Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.136
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(35): e2317182121, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39172793

RESUMO

From microbes to humans, organisms perform numerous tasks for their survival, including food acquisition, migration, and reproduction. A complex biological task can be performed by either an autonomous organism or by cooperation among several specialized organisms. However, it remains unclear how autonomy and cooperation evolutionarily switch. Specifically, it remains unclear whether and how cooperative specialists can repair deleted genes through direct genetic exchange, thereby regaining metabolic autonomy. Here, we address this question by experimentally evolving a mutualistic microbial consortium composed of two specialists that cooperatively degrade naphthalene. We observed that autonomous genotypes capable of performing the entire naphthalene degradation pathway evolved from two cooperative specialists and dominated the community. This evolutionary transition was driven by the horizontal gene transfer (HGT) between the two specialists. However, this evolution was exclusively observed in the fluctuating environment alternately supplied with naphthalene and pyruvate, where mutualism and competition between the two specialists alternated. The naphthalene-supplied environment exerted selective pressure that favors the expansion of autonomous genotypes. The pyruvate-supplied environment promoted the coexistence and cell density of the cooperative specialists, thereby increasing the likelihood of HGT. Using a mathematical model, we quantitatively demonstrate that environmental fluctuations facilitate the evolution of autonomy through HGT when the relative growth rate and carrying capacity of the cooperative specialists allow enhanced coexistence and higher cell density in the competitive environment. Together, our results demonstrate that cooperative specialists can repair deleted genes through a direct genetic exchange under specific conditions, thereby regaining metabolic autonomy.


Assuntos
Naftalenos , Naftalenos/metabolismo , Transferência Genética Horizontal , Evolução Biológica , Simbiose , Consórcios Microbianos/genética , Consórcios Microbianos/fisiologia , Genótipo
2.
J Biol Chem ; 300(8): 107594, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39032655

RESUMO

Drug metabolism is one of the main processes governing the pharmacokinetics and toxicity of drugs via their chemical biotransformation and elimination. In humans, the liver, enriched with cytochrome P450 (CYP) enzymes, plays a major metabolic and detoxification role. The gut microbiome and its complex community of microorganisms can also contribute to some extent to drug metabolism. However, during an infection when pathogenic microorganisms invade the host, our knowledge of the impact on drug metabolism by this pathobiome remains limited. The intrinsic resistance mechanisms and rapid metabolic adaptation to new environments often allow the human bacterial pathogens to persist, despite the many antibiotic therapies available. Here, we demonstrate that a bacterial CYP enzyme, CYP107S1, from Pseudomonas aeruginosa, a predominant bacterial pathogen in cystic fibrosis patients, can metabolize multiple drugs from different classes. CYP107S1 demonstrated high substrate promiscuity and allosteric properties much like human hepatic CYP3A4. Our findings demonstrated binding and metabolism by the recombinant CYP107S1 of fluoroquinolone antibiotics (ciprofloxacin and fleroxacin), a cystic fibrosis transmembrane conductance regulator potentiator (ivacaftor), and a selective estrogen receptor modulator antimicrobial adjuvant (raloxifene). Our in vitro metabolism data were further corroborated by molecular docking of each drug to the heme active site using a CYP107S1 homology model. Our findings raise the potential for microbial pathogens modulating drug concentrations locally at the site of infection, if not systemically, via CYP-mediated biotransformation reactions. To our knowledge, this is the first report of a CYP enzyme from a known bacterial pathogen that is capable of metabolizing clinically utilized drugs.


Assuntos
Aminofenóis , Ciprofloxacina , Sistema Enzimático do Citocromo P-450 , Pseudomonas aeruginosa , Quinolonas , Cloridrato de Raloxifeno , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Ciprofloxacina/metabolismo , Ciprofloxacina/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Cloridrato de Raloxifeno/metabolismo , Humanos , Aminofenóis/metabolismo , Quinolonas/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Naftalenos/metabolismo , Naftalenos/farmacologia , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Fibrose Cística/tratamento farmacológico , Fibrose Cística/microbiologia , Fibrose Cística/metabolismo
3.
J Am Chem Soc ; 146(21): 14844-14855, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38747446

RESUMO

Nature employs sophisticated mechanisms to precisely regulate self-assembly and functions within biological systems, exemplified by the formation of cytoskeletal filaments. Various enzymatic reactions and auxiliary proteins couple with the self-assembly process, meticulously regulating the length and functions of resulting macromolecular structures. In this context, we present a bioinspired, reaction-coupled approach for the controlled supramolecular polymerization in synthetic systems. To achieve this, we employ an enzymatic reaction that interfaces with the adenosine triphosphate (ATP)-templated supramolecular polymerization of naphthalene diimide monomers (NSG). Notably, the enzymatic production of ATP (template) plays a pivotal role in facilitating reaction-controlled, cooperative growth of the NSG monomers. This growth process, in turn, provides positive feedback to the enzymatic production of ATP, creating an ideal reaction-coupled assembly process. The success of this approach is further evident in the living-growth characteristic observed during seeding experiments, marking this method as the pioneering instance where reaction-coupled self-assembly precisely controls the growth kinetics and structural aspects of supramolecular polymers in a predictive manner, akin to biological systems.


Assuntos
Trifosfato de Adenosina , Imidas , Naftalenos , Polimerização , Naftalenos/química , Naftalenos/metabolismo , Naftalenos/síntese química , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/química , Imidas/química , Substâncias Macromoleculares/química , Substâncias Macromoleculares/metabolismo , Substâncias Macromoleculares/síntese química , Estrutura Molecular , Cinética , Polímeros/química
4.
Nat Prod Rep ; 41(8): 1294-1317, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-38916377

RESUMO

Covering: up to December 2023Decalin-containing tetramic acid derivatives, especially 3-decalinoyltetramic acids (3-DTAs), are commonly found as fungal secondary metabolites. Numerous biological activities of this class of compounds, such as antibiotic, antiviral, antifungal, antiplasmodial, and antiprotozoal properties, have been the subject of ongoing research. For this reason, these molecules have attracted a lot of interest from the scientific community and various efforts including semi-synthesis, co-culturing with bacteria and biosynthetic gene sequencing have been made to obtain more derivatives. In this review, 3-DTAs are classified into four major groups based on the absolute configuration of the bicyclic decalin ring. Their biosynthetic pathways, various biological activities, and structure-activity relationship are then introduced.


Assuntos
Fungos , Pirrolidinonas , Relação Estrutura-Atividade , Fungos/química , Fungos/metabolismo , Pirrolidinonas/farmacologia , Pirrolidinonas/química , Pirrolidinonas/isolamento & purificação , Pirrolidinonas/metabolismo , Estrutura Molecular , Naftalenos/farmacologia , Naftalenos/química , Naftalenos/isolamento & purificação , Naftalenos/metabolismo , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/isolamento & purificação , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/biossíntese , Antibacterianos/isolamento & purificação
5.
Arch Microbiol ; 206(7): 328, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935150

RESUMO

Marine hydrocarbonoclastic bacteria can use polycyclic aromatic hydrocarbons as carbon and energy sources, that makes these bacteria highly attractive for bioremediation in oil-polluted waters. However, genomic and metabolic differences between species are still the subject of study to understand the evolution and strategies to degrade PAHs. This study presents Rhodococcus ruber MSA14, an isolated bacterium from marine sediments in Baja California, Mexico, which exhibits adaptability to saline environments, a high level of intrinsic pyrene tolerance (> 5 g L- 1), and efficient degradation of pyrene (0.2 g L- 1) by 30% in 27 days. Additionally, this strain demonstrates versatility by using naphthalene and phenanthrene as individual carbon sources. The genome sequencing of R. ruber MSA14 revealed a genome spanning 5.45 Mbp, a plasmid of 72 kbp, and three putative megaplasmids, lengths between 110 and 470 Kbp. The bioinformatics analysis of the R. ruber MSA14 genome revealed 56 genes that encode enzymes involved in the peripheral and central pathways of aromatic hydrocarbon catabolism, alkane, alkene, and polymer degradation. Within its genome, R. ruber MSA14 possesses genes responsible for salt tolerance and siderophore production. In addition, the genomic analysis of R. ruber MSA14 against 13 reference genomes revealed that all compared strains have at least one gene involved in the alkanes and catechol degradation pathway. Overall, physiological assays and genomic analysis suggest that R. ruber MSA14 is a new haloalkalitolerant and hydrocarbonoclastic strain toward a wide range of hydrocarbons, making it a promising candidate for in-depth characterization studies and bioremediation processes as part of a synthetic microbial consortium, as well as having a better understanding of the catabolic potential and functional diversity among the Rhodococci group.


Assuntos
Biodegradação Ambiental , Genoma Bacteriano , Genômica , Sedimentos Geológicos , Hidrocarbonetos Policíclicos Aromáticos , Rhodococcus , Rhodococcus/genética , Rhodococcus/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Sedimentos Geológicos/microbiologia , Naftalenos/metabolismo , Filogenia , Fenantrenos/metabolismo , Tolerância ao Sal , Pirenos
6.
Arch Microbiol ; 206(7): 296, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856816

RESUMO

Environmental contamination from petroleum refinery operations has increased due to the rapid population growth and modernization of society, necessitating urgent repair. Microbial remediation of petroleum wastewater by prominent bacterial cultures holds promise in circumventing the issue of petroleum-related pollution. Herein, the bacterial culture was isolated from petroleum-contaminated sludge samples for the valorization of polyaromatic hydrocarbons and biodegradation of petroleum wastewater samples. The bacterial strain was screened and identified as Bacillus subtilis IH-1. After six days of incubation, the bacteria had degraded 25.9% of phenanthrene and 20.3% of naphthalene. The treatment of wastewater samples was assessed using physico-chemical and Fourier-transform infrared spectroscopy analysis, which revealed that the level of pollutants was elevated and above the allowed limits. Following bacterial degradation, the reduction in pollution parameters viz. EC (82.7%), BOD (87.0%), COD (80.0%), total phenols (96.3%), oil and grease (79.7%), TKN (68.8%), TOC (96.3%) and TPH (52.4%) were observed. The reduction in pH and heavy metals were also observed after bacterial treatment. V. mungo was used in the phytotoxicity test, which revealed at 50% wastewater concentration the reduction in biomass (30.3%), root length (87.7%), shoot length (93.9%), and seed germination (30.0%) was observed in comparison to control. When A. cepa root tips immersed in varying concentrations of wastewater samples, the mitotic index significantly decreased, suggesting the induction of cytotoxicity. However, following the bacterial treatment, there was a noticeable decrease in phytotoxicity and cytotoxicity. The bacterial culture produces lignin peroxidase enzyme and has the potential to degrade the toxic pollutants of petroleum wastewater. Therefore the bacterium may be immobilised or directly used at reactor scale or pilot scale study to benefit the industry and environmental safety.


Assuntos
Bacillus subtilis , Biodegradação Ambiental , Petróleo , Águas Residuárias , Bacillus subtilis/metabolismo , Bacillus subtilis/crescimento & desenvolvimento , Águas Residuárias/microbiologia , Águas Residuárias/química , Petróleo/metabolismo , Petróleo/toxicidade , Fenantrenos/metabolismo , Fenantrenos/análise , Fenantrenos/toxicidade , Naftalenos/metabolismo , Naftalenos/toxicidade , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Esgotos/microbiologia , Metais Pesados/metabolismo , Metais Pesados/toxicidade , Metais Pesados/análise
7.
Microb Cell Fact ; 23(1): 20, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38218907

RESUMO

The increasing interest in environmental protection laws has compelled companies to regulate the disposal of waste organic materials. Despite efforts to explore alternative energy sources, the world remains heavily dependent on crude petroleum oil and its derivatives. The expansion of the petroleum industry has significant implications for human and environmental well-being. Bioremediation, employing living microorganisms, presents a promising approach to mitigate the harmful effects of organic hydrocarbons derived from petroleum. This study aimed to isolate and purify local yeast strains from oil-contaminated marine water samples capable of aerobically degrading crude petroleum oils and utilizing them as sole carbon and energy sources. One yeast strain (isolate B) identified as Candida tropicalis demonstrated high potential for biodegrading petroleum oil in seawater. Physiological characterization revealed the strain's ability to thrive across a wide pH range (4-11) with optimal growth at pH 4, as well as tolerate salt concentrations ranging from 1 to 12%. The presence of glucose and yeast extract in the growth medium significantly enhanced the strain's biomass formation and biodegradation capacity. Scanning electron microscopy indicated that the yeast cell diameter varied based on the medium composition, further emphasizing the importance of organic nitrogenous sources for initial growth. Furthermore, the yeast strain exhibited remarkable capabilities in degrading various aliphatic and aromatic hydrocarbons, with a notable preference for naphthalene and phenol at 500 and 1000 mg/l, naphthalene removal reached 97.4% and 98.6%, and phenol removal reached 79.48% and 52.79%, respectively. Optimization experiments using multi-factorial sequential designs highlighted the influential role of oil concentration on the bioremediation efficiency of Candida tropicalis strain B. Moreover, immobilized yeast cells on thin wood chips demonstrated enhanced crude oil degradation compared to thick wood chips, likely due to increased surface area for cell attachment. These findings contribute to our understanding of the potential of Candida tropicalis for petroleum oil bioremediation in marine environments, paving the way for sustainable approaches to address oil pollution.


Assuntos
Candida tropicalis , Petróleo , Humanos , Candida tropicalis/metabolismo , Biodegradação Ambiental , Leveduras/metabolismo , Petróleo/metabolismo , Hidrocarbonetos/metabolismo , Fenol/metabolismo , Naftalenos/metabolismo
8.
Environ Sci Technol ; 58(41): 18234-18243, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39353102

RESUMO

Biofiltration is a simple and low-cost method for the cleanup of contaminated water. However, the reduced availability of dissolved chemicals to surface-attached degrader bacteria may limit its efficient use at certain hydraulic loadings. When a direct current (DC) electric field is applied to an immersed packed bed, it invokes electrokinetic processes, such as electroosmotic water flow (EOF). EOF is a surface-charge-induced plug-flow-shaped movement of pore fluids. It acts at a nanometer distance above surfaces and allows the change of microscale pressure-driven flow profiles and, hence, the availability of dissolved contaminants to microbial degraders. In laboratory percolation columns, we assessed the effects of a weak DC electric field (E = 0.5 V·cm-1) on the biodegradation of waterborne naphthalene (NAH) by surface-attached Pseudomonas fluorescens LP6a. To vary NAH bioavailability, we used different NAH concentrations (C0 = 2.7, 5.1, or 7.8 × 10-5 mol·L-1) and Darcy velocities typical for biofiltration (U¯ = 0.2-1.2 × 10-4 m·s-1). In DC-free controls, we observed higher specific degradation rates (qc) at higher NAH concentrations. The qc depended on U¯, suggesting bioavailability restrictions depending on the hydraulic residence times. DC fields consistently increased qc and resulted in linearly increasing benefits up to 55% with rising hydraulic loadings relative to controls. We explain these biodegradation benefits by EOF-altered microscale flow profiles allowing for better NAH provision to bacteria attached to the collectors even though the EOF was calculated to be 100-800 times smaller than bulk water flow. Our data suggest that electrokinetic approaches may give rise to future technical applications that allow regulating biodegradation, for example, in response to fluctuating hydraulic loadings.


Assuntos
Biodegradação Ambiental , Filtração , Eletricidade , Poluentes Químicos da Água/metabolismo , Naftalenos/metabolismo
9.
Environ Res ; 247: 118160, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38199464

RESUMO

Vulnerable populations, such as pregnant women and their fetuses, confront potential health risks due to exposure to environmental toxic compounds. Computational methods have been popular in assessing chemical exposure to populations, contrasting with traditional cohort studies for human biomonitoring. This study proposes a screening-level approach based on physiologically based kinetic (PBK) modeling to evaluate the steady-state exposure of pregnant women to environmental chemicals throughout pregnancy. To exemplify the modeling application, naphthalene was chosen. Simulation results indicated that maternal fat exhibited significant bioaccumulation potential, with the log-transformed BTF of naphthalene at 0.51 mg kg-1 per mg d-1 in the steady state. The placenta was primarily exposed to 0.83 mg/d naphthalene for a 75.2 kg pregnant woman, considering all exposure routes. In the fetal structure, single-organ fetal PBK modeling estimated a naphthalene exposure of 123.64 mg/d to the entire fetus, while multiple-organ fetal PBK modeling further revealed the bioaccumulation highest in fat tissue. The liver identified as the vital organ for metabolism, kBioT,LiverM was demonstrated with the highest sensitivity among rate constants in the maternal body. Furthermore, the first-order kinetic rate constants related to the placenta and blood were found to impact the distribution process of naphthalene in the fetus, influencing gestational exposure. In conclusion, urgent attention is needed to develop a computational biomonitoring tool for assessing toxic chemical exposure in vulnerable populations.


Assuntos
Placenta , Gestantes , Humanos , Gravidez , Feminino , Placenta/química , Feto/metabolismo , Simulação por Computador , Naftalenos/análise , Naftalenos/metabolismo
10.
Biosci Biotechnol Biochem ; 88(7): 719-726, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38758077

RESUMO

The Diels-Alder (DA) reaction, specifically referring to the [4 + 2] cycloaddition reaction in pericyclic reactions, is a process that forms two carbon-carbon covalent bonds in a single step via an electron ring transition state. Among the secondary metabolites produced by microorganisms, numerous compounds are biosynthesized through DA reactions, most of which are enzymatic. Our research group has discovered an enzyme named Diels-Alderase (DAase) that catalyzes the DA reaction in filamentous fungi, and we have been investigating its catalytic mechanism. This review describes the reported microbial DAase enzymes, with a particular focus on those involved in the construction of the decalin ring.


Assuntos
Reação de Cicloadição , Naftalenos , Naftalenos/química , Naftalenos/metabolismo , Fungos/enzimologia , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo
11.
Ecotoxicol Environ Saf ; 271: 115975, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38244514

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous at relatively high concentrations by atmospheric deposition, and they are threatening to the environment. In this study, the toxicity of naphthalene on tall fescue and its potential responding mechanism was first studied by integrating approaches. Tall fescue seedlings were exposed to 0, 20, and 100 mg L-1 naphthalene in a hydroponic environment for 9 days, and toxic effects were observed by the studies of general physiological studies, chlorophyll fluorescence, and root morphology. Additionally, Ultra Performance Liquid Chromatography - Electrospray Ionization - High-Resolution Mass Spectrometry (UPLC-ESI-HRMS) was used to depict metabolic profiles of tall fescue under different exposure durations of naphthalene, and the intrinsic molecular mechanism of tall fescue resistance to abiotic stresses. Tall fescue shoots were more sensitive to the toxicity of naphthalene than roots. Low-level exposure to naphthalene inhibited the electron transport from the oxygen-evolving complex (OEC) to D1 protein in tall fescue shoots but induced the growth of roots. Naphthalene induced metabolic change of tall fescue roots in 12 h, and tall fescue roots maintained the level of sphingolipids after long-term exposure to naphthalene, which may play important roles in plant resistance to abiotic stresses.


Assuntos
Festuca , Lolium , Hidrocarbonetos Policíclicos Aromáticos , Festuca/metabolismo , Naftalenos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Lolium/metabolismo , Espectrometria de Massas
12.
World J Microbiol Biotechnol ; 40(9): 262, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38972951

RESUMO

Pseudomonas aeruginosa PR23 isolated from the hydrocarbon contaminated soil can tolerate and degrade mixture of polyaromatic hydrocarbons (PAHs) at an initial concentration of 1300 ppm. The degradation and intermediates formed were assessed by gas chromatography-mass spectrometry (GC-MS) analysis. The isolated strain was able to degrade 59.2% of the mixture of PAHs in 3 days and 71.6% by day 15. Effect of PAHs on protein expression in Pseudomonas aeruginosa PR23 was studied using nano LC-MS/MS. Thirty-six proteins showed a more than 2-fold increase in expression in the presence of mixture of PAHs. Out of these proteins, 7 proteins have been reported for their role in degradation of naphthalene, phenanthrene, and pyrene. The data revealed the presence of 16 proteins that were uniquely expressed in the presence of mixture of PAHs. A twin-arginine translocation signal peptide (Tat system), known for the transportation of folded proteins across the cell membrane, showed more than 8-fold increased expression in the presence of mixture of PAHs. These results indicate that the isolated strain adopts the conditions in the presence of mixture of PAHs by modulating its metabolic and physiological processes. These findings suggest that Pseudomonas aeruginosa PR23 may be a suitable candidate for use in the development of strategies for bioremediation of mixtures of PAHs.


Assuntos
Proteínas de Bactérias , Biodegradação Ambiental , Hidrocarbonetos Policíclicos Aromáticos , Pseudomonas aeruginosa , Microbiologia do Solo , Poluentes do Solo , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/genética , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Poluentes do Solo/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Cromatografia Gasosa-Espectrometria de Massas , Fenantrenos/metabolismo , Espectrometria de Massas em Tandem , Naftalenos/metabolismo
13.
Angew Chem Int Ed Engl ; 63(23): e202401979, 2024 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-38581278

RESUMO

Spirobisnaphthalenes (SBNs) are a class of highly oxygenated, fungal bisnaphthalenes containing a unique spiroketal bridge, that displayed diverse bioactivities. Among the reported SBNs, palmarumycins are the major type, which are precursors for the other type of SBNs structurally. However, the biosynthesis of SBNs is unclear. In this study, we elucidated the biosynthesis of palmarumycins, using gene disruption, heterologous expression, and substrate feeding experiments. The biosynthetic gene cluster for palmarumycins was identified to be distant from the polyketide synthase gene cluster, and included two cytochrome P450s (PalA and PalB), and one short chain dehydrogenase/reductase (PalC) encoding genes as key structural genes. PalA is an unusual, multifunctional P450 that catalyzes the oxidative dimerization of 1,8-dihydroxynaphthalene to generate the spiroketal linkage and 2,3-epoxy group. Chemical synthesis of key intermediate and in vitro biochemical assays proved that the oxidative dimerization proceeded via a binaphthyl ether. PalB installs the C-5 hydroxy group, widely found in SBNs. PalC catalyzes 1-keto reduction, the reverse 1-dehydrogenation, and 2,3-epoxide reduction. Moreover, an FAD-dependent oxidoreductase, encoded by palD, which locates outside the cluster, functions as a 1-dehydrogenase. These results provided the first genetic and biochemical evidence for the biosynthesis of palmarumycin SBNs.


Assuntos
Naftalenos , Compostos de Espiro , Compostos de Espiro/metabolismo , Compostos de Espiro/química , Naftalenos/metabolismo , Naftalenos/química , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Família Multigênica , Oxirredutases/metabolismo , Oxirredutases/genética , Oxirredutases/química
14.
J Biol Chem ; 298(10): 102417, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36037967

RESUMO

Γ-Crystallins play a major role in age-related lens transparency. Their destabilization by mutations and physical chemical insults are associated with cataract formation. Therefore, drugs that increase their stability should have anticataract properties. To this end, we screened 2560 Federal Drug Agency-approved drugs and natural compounds for their ability to suppress or worsen H2O2 and/or heat-mediated aggregation of bovine γ-crystallins. The top two drugs, closantel (C), an antihelminthic drug, and gambogic acid (G), a xanthonoid, attenuated thermal-induced protein unfolding and aggregation as shown by turbidimetry fluorescence spectroscopy dynamic light scattering and electron microscopy of human or mouse recombinant crystallins. Furthermore, binding studies using fluorescence inhibition and hydrophobic pocket-binding molecule bis-8-anilino-1-naphthalene sulfonic acid revealed static binding of C and G to hydrophobic sites with medium-to-low affinity. Molecular docking to HγD and other γ-crystallins revealed two binding sites, one in the "NC pocket" (residues 50-150) of HγD and one spanning the "NC tail" (residues 56-61 to 168-174 in the C-terminal domain). Multiple binding sites overlap with those of the protective mini αA-crystallin chaperone MAC peptide. Mechanistic studies using bis-8-anilino-1-naphthalene sulfonic acid as a proxy drug showed that it bound to MAC sites, improved Tm of both H2O2 oxidized and native human gamma D, and suppressed turbidity of oxidized HγD, most likely by trapping exposed hydrophobic sites. The extent to which these drugs act as α-crystallin mimetics and reduce cataract progression remains to be demonstrated. This study provides initial insights into binding properties of C and G to γ-crystallins.


Assuntos
Materiais Biomiméticos , Catarata , Cristalino , Chaperonas Moleculares , Agregação Patológica de Proteínas , Salicilanilidas , Xantonas , alfa-Cristalinas , gama-Cristalinas , Animais , Bovinos , Humanos , Camundongos , alfa-Cristalinas/metabolismo , Catarata/tratamento farmacológico , Catarata/prevenção & controle , Catarata/genética , gama-Cristalinas/metabolismo , Peróxido de Hidrogênio/metabolismo , Cristalino/metabolismo , Chaperonas Moleculares/metabolismo , Simulação de Acoplamento Molecular , Naftalenos/metabolismo , Ácidos Sulfônicos/metabolismo , Salicilanilidas/química , Salicilanilidas/farmacologia , Salicilanilidas/uso terapêutico , Xantonas/química , Xantonas/farmacologia , Xantonas/uso terapêutico , Agregação Patológica de Proteínas/tratamento farmacológico , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Materiais Biomiméticos/uso terapêutico
15.
Appl Environ Microbiol ; 89(1): e0172822, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36622195

RESUMO

Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) enter the environment from natural sources and anthropogenic activities. To date, microorganisms able to mineralize nitro-PAHs have not been reported. Here, Sphingobium sp. strain JS3065 was isolated by selective enrichment for its ability to grow on 1-nitronaphthalene as the sole carbon, nitrogen, and energy source. Analysis of the complete genome of strain JS3065 indicated that the gene cluster encoding 1-nitronaphthalene catabolism (nin) is located on a plasmid. Based on the genetic and biochemical evidence, the nin genes share an origin with the nag-like genes encoding naphthalene degradation in Ralstonia sp. strain U2. The initial step in degradation of 1-nitronaphthalene is catalyzed by a three-component dioxygenase, NinAaAbAcAd, resulting in formation of 1,2-dihydroxynaphthalene which is also an early intermediate in the naphthalene degradation pathway. Introduction of the ninAaAbAcAd genes into strain U2 enabled its growth on 1-nitronaphthalene. Phylogenic analysis of NinAc suggested that an ancestral 1-nitronaphthalene dioxygenase was an early step in the evolution of nitroarene dioxygenases. Based on bioinformatic analysis and enzyme assays, the subsequent assimilation of 1,2-dihydroxynaphthalene seems to follow the well-established pathway for naphthalene degradation by Ralstonia sp. strain U2. This is the first report of catabolic pathway for 1-nitronaphthalene and is another example of how expanding the substrate range of Rieske type dioxygenase enables bacteria to grow on recalcitrant nitroaromatic compounds. IMPORTANCE Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) have been widely detected in the environment and they are more toxic than their corresponding parent PAHs. Although biodegradation of many PAHs has been extensively described at genetic and biochemical levels, little is known about the microbial degradation of nitro-PAHs. This work reports the isolation of a Sphingobium strain growing on 1-nitronaphthalene and the genetic basis for the catabolic pathway. The pathway evolved from an ancestral naphthalene catabolic pathway by a remarkably small modification in the specificity of the initial dioxygenase. Data presented here not only shed light on the biochemical processes involved in the microbial degradation of globally important nitrated polycyclic aromatic hydrocarbons, but also provide an evolutionary paradigm for how bacteria evolve a novel catabolic pathway with minimal alteration of preexisting pathways for natural organic compounds.


Assuntos
Dioxigenases , Hidrocarbonetos Policíclicos Aromáticos , Sphingomonadaceae , Naftalenos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo , Biodegradação Ambiental , Sphingomonadaceae/genética , Sphingomonadaceae/metabolismo
16.
Appl Environ Microbiol ; 89(3): e0192722, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36815794

RESUMO

Polycyclic aromatic hydrocarbons are persistent pollutants of anthropogenic or natural origin in the environment and accumulate in anoxic habitats. In this study, we investigated the mechanism of the enzyme naphthalene carboxylase as a model reaction for polycyclic aromatic hydrocarbon activation by carboxylation. An enzyme assay was established with cell extracts of the highly enriched culture N47. In assays without addition of ATP, naphthalene carboxylase catalyzed a stable isotope exchange of the carboxyl group of naphthoate with 13C-labeled bicarbonate buffer, which can only occur via a partial backwards reaction of the naphthalene carboxylase reaction to an intermediate that does not include the carboxyl group. Hence, a new carboxyl group from the labeled bicarbonate is added upon forward reaction to the naphthoate. This indicates that the reaction mechanism consists of two or more steps and that at least the latter steps are reversible and ATP independent. Naphthalene carboxylation assays were carried out in deuterated buffer and revealed the incorporation of 0, 1, 2, or 3 deuterium atoms in the final product naphthoyl-coenzyme A, indicating that the reaction is fully reversible. Putative reaction mechanisms were tested by quantum mechanical calculations. The proposed mechanism of the reaction consists of three steps: the activation of the naphthalene by 1,3-dipolar cycloaddition of the cofactor prFMN to naphthalene, release of a proton and rearomatization producing a stable intermediate, and a carboxylation with a reverse 1,3-dipolar cycloaddition and cleavage of the bond to the cofactor producing 2-naphthoate. IMPORTANCE Pollution with polycyclic aromatic hydrocarbons poses a great hazard to humans and animals, with considerable long-term effects. The anaerobic degradation of polycyclic aromatic hydrocarbons in anoxic zones and anaerobic growth of such organisms is very slow, leading to only poor investigation of the degradation pathways, so far. In this work, we elucidated the mechanism of naphthalene carboxylase, a key enzyme in anaerobic naphthalene degradation. This is the first mechanism proposed for a carboxylase targeting nonsubstituted (polycyclic) aromatic compounds and can serve as a model for the initial activation reaction in the anaerobic degradation of benzene or nonsubstituted polycyclic aromatic hydrocarbons, as well as similar enzymatic reactions from the expanding class of UbiD-like (de)carboxylases.


Assuntos
Mononucleotídeo de Flavina , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Mononucleotídeo de Flavina/metabolismo , Sulfatos/metabolismo , Bicarbonatos , Reação de Cicloadição , Anaerobiose , Naftalenos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Trifosfato de Adenosina/metabolismo , Biodegradação Ambiental
17.
Microb Ecol ; 86(1): 271-281, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35610382

RESUMO

Biodegradation of polycyclic aromatic hydrocarbons (PAHs) under completely anaerobic sulfate-reducing conditions is an energetically challenging process. To date, anaerobic degradations of only two-ringed naphthalene and three-ringed phenanthrene by sediment-free and enriched sulfate-reducing bacteria have been reported. In this study, sulfate-reducing enrichment cultures capable of degrading naphthalene and four-ringed PAH, pyrene, were enriched from a contaminated former gas plant site soil. Bacterial community composition analysis revealed that a naphthalene-degrading enrichment culture, MMNap, was dominated (84.90%) by a Gram-positive endospore-forming member of the genus Desulfotomaculum with minor contribution (8.60%) from a member of Clostridium. The pyrene-degrading enrichment, MMPyr, was dominated (97.40%) by a species of Desulfotomaculum. The sequences representing the Desulfotomaculum phylotypes shared 98.80% similarity to each other. After 150 days of incubation, MMNap degraded 195 µM naphthalene with simultaneous reduction of sulfate and accumulation of sulfide. Similarly, MMPyr degraded 114 µM pyrene during 180 days of incubation with nearly stochiometric sulfate consumption and sulfide accumulation. In both cases, the addition of sulfate reduction inhibitor, molybdate (20 mM), resulted in complete cessation of the substrate utilization and sulfate reduction that clearly indicated the major role of the sulfate-reducing Desulfotomaculum in biodegradation of the two PAHs. This study is the first report on anaerobic pyrene degradation by a matrix-free, strictly anaerobic, and sulfate-reducing enrichment culture.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Sulfatos , Anaerobiose , Sulfatos/metabolismo , Naftalenos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Pirenos , Biodegradação Ambiental
18.
Environ Res ; 235: 116663, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37451574

RESUMO

As one of the polycyclic aromatic hydrocarbons (PAHs), naphthalene is of serious environmental concern due to its carcinogenicity, persistence and refractory degradation. In this study, a new functional biomaterial based on Burkholderia cepacia (BK) immobilized on reduced graphene oxide (rGO) was prepared, resulting in the removal of 99.0% naphthalene within 48 h. This was better than the 67.3% for free BK and 55.6% for rGO alone. Various characterizations indicated that reduced graphene oxide-Burkholderia cepacia (rGO-BK) was successfully synthesized and secreted non-toxic and degradable surfactants which participated in the degradation of naphthalene. The adsorption kinetics and degradation kinetics conformed best to non-linear pseudo-second-order and pseudo-first-order kinetic models, respectively. Demonstrated in this work is that removing naphthalene by rGO-BK involved both chemically dominated adsorption and biodegradation. As well, GC-MS analysis revealed two things: firstly, that the degraded products of naphthalene were dibutyl phthalate, diethyl phthalate, phthalic acid, and benzoic acid; and secondly, two potentially viable biodegradation pathways of naphthalene by rGO-BK could be proposed. Finally, for practical application experiment, the rGO-BK was exposed to river water samples and generated 99% removal efficiency of naphthalene, so this study offers new insights into biomaterials that can remove naphthalene.


Assuntos
Burkholderia cepacia , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Burkholderia cepacia/metabolismo , Águas Residuárias , Materiais Biocompatíveis/metabolismo , Naftalenos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Biodegradação Ambiental , Adsorção , Poluentes Químicos da Água/química
19.
Antonie Van Leeuwenhoek ; 116(7): 697-709, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37188845

RESUMO

Accidental spillage of petroleum products and industrial activities result in various hydrocarbons in the environment. While the n-hydrocarbons are readily degraded, the polycyclic aromatic hydrocarbons (PAHs) are recalcitrant to natural degradation, toxic to aquatic life and are responsible for diverse health challenges in terrestrial animals; suggesting the need for faster and more eco-friendly ways of removing PAHs from the environment. In this study, the surfactant tween-80 was used to enhance a bacterium's intrinsic naphthalene biodegradation activity. Eight bacteria isolated from oil-contaminated soils were characterised using morphological and biochemical methods. The most effective strain was identified as Klebsiella quasipneumoniae using 16S rRNA gene analysis. High-Performance Liquid Chromatography (HPLC) analyses showed that the detectable concentration of naphthalene was decreased from 500 to 157.18 µg/mL (67.4%) after 7 d in the absence of tween-80, while 99.4% removal was achieved in 3 d in the presence of tween-80 at 60 µg/mL concentration. The peaks observed in the Fourier Transform Infra-Red Spectroscopy (FTIR) spectrum of control (naphthalene), which were absent in that of the metabolites, further established naphthalene degradation. Furthermore, Gas Chromatography-Mass Spectrometer (GCMS) revealed metabolites of single aromatic ring, such as 3,4-dihydroxybenzoic acid 4-hydroxylmethylphenol, which confirmed that the removal of naphthalene is by biodegradation. Tyrosinase induction and laccase activities suggested the involvement of these enzymes in naphthalene biodegradation by the bacterium. Conclusively, a strain of K. quasipneumoniae that can effectively remove naphthalene from contaminated environments has been isolated, and its biodegradation rate was doubled in the presence of non-ionic surfactant, tween-80.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Polissorbatos , Polissorbatos/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Naftalenos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Biodegradação Ambiental , Bactérias/genética , Hidrocarbonetos/metabolismo , Tensoativos/metabolismo
20.
Int J Mol Sci ; 24(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36674936

RESUMO

There is growing concern about the consumption of synthetic cannabinoids (SCs), one of the largest groups of new psychoactive substances, its consequence on human health (general population and workers), and the continuous placing of new SCs on the market. Although drug-induced alterations in neuronal function remain an essential component for theories of drug addiction, accumulating evidence indicates the important role of activated astrocytes, whose essential and pleiotropic role in brain physiology and pathology is well recognized. The study aims to clarify the mechanisms of neurotoxicity induced by one of the most potent SCs, named MAM-2201 (a naphthoyl-indole derivative), by applying a novel three-dimensional (3D) cell culture model, mimicking the physiological and biochemical properties of brain tissues better than traditional two-dimensional in vitro systems. Specifically, human astrocyte spheroids, generated from the D384 astrocyte cell line, were treated with different MAM-2201 concentrations (1-30 µM) and exposure times (24-48 h). MAM-2201 affected, in a concentration- and time-dependent manner, the cell growth and viability, size and morphological structure, E-cadherin and extracellular matrix, CB1-receptors, glial fibrillary acidic protein, and caspase-3/7 activity. The findings demonstrate MAM-2201-induced cytotoxicity to astrocyte spheroids, and support the use of this human 3D cell-based model as species-specific in vitro tool suitable for the evaluation of neurotoxicity induced by other SCs.


Assuntos
Astrócitos , Canabinoides , Humanos , Astrócitos/metabolismo , Canabinoides/toxicidade , Canabinoides/química , Naftalenos/toxicidade , Naftalenos/metabolismo , Neurônios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA