach for inferring causality to avoid false concepts and prevent unrealistic expectations that may undermine the credibility of microbiome science and delay its translation.
Assuntos
Disbiose/microbiologia , Microbioma Gastrointestinal/fisiologia , Roedores/microbiologia , Animais , Doença/etiologia , Transplante de Microbiota Fecal/métodos , Humanos , Camundongos , Microbiota/fisiologia , Modelos Animais , RatosRESUMO
Environmental signals shape host physiology and fitness. Microbiota-derived cues are required to program conventional dendritic cells (cDCs) during the steady state so that they can promptly respond and initiate adaptive immune responses when encountering pathogens. However, the molecular underpinnings of microbiota-guided instructive programs are not well understood. Here, we report that the indigenous microbiota controls constitutive production of type I interferons (IFN-I) by plasmacytoid DCs. Using genome-wide analysis of transcriptional and epigenetic regulomes of cDCs from germ-free and IFN-I receptor (IFNAR)-deficient mice, we found that tonic IFNAR signaling instructs a specific epigenomic and metabolic basal state that poises cDCs for future pathogen combat. However, such beneficial biological function comes with a trade-off. Instructed cDCs can prime T cell responses against harmless peripheral antigens when removing roadblocks of peripheral tolerance. Our data provide fresh insights into the evolutionary trade-offs that come with successful adaptation of vertebrates to their microbial environment.
Assuntos
Células Dendríticas/imunologia , Interferon Tipo I/imunologia , Microbiota/imunologia , Imunidade Adaptativa/imunologia , Imunidade Adaptativa/fisiologia , Animais , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/microbiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microbiota/fisiologia , Receptor de Interferon alfa e beta/metabolismo , Transdução de Sinais/imunologiaRESUMO
Very low-carbohydrate, high-fat ketogenic diets (KDs) induce a pronounced shift in metabolic fuel utilization that elevates circulating ketone bodies; however, the consequences of these compounds for host-microbiome interactions remain unknown. Here, we show that KDs alter the human and mouse gut microbiota in a manner distinct from high-fat diets (HFDs). Metagenomic and metabolomic analyses of stool samples from an 8-week inpatient study revealed marked shifts in gut microbial community structure and function during the KD. Gradient diet experiments in mice confirmed the unique impact of KDs relative to HFDs with a reproducible depletion of bifidobacteria. In vitro and in vivo experiments showed that ketone bodies selectively inhibited bifidobacterial growth. Finally, mono-colonizations and human microbiome transplantations into germ-free mice revealed that the KD-associated gut microbiota reduces the levels of intestinal pro-inflammatory Th17 cells. Together, these results highlight the importance of trans-kingdom chemical dialogs for mediating the host response to dietary interventions.
Assuntos
Microbioma Gastrointestinal/imunologia , Microbioma Gastrointestinal/fisiologia , Intestinos/imunologia , Intestinos/microbiologia , Células Th17/imunologia , Células Th17/fisiologia , Adolescente , Adulto , Animais , Dieta Hiperlipídica/métodos , Dieta Cetogênica/métodos , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microbiota/imunologia , Microbiota/fisiologia , Pessoa de Meia-Idade , Células Th17/microbiologia , Adulto JovemRESUMO
Plants greatly rely on their root microbiome for uptake of nutrients and protection against stresses. Recent studies have uncovered the involvement of plant stress responses in the assembly of plant-beneficial microbiomes. To facilitate durable crop production, deciphering the driving forces that shape the microbiome is crucial.
Assuntos
Interações entre Hospedeiro e Microrganismos , Microbiota/fisiologia , Raízes de Plantas/microbiologia , Microbiologia do Solo , Modelos Biológicos , Raízes de Plantas/metabolismo , Plantas/metabolismo , Plantas/microbiologia , Rizosfera , Solo/químicaRESUMO
The evolutionary fate of humans is intimately linked with that of our microbiome. Medical and technological advances have caused large-scale changes in the composition and maturation of human-associated microbial communities, increasing our susceptibility to infectious and developmental diseases. Restoration of the human microbiome must become a priority for biomedicine.
Assuntos
Biologia/métodos , Trato Gastrointestinal/microbiologia , Interações entre Hospedeiro e Microrganismos , Metagenoma/genética , Microbiota/fisiologia , Animais , Antibacterianos/administração & dosagem , Biologia/tendências , Farmacorresistência Bacteriana/genética , Trato Gastrointestinal/embriologia , Trato Gastrointestinal/crescimento & desenvolvimento , Variação Genética , HumanosRESUMO
The microbiome plays a fundamental role in maintaining intestinal stem cell (ISC)-niche equilibrium. In this issue of Immunity, Kim and colleagues uncover a mechanism by which the microbiota drives macrophage WNT ligand-release to maintain ISC-niche homeostasis during early postnatal development.
Assuntos
Microbiota , Nicho de Células-Tronco , Via de Sinalização Wnt , Humanos , Recém-Nascido , Mucosa Intestinal , Microbiota/fisiologiaRESUMO
The gut microbiome is well-known to shape local and distal immune responses, both in health and disease. In a recent issue of Nature, Hosang et al. demonstrate how the lung microbiome regulates the magnitude of autoimmune inflammation in the brain.
Assuntos
Microbioma Gastrointestinal , Microbiota , Encéfalo , Interações entre Hospedeiro e Microrganismos , Pulmão , Microbiota/fisiologiaRESUMO
The myriad microorganisms that live in close association with humans have diverse effects on physiology, yet the molecular bases for these impacts remain mostly unknown1-3. Classical pathogens often invade host tissues and modulate immune responses through interactions with human extracellular and secreted proteins (the 'exoproteome'). Commensal microorganisms may also facilitate niche colonization and shape host biology by engaging host exoproteins; however, direct exoproteome-microbiota interactions remain largely unexplored. Here we developed and validated a novel technology, BASEHIT, that enables proteome-scale assessment of human exoproteome-microbiome interactions. Using BASEHIT, we interrogated more than 1.7 million potential interactions between 519 human-associated bacterial strains from diverse phylogenies and tissues of origin and 3,324 human exoproteins. The resulting interactome revealed an extensive network of transkingdom connectivity consisting of thousands of previously undescribed host-microorganism interactions involving 383 strains and 651 host proteins. Specific binding patterns within this network implied underlying biological logic; for example, conspecific strains exhibited shared exoprotein-binding patterns, and individual tissue isolates uniquely bound tissue-specific exoproteins. Furthermore, we observed dozens of unique and often strain-specific interactions with potential roles in niche colonization, tissue remodelling and immunomodulation, and found that strains with differing host interaction profiles had divergent interactions with host cells in vitro and effects on the host immune system in vivo. Overall, these studies expose a previously unexplored landscape of molecular-level host-microbiota interactions that may underlie causal effects of indigenous microorganisms on human health and disease.
Assuntos
Bactérias , Interações entre Hospedeiro e Microrganismos , Microbiota , Filogenia , Proteoma , Simbiose , Animais , Feminino , Humanos , Camundongos , Bactérias/classificação , Bactérias/imunologia , Bactérias/metabolismo , Bactérias/patogenicidade , Interações entre Hospedeiro e Microrganismos/imunologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Tropismo ao Hospedeiro , Microbiota/imunologia , Microbiota/fisiologia , Especificidade de Órgãos , Ligação Proteica , Proteoma/imunologia , Proteoma/metabolismo , Reprodutibilidade dos TestesRESUMO
We talk to Eran Elinav and Wendy S. Garrett about the evolving research landscape of the cancer-microbiome field, their motivation to delve into this area of research, and the biggest and most exciting challenges facing the field.
Assuntos
Neoplasias/metabolismo , Neoplasias/microbiologia , Humanos , Microbiota/fisiologiaRESUMO
Lipids play crucial roles in signal transduction, contribute to the structural integrity of cellular membranes, and regulate energy metabolism. Questions remain as to which lipid species maintain metabolic homeostasis and which disrupt essential cellular functions, leading to metabolic disorders. Here, we discuss recent advances in understanding lipid metabolism with a focus on catabolism, synthesis, and signaling. Technical advances, including functional genomics, metabolomics, lipidomics, lipid-protein interaction maps, and advances in mass spectrometry, have uncovered new ways to prioritize molecular mechanisms mediating lipid function. By reviewing what is known about the distinct effects of specific lipid species in physiological pathways, we provide a framework for understanding newly identified targets regulating lipid homeostasis with implications for ameliorating metabolic diseases.
Assuntos
Metabolismo dos Lipídeos/fisiologia , Doenças Metabólicas/metabolismo , Transdução de Sinais/fisiologia , Animais , Cromatina/metabolismo , Doença , Metabolismo Energético/fisiologia , Saúde , Homeostase/fisiologia , Humanos , Imunidade/fisiologia , Lipidômica/métodos , Lipídeos/fisiologia , Doenças Metabólicas/fisiopatologia , Metabolômica/métodos , Microbiota/fisiologiaRESUMO
The microbiome modulates host immune function across the gastrointestinal tract, peripheral lymphoid organs, and central nervous system. In this review, we highlight emerging evidence that microbial effects on select immune phenotypes arise developmentally, where the maternal and neonatal microbiome influence immune cell ontogeny in the offspring during gestation and early postnatal life. We further discuss roles for the perinatal microbiome and early-life immunity in regulating normal neurodevelopmental processes. In addition, we examine evidence that abnormalities in microbiota-neuroimmune interactions during early life are associated with altered risk of neurological disorders in humans. Finally, we conclude by evaluating the potential implications of microbiota-immune interventions for neurological conditions. Continued progress toward dissecting mechanistic interactions between the perinatal microbiota, immune system, and nervous system might uncover fundamental insights into how developmental interactions across physiological systems inform later-life health and disease.
Assuntos
Desenvolvimento Embrionário , Trato Gastrointestinal/microbiologia , Sistema Imunitário/embriologia , Microbiota/fisiologia , Sistema Nervoso/embriologia , Animais , Feminino , Trato Gastrointestinal/imunologia , Humanos , Sistema Imunitário/microbiologia , Imunidade , Sistema Nervoso/microbiologia , Neuroimunomodulação , Assistência Perinatal , GravidezRESUMO
Idiopathic pulmonary fibrosis (IPF) is a severe form of lung fibrosis with a high mortality rate. However, the etiology of IPF remains unknown. Here, we report that alterations in lung microbiota critically promote pulmonary fibrosis pathogenesis. We found that lung microbiota was dysregulated, and the dysregulated microbiota in turn induced production of interleukin-17B (IL-17B) during bleomycin-induced mouse lung fibrosis. Either lung-microbiota depletion or IL-17B deficiency ameliorated the disease progression. IL-17B cooperated with tumor necrosis factor-α to induce expression of neutrophil-recruiting genes and T helper 17 (Th17)-cell-promoting genes. Three pulmonary commensal microbes, which belong to the genera Bacteroides and Prevotella, were identified to promote fibrotic pathogenesis through IL-17R signaling. We further defined that the outer membrane vesicles (OMVs) that were derived from the identified commensal microbes induced IL-17B production through Toll-like receptor-Myd88 adaptor signaling. Together our data demonstrate that specific pulmonary symbiotic commensals can promote lung fibrosis by regulating a profibrotic inflammatory cytokine network.
Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/microbiologia , Interleucina-17/metabolismo , Pulmão/metabolismo , Pulmão/microbiologia , Microbiota/fisiologia , Animais , Bacteroides/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide/metabolismo , Neutrófilos/metabolismo , Prevotella/metabolismo , Transdução de Sinais/fisiologia , Receptores Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Host microbial cross-talk is essential to maintain intestinal homeostasis. However, maladaptation of this response through microbial dysbiosis or defective host defense toward invasive intestinal bacteria can result in chronic inflammation. We have shown that macrophages differentiated in the presence of the bacterial metabolite butyrate display enhanced antimicrobial activity. Butyrate-induced antimicrobial activity was associated with a shift in macrophage metabolism, a reduction in mTOR kinase activity, increased LC3-associated host defense and anti-microbial peptide production in the absence of an increased inflammatory cytokine response. Butyrate drove this monocyte to macrophage differentiation program through histone deacetylase 3 (HDAC3) inhibition. Administration of butyrate induced antimicrobial activity in intestinal macrophages in vivo and increased resistance to enteropathogens. Our data suggest that (1) increased intestinal butyrate might represent a strategy to bolster host defense without tissue damaging inflammation and (2) that pharmacological HDAC3 inhibition might drive selective macrophage functions toward antimicrobial host defense.
Assuntos
Anti-Infecciosos/farmacologia , Butiratos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Animais , Diferenciação Celular/genética , Células Cultivadas , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/microbiologia , Citocinas/genética , Citocinas/metabolismo , Disbiose/microbiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Intestinos/efeitos dos fármacos , Intestinos/microbiologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos Endogâmicos C57BL , Microbiota/efeitos dos fármacos , Microbiota/fisiologia , Monócitos/metabolismo , Monócitos/microbiologiaRESUMO
Integration of sensory and molecular inputs from the environment shapes animal behaviour. A major site of exposure to environmental molecules is the gastrointestinal tract, in which dietary components are chemically transformed by the microbiota1 and gut-derived metabolites are disseminated to all organs, including the brain2. In mice, the gut microbiota impacts behaviour3, modulates neurotransmitter production in the gut and brain4,5, and influences brain development and myelination patterns6,7. The mechanisms that mediate the gut-brain interactions remain poorly defined, although they broadly involve humoral or neuronal connections. We previously reported that the levels of the microbial metabolite 4-ethylphenyl sulfate (4EPS) were increased in a mouse model of atypical neurodevelopment8. Here we identified biosynthetic genes from the gut microbiome that mediate the conversion of dietary tyrosine to 4-ethylphenol (4EP), and bioengineered gut bacteria to selectively produce 4EPS in mice. 4EPS entered the brain and was associated with changes in region-specific activity and functional connectivity. Gene expression signatures revealed altered oligodendrocyte function in the brain, and 4EPS impaired oligodendrocyte maturation in mice and decreased oligodendrocyte-neuron interactions in ex vivo brain cultures. Mice colonized with 4EP-producing bacteria exhibited reduced myelination of neuronal axons. Altered myelination dynamics in the brain have been associated with behavioural outcomes7,9-14. Accordingly, we observed that mice exposed to 4EPS displayed anxiety-like behaviours, and pharmacological treatments that promote oligodendrocyte differentiation prevented the behavioural effects of 4EPS. These findings reveal that a gut-derived molecule influences complex behaviours in mice through effects on oligodendrocyte function and myelin patterning in the brain.
Assuntos
Ansiedade , Microbioma Gastrointestinal , Microbiota , Animais , Ansiedade/metabolismo , Bactérias , Encéfalo/metabolismo , Microbioma Gastrointestinal/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Microbiota/fisiologia , Bainha de Mielina , Fenóis/metabolismoRESUMO
The tumour-associated microbiota is an intrinsic component of the tumour microenvironment across human cancer types1,2. Intratumoral host-microbiota studies have so far largely relied on bulk tissue analysis1-3, which obscures the spatial distribution and localized effect of the microbiota within tumours. Here, by applying in situ spatial-profiling technologies4 and single-cell RNA sequencing5 to oral squamous cell carcinoma and colorectal cancer, we reveal spatial, cellular and molecular host-microbe interactions. We adapted 10x Visium spatial transcriptomics to determine the identity and in situ location of intratumoral microbial communities within patient tissues. Using GeoMx digital spatial profiling6, we show that bacterial communities populate microniches that are less vascularized, highly immunosuppressive and associated with malignant cells with lower levels of Ki-67 as compared to bacteria-negative tumour regions. We developed a single-cell RNA-sequencing method that we name INVADEseq (invasion-adhesion-directed expression sequencing) and, by applying this to patient tumours, identify cell-associated bacteria and the host cells with which they interact, as well as uncovering alterations in transcriptional pathways that are involved in inflammation, metastasis, cell dormancy and DNA repair. Through functional studies, we show that cancer cells that are infected with bacteria invade their surrounding environment as single cells and recruit myeloid cells to bacterial regions. Collectively, our data reveal that the distribution of the microbiota within a tumour is not random; instead, it is highly organized in microniches with immune and epithelial cell functions that promote cancer progression.