Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 982
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 183(3): 650-665.e15, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33031742

RESUMO

Endocannabinoids are host-derived lipid hormones that fundamentally impact gastrointestinal (GI) biology. The use of cannabis and other exocannabinoids as anecdotal treatments for various GI disorders inspired the search for mechanisms by which these compounds mediate their effects, which led to the discovery of the mammalian endocannabinoid system. Dysregulated endocannabinoid signaling was linked to inflammation and the gut microbiota. However, the effects of endocannabinoids on host susceptibility to infection has not been explored. Here, we show that mice with elevated levels of the endocannabinoid 2-arachidonoyl glycerol (2-AG) are protected from enteric infection by Enterobacteriaceae pathogens. 2-AG directly modulates pathogen function by inhibiting virulence programs essential for successful infection. Furthermore, 2-AG antagonizes the bacterial receptor QseC, a histidine kinase encoded within the core Enterobacteriaceae genome that promotes the activation of pathogen-associated type three secretion systems. Taken together, our findings establish that endocannabinoids are directly sensed by bacteria and can modulate bacterial function.


Assuntos
Endocanabinoides/metabolismo , Enterobacteriaceae/patogenicidade , Animais , Ácidos Araquidônicos/química , Ácidos Araquidônicos/metabolismo , Aderência Bacteriana , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/metabolismo , Citrobacter rodentium/patogenicidade , Colo/microbiologia , Colo/patologia , Endocanabinoides/química , Infecções por Enterobacteriaceae/microbiologia , Feminino , Microbioma Gastrointestinal , Glicerídeos/química , Glicerídeos/metabolismo , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monoacilglicerol Lipases/metabolismo , Salmonella/patogenicidade , Virulência
2.
Cell ; 140(1): 28-30, 2010 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-20085702

RESUMO

Tumor cells undergo a metabolic shift toward specific bioenergetic (glycolysis) and anabolic (protein and lipid synthesis) processes that promote rapid growth. Nomura et al. (2010) now demonstrate that an increase in monoacylglycerol lipase (MAGL) drives tumorigenesis through the lipolytic release and remodeling of free fatty acids.


Assuntos
Metabolismo dos Lipídeos , Monoacilglicerol Lipases/metabolismo , Neoplasias/metabolismo , Ácidos Graxos/metabolismo , Humanos
3.
Cell ; 140(1): 49-61, 2010 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-20079333

RESUMO

Tumor cells display progressive changes in metabolism that correlate with malignancy, including development of a lipogenic phenotype. How stored fats are liberated and remodeled to support cancer pathogenesis, however, remains unknown. Here, we show that the enzyme monoacylglycerol lipase (MAGL) is highly expressed in aggressive human cancer cells and primary tumors, where it regulates a fatty acid network enriched in oncogenic signaling lipids that promotes migration, invasion, survival, and in vivo tumor growth. Overexpression of MAGL in nonaggressive cancer cells recapitulates this fatty acid network and increases their pathogenicity-phenotypes that are reversed by an MAGL inhibitor. Impairments in MAGL-dependent tumor growth are rescued by a high-fat diet, indicating that exogenous sources of fatty acids can contribute to malignancy in cancers lacking MAGL activity. Together, these findings reveal how cancer cells can co-opt a lipolytic enzyme to translate their lipogenic state into an array of protumorigenic signals. PAPERFLICK:


Assuntos
Ácidos Graxos/metabolismo , Monoacilglicerol Lipases/metabolismo , Neoplasias Ovarianas/metabolismo , Animais , Linhagem Celular , Feminino , Humanos , Camundongos , Monoacilglicerol Lipases/genética , Monoglicerídeos/metabolismo , Transplante de Neoplasias , Transplante Heterólogo , Células Tumorais Cultivadas
4.
J Neurosci ; 43(30): 5458-5467, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37414560

RESUMO

Cannabinoid-targeted pain therapies are increasing with the expansion of cannabis legalization, however, their efficacy may be limited by pain-induced adaptations in the cannabinoid system. Cannabinoid receptor subtype 1 (CB1R) inhibition of spontaneous, GABAergic miniature IPSCs (mIPSCs) and evoked IPSCs (eIPSCs) in the ventrolateral periaqueductal gray (vlPAG) were compared in slices from naive and inflamed male and female Sprague Dawley rats. Complete Freund's Adjuvant (CFA) injections into the hindpaw induced persistent inflammation. In naive rats, exogenous cannabinoid agonists robustly reduce both eIPSCs and mIPSCs. After 5-7 d of inflammation, the effects of exogenous cannabinoids are significantly reduced because of CB1R desensitization via GRK2/3, as function is recovered in the presence of the GRK2/3 inhibitor, Compound 101 (Cmp101). Inhibition of GABA release by presynaptic µ-opioid receptors in the vlPAG does not desensitize with persistent inflammation. Unexpectedly, while CB1R desensitization significantly reduces the inhibition produced by exogenous agonists, depolarization-induced suppression of inhibition protocols that promote 2-arachidonoylglycerol (2-AG) synthesis exhibit prolonged CB1R activation after inflammation. 2-AG tone is detected in slices from CFA-treated rats when GRK2/3 is blocked, suggesting an increase in 2-AG synthesis after persistent inflammation. Inhibiting 2-AG degradation with the monoacylglycerol lipase (MAGL) inhibitor JZL184 during inflammation results in the desensitization of CB1Rs by endocannabinoids that is reversed with Cmp101. Collectively, these data indicate that persistent inflammation primes CB1Rs for desensitization, and MAGL degradation of 2-AG protects CB1Rs from desensitization in inflamed rats. These adaptations with inflammation have important implications for the development of cannabinoid-based pain therapeutics targeting MAGL and CB1Rs.SIGNIFICANCE STATEMENT Presynaptic G-protein-coupled receptors are resistant to desensitization. Here we find that persistent inflammation increases endocannabinoid levels, priming presynaptic cannabinoid 1 receptors for desensitization on subsequent addition of exogenous agonists. Despite the reduced efficacy of exogenous agonists, endocannabinoids have prolonged efficacy after persistent inflammation. Endocannabinoids readily induce cannabinoid 1 receptor desensitization if their degradation is blocked, indicating that endocannabinoid concentrations are maintained at subdesensitizing levels and that degradation is critical for maintaining endocannabinoid regulation of presynaptic GABA release in the ventrolateral periaqueductal gray during inflammatory states. These adaptations with inflammation have important implications for the development of cannabinoid-based pain therapies.


Assuntos
Canabinoides , Endocanabinoides , Ratos , Masculino , Feminino , Animais , Endocanabinoides/metabolismo , Receptores de Canabinoides , Monoacilglicerol Lipases/farmacologia , Transdução de Sinais/fisiologia , Ratos Sprague-Dawley , Dor/metabolismo , Canabinoides/farmacologia , Ácido gama-Aminobutírico/metabolismo , Inflamação/tratamento farmacológico , Receptor CB1 de Canabinoide
5.
Mol Pharmacol ; 105(2): 75-83, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38195158

RESUMO

The mechanisms of ß-caryophyllene (BCP)-induced analgesia are not well studied. Here, we tested the efficacy of BCP in an acute postsurgical pain model and evaluated its effect on the endocannabinoid system. Rats were treated with vehicle and 10, 25, 50, and 75 mg/kg BCP. Paw withdrawal responses to mechanical stimuli were evaluated using an electronic von Frey anesthesiometer. Endocannabinoids, including 2-arachidonoylglycerol (2-AG), were also evaluated in plasma and tissues using high-performance liquid chromatography-tandem mass spectrometry. Monoacylglycerol lipase (MAGL) activity was evaluated in vitro as well as ex vivo. We observed a dose-dependent and time-dependent alleviation of hyperalgesia in incised paws up to 85% of the baseline value at 30 minutes after administration of BCP. We also observed dose-dependent increases in the 2-AG levels of about threefold after administration of BCP as compared with vehicle controls. Incubations of spinal cord tissue homogenates from BCP-treated rats with isotope-labeled 2-arachidonoylglycerol-d8 revealed a reduced formation of the isotope-labeled MAGL product 2-AG-d8 as compared with vehicle controls, indicating MAGL enzyme inhibition. In vitro MAGL enzyme activity assessment using 2-AG as the substrate revealed an IC50 of 15.8 µM for MAGL inhibition using BCP. These data showed that BCP inhibits MAGL activity in vitro and in vivo, causing 2-AG levels to rise. Since the endocannabinoid 2-AG is a CB1 and CB2 receptor agonist, we propose that 2-AG-mediated cannabinoid receptor activation contributes to BCP's mechanism of analgesia. SIGNIFICANCE STATEMENT: ß-Caryophyllene (BCP) consumption is relatively safe and is approved by the Food and Drug Administration as a flavoring agent, which can be used in cosmetic and food additives. BCP is a potent anti-inflammatory agent that showed substantial antihyperalgesic properties in this study of acute pain suggesting that BCP might be an alternative to opioids. This study shows an additive mechanism (monoacylglycerol lipase inhibition) by which BCP might indirectly alter CB1 and CB2 receptor activity and exhibit its pharmacological properties.


Assuntos
Analgesia , Ácidos Araquidônicos , Endocanabinoides , Glicerídeos , Sesquiterpenos Policíclicos , Animais , Ratos , Endocanabinoides/farmacologia , Glicerol , Isótopos , Monoacilglicerol Lipases , Receptor CB2 de Canabinoide
6.
Am J Hum Genet ; 108(10): 2017-2023, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34587489

RESUMO

ABHD16A (abhydrolase domain-containing protein 16A, phospholipase) encodes the major phosphatidylserine (PS) lipase in the brain. PS lipase synthesizes lysophosphatidylserine, an important signaling lipid that functions in the mammalian central nervous system. ABHD16A has not yet been associated with a human disease. In this report, we present a cohort of 11 affected individuals from six unrelated families with a complicated form of hereditary spastic paraplegia (HSP) who carry bi-allelic deleterious variants in ABHD16A. Affected individuals present with a similar phenotype consisting of global developmental delay/intellectual disability, progressive spasticity affecting the upper and lower limbs, and corpus callosum and white matter anomalies. Immunoblot analysis on extracts from fibroblasts from four affected individuals demonstrated little to no ABHD16A protein levels compared to controls. Our findings add ABHD16A to the growing list of lipid genes in which dysregulation can cause complicated forms of HSP and begin to describe the molecular etiology of this condition.


Assuntos
Paralisia Cerebral/patologia , Deficiência Intelectual/patologia , Leucoencefalopatias/patologia , Monoacilglicerol Lipases/genética , Mutação , Paraplegia Espástica Hereditária/patologia , Adolescente , Adulto , Paralisia Cerebral/etiologia , Paralisia Cerebral/metabolismo , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Deficiência Intelectual/etiologia , Deficiência Intelectual/metabolismo , Leucoencefalopatias/etiologia , Leucoencefalopatias/metabolismo , Masculino , Monoacilglicerol Lipases/deficiência , Linhagem , Fenótipo , Paraplegia Espástica Hereditária/etiologia , Paraplegia Espástica Hereditária/metabolismo , Adulto Jovem
7.
BMC Plant Biol ; 24(1): 587, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38902638

RESUMO

BACKGROUND: Monoacylglycerol lipase (MAGL) genes belong to the alpha/beta hydrolase superfamily, catalyze the terminal step of triglyceride (TAG) hydrolysis, converting monoacylglycerol (MAG) into free fatty acids and glycerol. RESULTS: In this study, 30 MAGL genes in upland cotton have been identified, which have been classified into eight subgroups. The duplication of GhMAGL genes in upland cotton was predominantly influenced by segmental duplication events, as revealed through synteny analysis. Furthermore, all GhMAGL genes were found to contain light-responsive elements. Through comprehensive association and haplotype analyses using resequencing data from 355 cotton accessions, GhMAGL3 and GhMAGL6 were detected as key genes related to lipid hydrolysis processes, suggesting a negative regulatory effect. CONCLUSIONS: In summary, MAGL has never been studied in upland cotton previously. This study provides the genetic mechanism foundation for the discover of new genes involved in lipid metabolism to improve cottonseed oil content, which will provide a strategic avenue for marker-assisted breeding aimed at incorporating desirable traits into cultivated cotton varieties.


Assuntos
Gossypium , Monoacilglicerol Lipases , Gossypium/genética , Gossypium/enzimologia , Monoacilglicerol Lipases/genética , Monoacilglicerol Lipases/metabolismo , Alelos , Família Multigênica , Estudo de Associação Genômica Ampla , Genoma de Planta , Variação Genética , Filogenia , Genes de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Haplótipos
8.
J Pharmacol Exp Ther ; 390(3): 291-301, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-38262742

RESUMO

MJN110 inhibits the enzyme monoacylglycerol lipase (MAGL) to increase levels of the endocannabinoid 2-arachidonoylglycerol , an endogenous high-efficacy agonist of cannabinoid 1 and 2 receptors (CB1/2R). MAGL inhibitors are under consideration as candidate analgesics, and we reported previously that acute MJN110 produced partial antinociception in an assay of pain-related behavioral depression in mice. Given the need for repeated analgesic administration in many pain patients and the potential for analgesic tolerance during repeated treatment, this study examined antinociceptive effects of repeated MJN110 on pain-related behavioral depression and CB1R-mediated G-protein function. Male and female ICR mice were treated daily for 7 days in a 2 × 2 design with (a) 1.0 mg/kg/d MJN110 or its vehicle followed by (b) intraperitoneal injection of dilute lactic acid (IP acid) or its vehicle as a visceral noxious stimulus to depress nesting behavior. After behavioral testing, G-protein activity was assessed in lumbar spinal cord (LSC) and five brain regions using an assay of CP55,940-stimulated [35S]GTPÉ£S activation. As reported previously, acute MJN110 produced partial but significant relief of IP acid-induced nesting depression on day 1. After 7 days, MJN110 continued to produce significant but partial antinociception in males, while antinociceptive tolerance developed in females. Repeated MJN110 also produced modest decreases in maximum levels of CP55,940-induced [35S]GTPÉ£S binding in spinal cord and most brain regions. These results indicate that repeated treatment with a relatively low antinociceptive MJN110 dose produces only partial and sex-dependent transient antinociception associated with the emergence of CB1R desensitization in this model of IP acid-induced nesting depression. SIGNIFICANCE STATEMENT: The drug MJN110 inhibits monoacylglycerol lipase (MAGL) to increase levels of the endogenous cannabinoid 2-arachidonoylglycerol and produce potentially useful therapeutic effects including analgesia. This study used an assay of pain-related behavioral depression in mice to show that repeated MJN110 treatment produced (1) weak but sustained antinociception in male mice, (2) antinociceptive tolerance in females, and (3) modest cannabinoid-receptor desensitization that varied by region and sex. Antinociceptive tolerance may limit the utility of MJN110 for treatment of pain.


Assuntos
Camundongos Endogâmicos ICR , Monoacilglicerol Lipases , Dor , Receptor CB1 de Canabinoide , Animais , Feminino , Masculino , Monoacilglicerol Lipases/antagonistas & inibidores , Monoacilglicerol Lipases/metabolismo , Camundongos , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/metabolismo , Dor/tratamento farmacológico , Dor/metabolismo , Comportamento de Nidação/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Depressão/tratamento farmacológico , Depressão/metabolismo , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Benzenoacetamidas/farmacologia , Benzenoacetamidas/uso terapêutico , Carbamatos , Succinimidas
9.
Chembiochem ; 25(7): e202300819, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38441502

RESUMO

Monoacylglycerol lipase (MAGL) plays a crucial role in the degradation of 2-arachidonoylglycerol (2-AG), one of the major endocannabinoids in the brain. Inhibiting MAGL could lead to increased levels of 2-AG, which showed beneficial effects on pain management, anxiety, inflammation, and neuroprotection. In the current study, we report the characterization of an enantiomerically pure (R)-[11C]YH132 as a novel MAGL PET tracer. It demonstrates an improved pharmacokinetic profile compared to its racemate. High in vitro MAGL specificity of (R)-[11C]YH132 was confirmed by autoradiography studies using mouse and rat brain sections. In vivo, (R)-[11C]YH132 displayed a high brain penetration, and high specificity and selectivity toward MAGL by dynamic PET imaging using MAGL knockout and wild-type mice. Pretreatment with a MAGL drug candidate revealed a dose-dependent reduction of (R)-[11C]YH132 accumulation in WT mouse brains. This result validates its utility as a PET probe to assist drug development. Moreover, its potential application in neurodegenerative diseases was explored by in vitro autoradiography using brain sections from animal models of Alzheimer's disease and Parkinson's disease.


Assuntos
Monoacilglicerol Lipases , Doenças Neurodegenerativas , Ratos , Camundongos , Animais , Monoacilglicerol Lipases/metabolismo , Doenças Neurodegenerativas/diagnóstico por imagem , Doenças Neurodegenerativas/tratamento farmacológico , Tomografia por Emissão de Pósitrons/métodos , Inflamação , Desenvolvimento de Medicamentos , Inibidores Enzimáticos/farmacologia
10.
Mol Carcinog ; 63(4): 647-662, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38197491

RESUMO

Colorectal cancer (CRC) continues to be a prevalent malignancy, posing a significant risk to human health. The involvement of alpha/beta hydrolase domain 6 (ABHD6), a serine hydrolase family member, in CRC development was suggested by our analysis of clinical data. However, the role of ABHD6 in CRC remains unclear. This study seeks to elucidate the clinical relevance, biological function, and potential molecular mechanisms of ABHD6 in CRC. We investigated the role of ABHD6 in clinical settings, conducting proliferation, migration, and cell cycle assays. To determine the influence of ABHD6 expression levels on Oxaliplatin sensitivity, we also performed apoptosis assays. RNA sequencing and KEGG analysis were utilized to uncover the potential molecular mechanisms of ABHD6. Furthermore, we validated its expression levels using Western blot and reactive oxygen species (ROS) detection assays. Our results demonstrated that ABHD6 expression in CRC tissues was notably lower compared to adjacent normal tissues. This low expression correlated with a poorer prognosis for CRC patients. Moreover, ABHD6 overexpression impeded CRC cell proliferation and migration while inducing G0/G1 cell cycle arrest. In vivo experiments revealed that downregulation of ABHD6 resulted in an increase in tumor weight and volume. Mechanistically, ABHD6 overexpression inhibited the activation of the AKT signaling pathway and decreased ROS levels in CRC cells, suggesting the role of ABHD6 in CRC progression via the AKT signaling pathway. Our findings demonstrate that ABHD6 functions as a tumor suppressor, primarily by inhibiting the AKT signaling pathway. This role establishes ABHD6 as a promising prognostic biomarker and a potential therapeutic target for CRC patients.


Assuntos
Neoplasias Colorretais , Proteínas Proto-Oncogênicas c-akt , Humanos , Espécies Reativas de Oxigênio , Proliferação de Células , Pontos de Checagem da Fase G1 do Ciclo Celular , Hidrolases , Transdução de Sinais , Neoplasias Colorretais/genética , Linhagem Celular Tumoral , Movimento Celular , Monoacilglicerol Lipases
11.
Nat Chem Biol ; 18(6): 615-624, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35332332

RESUMO

The ability to understand and predict variable responses to therapeutic agents may improve outcomes in patients with cancer. We hypothesized that the basal gene-transcription state of cancer cell lines, coupled with cell viability profiles of small molecules, might be leveraged to nominate specific mechanisms of intrinsic resistance and to predict drug combinations that overcome resistance. We analyzed 564,424 sensitivity profiles to identify candidate gene-compound pairs, and validated nine such relationships. We determined the mechanism of a novel relationship, in which expression of the serine hydrolase enzymes monoacylglycerol lipase (MGLL) or carboxylesterase 1 (CES1) confers resistance to the histone lysine demethylase inhibitor GSK-J4 by direct enzymatic modification. Insensitive cell lines could be sensitized to GSK-J4 by inhibition or gene knockout. These analytical and mechanistic studies highlight the potential of integrating gene-expression features with small-molecule response to identify patient populations that are likely to benefit from treatment, to nominate rational candidates for combinations and to provide insights into mechanisms of action.


Assuntos
Histona Desmetilases , Monoacilglicerol Lipases , Biomarcadores , Sobrevivência Celular , Combinação de Medicamentos , Histona Desmetilases/metabolismo , Humanos
12.
Bioorg Med Chem ; 111: 117844, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39106652

RESUMO

Monoacylglycerol lipase (MAGL) is a key enzyme responsible for the metabolism of the endocannabinoid 2-arachidonoylglycerol (2-AG), and has attracted great interest due to its involvement in various physiological and pathological processes, such as cancer progression. In the past, a number of covalent irreversible inhibitors have been reported for MAGL, however, experimental evidence highlighted some drawbacks associated with the use of these irreversible agents. Therefore, efforts were mainly focused on the development of reversible MAGL inhibitor in recent years. Here, we designed and synthesized a series of naphthyl amide derivatives (12-39) as another type of reversible MAGL inhibitors, exemplified by ± 34, which displayed good MAGL inhibition with a pIC50 of 7.1, and the potency and selectivity against endogenous MAGL were further demonstrated by competitive ABPP. Moreover, the compound showed appreciable antiproliferative activities against several cancer cells, including H460, HT29, CT-26, Huh7 and HCCLM-3. The investigations culminated in the discovery of the naphthyl amide derivative ± 34, and it may represent as a new scaffold for MAGL inhibitor development, particularly for the reversible ones.


Assuntos
Amidas , Antineoplásicos , Proliferação de Células , Desenho de Fármacos , Inibidores Enzimáticos , Monoacilglicerol Lipases , Monoacilglicerol Lipases/antagonistas & inibidores , Monoacilglicerol Lipases/metabolismo , Humanos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Amidas/química , Amidas/farmacologia , Amidas/síntese química , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Estrutura Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Naftalenos/farmacologia , Naftalenos/síntese química , Naftalenos/química , Relação Dose-Resposta a Droga , Simulação de Acoplamento Molecular
13.
Neurourol Urodyn ; 43(5): 1207-1216, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38533637

RESUMO

AIMS: Activation of the endocannabinoid system by monoacylglycerol lipase (MAGL) blockade may affect the lower urinary tract function. We investigated the effect of an MAGL inhibitor, MJN110, on neurogenic lower urinary tract dysfunction (LUTD) in the mouse model of spinal cord injury (SCI). METHODS: Female C57BL/6 mice that underwent spinal cord transection at T8-10 level were divided into three groups consisting of (1) vehicle-treated SCI mice, (2) 5 mg/kg, or (3) 10 mg/kg of MJN110-treated SCI mice. MJN110 and vehicle were administered intraperitoneally for 7 days from 4 weeks after spinal cord transection. We then conducted awake cystometrograms and compared urodynamic parameters between three groups. The expression of cannabinoid (CB) receptors, TRP receptors, and inflammatory cytokines in L6-S1 dorsal root ganglia (DRG) or the bladder mucosa were evaluated and compared among three groups. Changes in the level of serum 2-arachidonoylglycerol (2-AG) and bladder MAGL were also evaluated. RESULTS: In the cystometrogram, detrusor overactivity (DO) parameters, such as the number of nonvoiding contraction (NVC), a ratio of time to the 1st NVC to intercontraction interval (ICI), and NVC integrals were improved by MJN110 treatment, and some effects were dose dependent. Although MJN110 did not improve voiding efficiency, it decreased bladder capacity, ICI, and residual urine volume compared to vehicle injection. MJN110 treatment groups had lower CB2, TRPV1, TRPA1, and inflammatory cytokines mRNA levels in DRG and bladder mucosa. Serum 2-AG was increased, and bladder MAGL was decreased after MAGL inhibitor treatment. CONCLUSIONS: MAGL inhibition improved LUTD including attenuation of DO after SCI. Thus, MAGL can be a therapeutic target for neurogenic LUTD after SCI.


Assuntos
Camundongos Endogâmicos C57BL , Monoacilglicerol Lipases , Traumatismos da Medula Espinal , Bexiga Urinária , Urodinâmica , Animais , Monoacilglicerol Lipases/antagonistas & inibidores , Monoacilglicerol Lipases/metabolismo , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/metabolismo , Feminino , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/fisiopatologia , Urodinâmica/efeitos dos fármacos , Camundongos , Modelos Animais de Doenças , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Gânglios Espinais/fisiopatologia , Receptores de Canabinoides/metabolismo , Receptores de Canabinoides/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Endocanabinoides/metabolismo , Citocinas/metabolismo , Bexiga Urinaria Neurogênica/tratamento farmacológico , Bexiga Urinaria Neurogênica/fisiopatologia , Bexiga Urinaria Neurogênica/etiologia , Sintomas do Trato Urinário Inferior/tratamento farmacológico , Sintomas do Trato Urinário Inferior/fisiopatologia , Sintomas do Trato Urinário Inferior/etiologia , Carbamatos , Succinimidas
14.
J Enzyme Inhib Med Chem ; 39(1): 2356179, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38864179

RESUMO

We present a new computational approach, named Watermelon, designed for the development of pharmacophore models based on receptor structures. The methodology involves the sampling of potential hotspots for ligand interactions within a protein target's binding site, utilising molecular fragments as probes. By employing docking and molecular dynamics (MD) simulations, the most significant interactions formed by these probes within distinct regions of the binding site are identified. These interactions are subsequently transformed into pharmacophore features that delineates key anchoring sites for potential ligands. The reliability of the approach was experimentally validated using the monoacylglycerol lipase (MAGL) enzyme. The generated pharmacophore model captured features representing ligand-MAGL interactions observed in various X-ray co-crystal structures and was employed to screen a database of commercially available compounds, in combination with consensus docking and MD simulations. The screening successfully identified two new MAGL inhibitors with micromolar potency, thus confirming the reliability of the Watermelon approach.


Assuntos
Inibidores Enzimáticos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Estrutura Molecular , Monoacilglicerol Lipases/antagonistas & inibidores , Monoacilglicerol Lipases/metabolismo , Monoacilglicerol Lipases/química , Ligantes , Relação Estrutura-Atividade , Simulação de Dinâmica Molecular , Relação Dose-Resposta a Droga , Simulação de Acoplamento Molecular , Citrullus/química
15.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34607960

RESUMO

Human genetic studies have pointed to a prominent role for innate immunity and lipid pathways in immunological and neurodegenerative disorders. Our understanding of the composition and function of immunomodulatory lipid networks in innate immune cells, however, remains incomplete. Here, we show that phospholipase Cγ2 (PLCγ2 or PLCG2)-mutations in which are associated with autoinflammatory disorders and Alzheimer's disease-serves as a principal source of diacylglycerol (DAG) pools that are converted into a cascade of bioactive endocannabinoid and eicosanoid lipids by DAG lipase (DAGL) and monoacylglycerol lipase (MGLL) enzymes in innate immune cells. We show that this lipid network is tonically stimulated by disease-relevant human mutations in PLCγ2, as well as Fc receptor activation in primary human and mouse macrophages. Genetic disruption of PLCγ2 in mouse microglia suppressed DAGL/MGLL-mediated endocannabinoid-eicosanoid cross-talk and also caused widespread transcriptional and proteomic changes, including the reorganization of immune-relevant lipid pathways reflected in reductions in DAGLB and elevations in PLA2G4A. Despite these changes, Plcg2-/- mice showed generally normal proinflammatory cytokine and chemokine responses to lipopolysaccharide treatment, instead displaying a more restricted deficit in microglial activation that included impairments in prostaglandin production and CD68 expression. Our findings enhance the understanding of PLCγ2 function in innate immune cells, delineating a role in cross-talk with endocannabinoid/eicosanoid pathways and modulation of subsets of cellular responses to inflammatory stimuli.


Assuntos
Eicosanoides/metabolismo , Endocanabinoides/metabolismo , Imunidade Inata/imunologia , Macrófagos/imunologia , Fosfolipase C gama/metabolismo , Animais , Antígenos CD/biossíntese , Antígenos de Diferenciação Mielomonocítica/biossíntese , Células COS , Linhagem Celular , Chlorocebus aethiops , Citocinas/imunologia , Diglicerídeos/metabolismo , Fosfolipases A2 do Grupo IV/metabolismo , Células HEK293 , Humanos , Inflamação/imunologia , Lipopolissacarídeos/imunologia , Lipase Lipoproteica/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/imunologia , Monoacilglicerol Lipases/metabolismo , Fosfolipase C gama/genética , Prostaglandinas/biossíntese , Receptores Fc/imunologia , Transdução de Sinais/imunologia
16.
Int J Mol Sci ; 25(14)2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39062935

RESUMO

The endocannabinoid system, known for its regulatory role in various physiological processes, relies on the activities of several hydrolytic enzymes, such as fatty acid amide hydrolase (FAAH), N-acylethanolamine-hydrolyzing acid amidase (NAAA), monoacylglycerol lipase (MAGL), and α/ß-hydrolase domains 6 (ABHD6) and 12 (ABHD12), to maintain homeostasis. Accurate measurement of these enzymes' activities is crucial for understanding their function and for the development of potential therapeutic agents. Fluorometric assays, which offer high sensitivity, specificity, and real-time monitoring capabilities, have become essential tools in enzymatic studies. This review provides a comprehensive overview of the principles behind these assays, the various substrates and fluorophores used, and advances in assay techniques used not only for the determination of the kinetic mechanisms of enzyme reactions but also for setting up kinetic assays for the high-throughput screening of each critical enzyme involved in endocannabinoid degradation. Through this comprehensive review, we aim to highlight the strengths and limitations of current fluorometric assays and suggest future directions for improving the measurement of enzyme activity in the endocannabinoid system.


Assuntos
Amidoidrolases , Endocanabinoides , Ensaios Enzimáticos , Endocanabinoides/metabolismo , Humanos , Ensaios Enzimáticos/métodos , Amidoidrolases/metabolismo , Amidoidrolases/antagonistas & inibidores , Hidrólise , Monoacilglicerol Lipases/metabolismo , Monoacilglicerol Lipases/antagonistas & inibidores , Animais , Fluorometria/métodos , Fluorescência , Cinética , Corantes Fluorescentes/química , Inibidores Enzimáticos/farmacologia
17.
Int J Mol Sci ; 25(11)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38891946

RESUMO

Retinitis pigmentosa (RP) is an inherited retinal dystrophy caused by the loss of photoreceptors and retinal pigment epithelial atrophy, leading to severe visual impairment or blindness. RP can be classified as nonsyndromic or syndromic with complex clinical phenotypes. Three unrelated Polish probands affected with retinitis pigmentosa coexisting with cerebellar ataxia were recruited for this study. Clinical heterogeneity and delayed appearance of typical disease symptoms significantly prolonged the patients' diagnostic process. Therefore, many clinical and genetic tests have been performed in the past. Here, we provide detailed clinical and genetic analysis results of the patients. Whole-exome sequencing (WES) and targeted NGS analysis allow the identification of four novel and two previously reported variants in the following genes: ABHD12, FLVCR1, and PNPLA6. The use of next-generation sequencing (NGS) methods finally allowed for confirmation of the clinical diagnosis. Ultra-rare diseases such as PHARC, PCARP, and Oliver-McFarlane syndromes were diagnosed in patients, respectively. Our findings confirmed the importance of the application of next-generation sequencing methods, especially in ultra-rare genetic disorders with overlapping features.


Assuntos
Sequenciamento do Exoma , Retinose Pigmentar , Humanos , Retinose Pigmentar/genética , Retinose Pigmentar/diagnóstico , Masculino , Feminino , Linhagem , Sequenciamento de Nucleotídeos em Larga Escala , Adulto , Ataxia Cerebelar/genética , Ataxia Cerebelar/diagnóstico , Proteínas de Membrana Transportadoras/genética , Monoacilglicerol Lipases/genética , Mutação , Ataxia/genética , Ataxia/diagnóstico , Fenótipo , Aciltransferases , Catarata , Fosfolipases , Polineuropatias
18.
Neurobiol Dis ; 180: 106099, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36990366

RESUMO

Evidence suggests that inhibition of α/ß hydrolase-domain containing 6 (ABHD6) reduces seizures; however, the molecular mechanism of this therapeutic response remains unknown. We discovered that heterozygous expression of Abhd6 (Abhd6+/-) significantly reduced the premature lethality of Scn1a+/- mouse pups, a genetic mouse model of Dravet Syndrome (DS). Both Abhd6+/- mutation and pharmacological inhibition of ABHD6 reduced the duration and incidence of thermally induced seizures in Scn1a+/- pups. Mechanistically, the in vivo anti-seizure response resulting from ABHD6 inhibition is mediated by potentiation of gamma-aminobutyric acid receptors Type-A (GABAAR). Brain slice electrophysiology showed that blocking ABHD6 potentiates extrasynaptic (tonic) GABAAR currents that reduce dentate granule cell excitatory output without affecting synaptic (phasic) GABAAR currents. Our results unravel an unexpected mechanistic link between ABHD6 activity and extrasynaptic GABAAR currents that controls hippocampal hyperexcitability in a genetic mouse model of DS. BRIEF SUMMARY: This study provides the first evidence for a mechanistic link between ABHD6 activity and the control of extrasynaptic GABAAR currents that controls hippocampal hyperexcitability in a genetic mouse model of Dravet Syndrome and can be targeted to dampened seizures.


Assuntos
Epilepsias Mioclônicas , Animais , Camundongos , Epilepsias Mioclônicas/genética , Neurônios , Ácido gama-Aminobutírico , Hidrolases/uso terapêutico , Serina , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Monoacilglicerol Lipases
19.
J Neuroinflammation ; 20(1): 17, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36717883

RESUMO

BACKGROUND: 2-Arachidonoylglycerol (2-AG) is the most abundant endogenous cannabinoid. Inhibition of 2-AG metabolism by inactivation of monoacylglycerol lipase (MAGL), the primary enzyme that degrades 2-AG in the brain, produces anti-inflammatory and neuroprotective effects in neurodegenerative diseases. However, the molecular mechanisms underlying these beneficial effects are largely unclear. METHODS: Hippocampal and cortical cells were isolated from cell type-specific MAGL knockout (KO) mice. Single-cell RNA sequencing was performed by 10 × Genomics platform. Cell Ranger, Seurat (v3.2) and CellChat (1.1.3) packages were used to carry out data analysis. RESULTS: Using single-cell RNA sequencing analysis, we show here that cell type-specific MAGL KO mice display distinct gene expression profiles in the brain. Inactivation of MAGL results in robust changes in expression of immune- and inflammation-related genes in microglia and astrocytes. Remarkably, upregulated expression of chemokines in microglia is more pronounced in mice lacking MAGL in astrocytes. In addition, expression of genes that regulate other cellular functions and Wnt signaling in astrocytes is altered in MAGL KO mice. CONCLUSIONS: Our results provide transcriptomic evidence that cell type-specific inactivation of MAGL induces differential expression of immune-related genes and other fundamental cellular pathways in microglia and astrocytes. Upregulation of the immune/inflammatory genes suggests that tonic levels of immune/inflammatory vigilance are enhanced in microglia and astrocytes, particularly in microglia, by inhibition of 2-AG metabolism, which likely contribute to anti-inflammatory and neuroprotective effects produced by inactivation of MAGL in neurodegenerative diseases.


Assuntos
Fármacos Neuroprotetores , Camundongos , Animais , Transcriptoma , Endocanabinoides/metabolismo , Ácidos Araquidônicos/metabolismo , Camundongos Knockout , Monoacilglicerol Lipases , Inibidores Enzimáticos/farmacologia
20.
BMC Cancer ; 23(1): 626, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37403022

RESUMO

BACKGROUND: CXC-chemokine receptor 2 (CXCR2) expression was found to be down-regulated on circulating monocytes of cancer patients. Here, we analyze the percentage of CD14+CXCR2+ monocyte subsets in hepatocellular carcinoma (HCC) patients, and investigate the mechanisms that regulate CXCR2 surface expression on monocytes and its biological function. METHODS: Flow cytometry was used to analyze the proportion of the CD14+CXCR2+ subset from the total circulating monocytes of HCC patients. Interleukin 8 (IL-8) levels were measured from serum and ascites, and their correlation with the CD14+CXCR2+ monocyte subset proportion was calculated. THP-1 cells were cultured in vitro and treated with recombinant human IL-8 and CXCR2 surface expression was analyzed. CXCR2 was knocked down to examine how it affects the antitumor activity of monocytes. Finally, a monoacylglycerol lipase (MAGL) inhibitor was added to analyze its effect on CXCR2 expression. RESULTS: A decrease in the proportion of the CD14+CXCR2+ monocyte subset was observed in HCC patients compared with healthy controls. CXCR2+ monocyte subset proportion was associated with the AFP value, TNM stage, and liver function. Overexpression of IL-8 was observed in the serum and ascites of HCC patients, and negatively correlated with CXCR2+ monocyte proportion. IL-8 decreased CXCR2 expression in THP-1 cells, contributing to decreased antitumor activity toward HCC cells. MAGL expression in THP-1 cells was up-regulated after IL-8 treatment, and the MAGL inhibitor partially reversed the effects of IL-8 on CXCR2 expression. CONCLUSIONS: Overexpression of IL-8 drives CXCR2 down-regulation on circulating monocytes of HCC patients, which could be partially reversed by a MAGL inhibitor.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Ascite/metabolismo , Carcinoma Hepatocelular/patologia , Regulação para Baixo , Fatores Imunológicos , Interleucina-8/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Neoplasias Hepáticas/patologia , Monoacilglicerol Lipases/metabolismo , Monócitos/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA