RESUMO
Anti-CRISPR proteins (Acrs) targeting CRISPR-Cas9 systems represent natural "off switches" for Cas9-based applications. Recently, AcrIIC1, AcrIIC2, and AcrIIC3 proteins were found to inhibit Neisseria meningitidis Cas9 (NmeCas9) activity in bacterial and human cells. Here we report biochemical and structural data that suggest molecular mechanisms of AcrIIC2- and AcrIIC3-mediated Cas9 inhibition. AcrIIC2 dimer interacts with the bridge helix of Cas9, interferes with RNA binding, and prevents DNA loading into Cas9. AcrIIC3 blocks the DNA loading step through binding to a non-conserved surface of the HNH domain of Cas9. AcrIIC3 also forms additional interactions with the REC lobe of Cas9 and induces the dimerization of the AcrIIC3-Cas9 complex. While AcrIIC2 targets Cas9 orthologs from different subtypes, albeit with different efficiency, AcrIIC3 specifically inhibits NmeCas9. Structure-guided changes in NmeCas9 orthologs convert them into anti-CRISPR-sensitive proteins. Our studies provide insights into anti-CRISPR-mediated suppression mechanisms and guidelines for designing regulatory tools in Cas9-based applications.
Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas/genética , DNA/genética , Edição de Genes , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteína 9 Associada à CRISPR/antagonistas & inibidores , DNA/química , Humanos , Neisseria meningitidis/enzimologia , Neisseria meningitidis/genéticaRESUMO
CRISPR-Cas9 genome editing has transformed biotechnology and therapeutics. However, in vivo applications of some Cas9s are hindered by large size (limiting delivery by adeno-associated virus [AAV] vectors), off-target editing, or complex protospacer-adjacent motifs (PAMs) that restrict the density of recognition sequences in target DNA. Here, we exploited natural variation in the PAM-interacting domains (PIDs) of closely related Cas9s to identify a compact ortholog from Neisseria meningitidis-Nme2Cas9-that recognizes a simple dinucleotide PAM (N4CC) that provides for high target site density. All-in-one AAV delivery of Nme2Cas9 with a guide RNA targeting Pcsk9 in adult mouse liver produces efficient genome editing and reduced serum cholesterol with exceptionally high specificity. We further expand our single-AAV platform to pre-implanted zygotes for streamlined generation of genome-edited mice. Nme2Cas9 combines all-in-one AAV compatibility, exceptional editing accuracy within cells, and high target site density for in vivo genome editing applications.
Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA/genética , Edição de Genes/métodos , Fígado/enzimologia , Neisseria meningitidis/enzimologia , Pró-Proteína Convertase 9/genética , Animais , Proteína 9 Associada à CRISPR/metabolismo , DNA/metabolismo , Dependovirus/genética , Transferência Embrionária , Feminino , Vetores Genéticos , Células HEK293 , Humanos , Células K562 , Camundongos Endogâmicos C57BL , Motivos de Nucleotídeos , Pró-Proteína Convertase 9/metabolismo , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Especificidade por Substrato , Zigoto/metabolismoRESUMO
High-resolution Cas9 structures have yet to reveal catalytic conformations due to HNH nuclease domain positioning away from the cleavage site. Nme1Cas9 and Nme2Cas9 are compact nucleases for in vivo genome editing. Here, we report structures of meningococcal Cas9 homologs in complex with sgRNA, dsDNA, or the AcrIIC3 anti-CRISPR protein. DNA-bound structures represent an early step of target recognition, a later HNH pre-catalytic state, the HNH catalytic state, and a cleaved-target-DNA-bound state. In the HNH catalytic state of Nme1Cas9, the active site is seen poised at the scissile phosphodiester linkage of the target strand, providing a high-resolution view of the active conformation. The HNH active conformation activates the RuvC domain. Our structures explain how Nme1Cas9 and Nme2Cas9 read distinct PAM sequences and how AcrIIC3 inhibits Nme1Cas9 activity. These structures provide insights into Cas9 domain rearrangements, guide-target engagement, cleavage mechanism, and anti-CRISPR inhibition, facilitating the optimization of these genome-editing platforms.
Assuntos
Bacteriófagos/metabolismo , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA/metabolismo , Neisseria meningitidis/enzimologia , Proteínas Virais/metabolismo , Bacteriófagos/genética , Sítios de Ligação , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/ultraestrutura , Catálise , DNA/genética , DNA/ultraestrutura , Escherichia coli/enzimologia , Escherichia coli/genética , Neisseria meningitidis/genética , Ligação Proteica , Domínios Proteicos , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Relação Estrutura-Atividade , Proteínas Virais/genética , Proteínas Virais/ultraestruturaRESUMO
α-Isopropylmalate synthase (IPMS) catalyzes the first step in leucine (Leu) biosynthesis and is allosterically regulated by the pathway end product, Leu. IPMS is a dimeric enzyme with each chain consisting of catalytic, accessory, and regulatory domains, with the accessory and regulatory domains of each chain sitting adjacent to the catalytic domain of the other chain. The IPMS crystal structure shows significant asymmetry because of different relative domain conformations in each chain. Owing to the challenges posed by the dynamic and asymmetric structures of IPMS enzymes, the molecular details of their catalytic and allosteric mechanisms are not fully understood. In this study, we have investigated the allosteric feedback mechanism of the IPMS enzyme from the bacterium that causes meningitis, Neisseria meningitidis (NmeIPMS). By combining molecular dynamics simulations with small-angle X-ray scattering, mutagenesis, and heterodimer generation, we demonstrate that Leu-bound NmeIPMS is in a rigid conformational state stabilized by asymmetric interdomain polar interactions. Furthermore, we found removing these polar interactions by mutagenesis impaired the allosteric response without compromising Leu binding. Our results suggest that the allosteric inhibition of NmeIPMS is achieved by restricting the flexibility of the accessory and regulatory domains, demonstrating that significant conformational flexibility is required for catalysis.
Assuntos
2-Isopropilmalato Sintase , Biocatálise , Leucina , Neisseria meningitidis , Domínios Proteicos , 2-Isopropilmalato Sintase/química , 2-Isopropilmalato Sintase/genética , 2-Isopropilmalato Sintase/metabolismo , Regulação Alostérica , Domínio Catalítico , Leucina/biossíntese , Leucina/química , Leucina/metabolismo , Neisseria meningitidis/enzimologia , Neisseria meningitidis/metabolismo , Simulação de Dinâmica Molecular , Espalhamento a Baixo Ângulo , Difração de Raios X , Multimerização Proteica , Mutagênese , MaleabilidadeRESUMO
Neuraminic acid synthases are an important yet underexplored group of enzymes. Thus, in this research, we performed a detailed kinetic and stability analysis and a comparison of previously known neuraminic acid synthase from Neisseria meningitidis, and a novel enzyme, PNH5, obtained from a metagenomic library. A systematic analysis revealed a high level of similarity of PNH5 to other known neuraminic acid synthases, except for its pH optimum, which was found to be at 5.5 for the novel enzyme. This is the first reported enzyme from this family that prefers an acidic pH value. The effect of different metal cofactors on enzyme activity, i.e. Co2+, Mn2+ and Mg2+, was studied systematically. The kinetics of neuraminic acid synthesis was completely elucidated, and an appropriate kinetic model was proposed. Enzyme stability study revealed that the purified enzyme exhibits changes in its structure during time as observed by differential light scattering, which cause a drop in its activity and protein concentration. The operational enzyme stability for the neuraminic acid synthase from N. meningitidis is excellent, where no activity drop was observed during the batch reactor experiments. In the case of PNH5, some activity drop was observed at higher concentration of substrates. The obtained results present a solid platform for the future application of these enzymes in the synthesis of sialic acids. KEY POINTS: ⢠A novel neuraminic acid synthase was characterized. ⢠The effect of cofactors on NeuS activity was elucidated. ⢠Kinetic and stability characterization of two neuraminic acid synthases was performed.
Assuntos
Estabilidade Enzimática , Neisseria meningitidis , Cinética , Concentração de Íons de Hidrogênio , Neisseria meningitidis/enzimologia , Neisseria meningitidis/genética , Oxo-Ácido-Liases/metabolismo , Oxo-Ácido-Liases/genética , Oxo-Ácido-Liases/química , Coenzimas/metabolismoRESUMO
Type II CRISPR systems defend against invasive DNA by using Cas9 as an RNA-guided nuclease that creates double-stranded DNA breaks. Dual RNAs (CRISPR RNA [crRNA] and tracrRNA) are required for Cas9's targeting activities observed to date. Targeting requires a protospacer adjacent motif (PAM) and crRNA-DNA complementarity. Cas9 orthologs (including Neisseria meningitidis Cas9 [NmeCas9]) have also been adopted for genome engineering. Here we examine the DNA cleavage activities and substrate requirements of NmeCas9, including a set of unusually complex PAM recognition patterns. Unexpectedly, NmeCas9 cleaves single-stranded DNAs in a manner that is RNA guided but PAM and tracrRNA independent. Beyond the need for guide-target pairing, this "DNase H" activity has no apparent sequence requirements, and the cleavage sites are measured from the 5' end of the DNA substrate's RNA-paired region. These results indicate that tracrRNA is not strictly required for NmeCas9 enzymatic activation, and expand the list of targeting activities of Cas9 endonucleases.
Assuntos
Proteínas de Bactérias/genética , Sistemas CRISPR-Cas , DNA Bacteriano/genética , Endodesoxirribonucleases/genética , Neisseria meningitidis/genética , Proteínas de Bactérias/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA Bacteriano/metabolismo , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Endodesoxirribonucleases/metabolismo , Dados de Sequência Molecular , Neisseria meningitidis/enzimologia , Motivos de Nucleotídeos , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismoRESUMO
Optogenetic control of CRISPR-Cas9 systems has significantly improved our ability to perform genome perturbations in living cells with high precision in time and space. As new Cas orthologues with advantageous properties are rapidly being discovered and engineered, the need for straightforward strategies to control their activity via exogenous stimuli persists. The Cas9 from Neisseria meningitidis (Nme) is a particularly small and target-specific Cas9 orthologue, and thus of high interest for in vivo genome editing applications. Here, we report the first optogenetic tool to control NmeCas9 activity in mammalian cells via an engineered, light-dependent anti-CRISPR (Acr) protein. Building on our previous Acr engineering work, we created hybrids between the NmeCas9 inhibitor AcrIIC3 and the LOV2 blue light sensory domain from Avena sativa. Two AcrIIC3-LOV2 hybrids from our collection potently blocked NmeCas9 activity in the dark, while permitting robust genome editing at various endogenous loci upon blue light irradiation. Structural analysis revealed that, within these hybrids, the LOV2 domain is located in striking proximity to the Cas9 binding surface. Together, our work demonstrates optogenetic regulation of a type II-C CRISPR effector and might suggest a new route for the design of optogenetic Acrs.
Assuntos
Proteína 9 Associada à CRISPR/antagonistas & inibidores , Proteína 9 Associada à CRISPR/química , Sistemas CRISPR-Cas , Edição de Genes/métodos , Neisseria meningitidis/enzimologia , Optogenética/métodos , Linhagem Celular , Células HEK293 , Humanos , Luz , Modelos Moleculares , Engenharia de Proteínas , Proteínas/química , Proteínas/efeitos da radiaçãoRESUMO
Anti-CRISPR (Acr) proteins are powerful tools to control CRISPR-Cas technologies. However, the available Acr repertoire is limited to naturally occurring variants. Here, we applied structure-based design on AcrIIC1, a broad-spectrum CRISPR-Cas9 inhibitor, to improve its efficacy on different targets. We first show that inserting exogenous protein domains into a selected AcrIIC1 surface site dramatically enhances inhibition of Neisseria meningitidis (Nme)Cas9. Then, applying structure-guided design to the Cas9-binding surface, we converted AcrIIC1 into AcrIIC1X, a potent inhibitor of the Staphylococcus aureus (Sau)Cas9, an orthologue widely applied for in vivo genome editing. Finally, to demonstrate the utility of AcrIIC1X for genome engineering applications, we implemented a hepatocyte-specific SauCas9 ON-switch by placing AcrIIC1X expression under regulation of microRNA-122. Our work introduces designer Acrs as important biotechnological tools and provides an innovative strategy to safeguard CRISPR technologies.
Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Edição de Genes/métodos , MicroRNAs/genética , Engenharia de Proteínas/métodos , Sequência de Aminoácidos , Proteína 9 Associada à CRISPR/metabolismo , Linhagem Celular Tumoral , Genoma Humano , Células HEK293 , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , MicroRNAs/metabolismo , Modelos Moleculares , Mutagênese Insercional , Neisseria meningitidis/enzimologia , Neisseria meningitidis/genética , Plasmídeos/química , Plasmídeos/metabolismo , Domínios Proteicos , Estrutura Secundária de Proteína , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Staphylococcus aureus/enzimologia , Staphylococcus aureus/genéticaRESUMO
Despite the availability of antibiotics and vaccines, Neisseria meningitidis remains a major cause of meningitis and sepsis in humans. Due to its extracellular lifestyle, bacterial adhesion to host cells constitutes an attractive therapeutic target. Here, we present a high-throughput microscopy-based approach that allowed the identification of compounds able to decrease type IV pilus-mediated interaction of bacteria with endothelial cells in the absence of bacterial or host cell toxicity. Compounds specifically inhibit the PilF ATPase enzymatic activity that powers type IV pilus extension but remain inefficient on the ATPase that promotes pilus retraction, thus leading to rapid pilus disappearance from the bacterial surface and loss of pili-mediated functions. Structure activity relationship of the most active compound identifies specific moieties required for the activity of this compound and highlights its specificity. This study therefore provides compounds targeting pilus biogenesis, thereby inhibiting bacterial adhesion, and paves the way for a novel therapeutic option for meningococcal infections.
Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Fímbrias Bacterianas , Adenosina Trifosfatases/antagonistas & inibidores , Antibacterianos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Células Cultivadas , Fímbrias Bacterianas/efeitos dos fármacos , Fímbrias Bacterianas/metabolismo , Ensaios de Triagem em Larga Escala , Células Endoteliais da Veia Umbilical Humana , Humanos , Neisseria meningitidis/enzimologia , Neisseria meningitidis/patogenicidadeRESUMO
We report the atomic-resolution (1.3 Å) X-ray crystal structure of an open conformation of the dapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase (DapE, EC 3.5.1.18) from Neisseria meningitidis. This structure [Protein Data Bank (PDB) entry 5UEJ] contains two bound sulfate ions in the active site that mimic the binding of the terminal carboxylates of the N-succinyl-l,l-diaminopimelic acid (l,l-SDAP) substrate. We demonstrated inhibition of DapE by sulfate (IC50 = 13.8 ± 2.8 mM). Comparison with other DapE structures in the PDB demonstrates the flexibility of the interdomain connections of this protein. This high-resolution structure was then utilized as the starting point for targeted molecular dynamics experiments revealing the conformational change from the open form to the closed form that occurs when DapE binds l,l-SDAP and cleaves the amide bond. These simulations demonstrated closure from the open to the closed conformation, the change in RMS throughout the closure, and the independence in the movement of the two DapE subunits. This conformational change occurred in two phases with the catalytic domains moving toward the dimerization domains first, followed by a rotation of catalytic domains relative to the dimerization domains. Although there were no targeting forces, the substrate moved closer to the active site and bound more tightly during the closure event.
Assuntos
Amidoidrolases/antagonistas & inibidores , Amidoidrolases/química , Inibidores Enzimáticos/farmacologia , Simulação de Dinâmica Molecular , Sulfatos/farmacologia , Amidoidrolases/metabolismo , Cristalografia por Raios X , Neisseria meningitidis/enzimologiaRESUMO
The majority of bacteria and archaea rely on CRISPR-Cas systems for RNA-guided, adaptive immunity against mobile genetic elements. The Cas9 family of type II CRISPR-associated DNA endonucleases generates programmable double strand breaks in the CRISPR-complementary DNA targets flanked by the PAM motif. Nowadays, CRISPR-Cas9 provides a set of powerful tools for precise genome manipulation in eukaryotes and prokaryotes. Recently, a few Cas9 orthologs have been reported to possess intrinsic CRISPR-guided, sequence-specific ribonuclease activities. These discoveries fundamentally expanded the targeting capability of CRISPR-Cas9 systems, and promise to provide new CRISPR tools to manipulate specific cellular RNA transcripts. Here we present a detailed method for the biochemical characterization of Cas9's RNA-targeting potential.
Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Ensaios Enzimáticos/métodos , RNA Guia de Cinetoplastídeos/metabolismo , Bacteriófagos/metabolismo , Proteína 9 Associada à CRISPR/antagonistas & inibidores , Ensaios Enzimáticos/instrumentação , Neisseria meningitidis/enzimologia , Neisseria meningitidis/genética , Neisseria meningitidis/virologia , RNA Guia de Cinetoplastídeos/genética , Proteínas Virais/metabolismoRESUMO
Accessing large numbers of structurally diverse glycans and derivatives is essential to functional glycomics. We showed a general tolerance of galactosyltransferases toward uridine-diphosphate-galactosamine (UDP-GalN), which is not a commonly used sugar nucleotide donor. The property was harnessed to develop a two-step chemoenzymatic strategy for facile synthesis of novel and divergent N-acetylgalactosamine (GalNAc)-glycosides and derivatives in preparative scales. The discovery and the application of the new property of existing glycosyltransferases expand their catalytic capabilities in generating novel carbohydrate linkages, thus prompting the synthesis of diverse glycans and glycoconjugates for biological studies.
Assuntos
Galactosiltransferases/metabolismo , Uridina Difosfato N-Acetilgalactosamina/análogos & derivados , Configuração de Carboidratos , Helicobacter pylori/enzimologia , Neisseria meningitidis/enzimologia , Uridina Difosfato N-Acetilgalactosamina/biossíntese , Uridina Difosfato N-Acetilgalactosamina/químicaRESUMO
Cytidine 5'-monophosphate (CMP)-sialic acid synthetase (CSS) is an essential enzyme involved in the biosynthesis of carbohydrates and glycoconjugates containing sialic acids, a class of α-keto acids that are generally terminal key recognition residues by many proteins that play important biological and pathological roles. The CSS from Neisseria meningitidis (NmCSS) has been commonly used with other enzymes such as sialic acid aldolase and/or sialyltransferase in synthesizing a diverse array of compounds containing sialic acid or its naturally occurring and non-natural derivatives. To better understand its catalytic mechanism and substrate promiscuity, four NmCSS crystal structures trapped at various stages of the catalytic cycle with bound substrates, substrate analogues, and products have been obtained and are presented here. These structures suggest a mechanism for an "open" and "closed" conformational transition that occurs as sialic acid binds to the NmCSS/cytidine-5'-triphosphate (CTP) complex. The closed conformation positions critical residues to help facilitate the nucleophilic attack of sialic acid C2-OH to the α-phosphate of CTP, which is also aided by two observed divalent cations. Product formation drives the active site opening, promoting the release of products.
Assuntos
Biocatálise , N-Acilneuraminato Citidililtransferase/química , N-Acilneuraminato Citidililtransferase/metabolismo , Neisseria meningitidis/enzimologia , Domínio Catalítico , Cristalografia por Raios X , Modelos Moleculares , Mutação , N-Acilneuraminato Citidililtransferase/genéticaRESUMO
Lipopolysaccharides are anchored to the outer membrane of Gram-negative bacteria by a hydrophobic moiety known as lipid A, which potently activates the host innate immune response. Lipid A of Bordetella pertussis, the causative agent of whooping cough, displays unusual structural asymmetry with respect to the length of the acyl chains at the 3 and 3' positions, which are 3OH-C10 and 3OH-C14 chains, respectively. Both chains are attached by the acyltransferase LpxA, the first enzyme in the lipid A biosynthesis pathway, which, in B. pertussis, has limited chain length specificity. However, this only partially explains the strict asymmetry of lipid A. In attempts to modulate the endotoxicity of B. pertussis lipid A, here we expressed the gene encoding LpxA from Neisseria meningitidis, which specifically attaches 3OH-C12 chains, in B. pertussis This expression was lethal, suggesting that one of the downstream enzymes in the lipid A biosynthesis pathway in B. pertussis cannot handle precursors with a 3OH-C12 chain. We considered that the UDP-diacylglucosamine pyrophosphohydrolase LpxH could be responsible for this defect as well as for the asymmetry of B. pertussis lipid A. Expression of meningococcal LpxH in B. pertussis indeed resulted in new symmetric lipid A species with 3OH-C10 or 3OH-C14 chains at both the 3 and 3' positions, as revealed by MS analysis. Furthermore, co-expression of meningococcal lpxH and lpxA resulted in viable cells that incorporated 3OH-C12 chains in B. pertussis lipid A. We conclude that the asymmetry of B. pertussis lipid A is determined by the acyl chain length specificity of LpxH.
Assuntos
Aciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Bordetella pertussis/enzimologia , Lipídeo A/biossíntese , Aciltransferases/química , Aciltransferases/genética , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Bordetella pertussis/genética , Células HEK293 , Humanos , Lipídeo A/química , Lipídeo A/genética , Camundongos , Neisseria meningitidis/enzimologia , Neisseria meningitidis/genética , Especificidade por Substrato/fisiologiaRESUMO
ClpPs are a conserved family of serine proteases that collaborate with ATP-dependent translocases to degrade protein substrates. Drugs targeting these enzymes have attracted interest for the treatment of cancer and bacterial infections due to their critical role in mitochondrial and bacterial proteostasis, respectively. As such, there is significant interest in understanding structure-function relationships in this protein family. ClpPs are known to crystallize in extended, compact, and compressed forms; however, it is unclear what conditions favor the formation of each form and whether they are populated by wild-type enzymes in solution. Here, we use cryo-EM and solution NMR spectroscopy to demonstrate that a pH-dependent conformational switch controls an equilibrium between the active extended and inactive compressed forms of ClpP from the Gram-negative pathogen Neisseria meningitidis. Our findings provide insight into how ClpPs exploit their rugged energy landscapes to enable key conformational changes that regulate their function.
Assuntos
Proteínas de Bactérias/química , Endopeptidase Clp/química , Neisseria meningitidis/enzimologia , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Endopeptidase Clp/metabolismo , Concentração de Íons de Hidrogênio , Conformação Proteica , TermodinâmicaRESUMO
BACKGROUND: Neisseria meningitidis (N.meningitidis) bacteria belonging to clonal complex 4821 (CC4821) have been mainly reported in China and have been characterized by a high resistance rate to ciprofloxacin (CIP). The aim of this study was to assess the evolution of the DNA gyrase A (gyrA) gene from N.meningitidis CC4821 strains collected in China between 1978 and 2016. The complete sequence of gyrA gene from 77 strains are reported in this study and analyzed in the context of publicly available sequences from N. meningitidis of other CCs as well as other Neisseria species. RESULTS: The phylogenetic analysis of CC4821 gyrA gene reveals at least 5 distinct genetic clusters. These clusters are not CC4821-specific showing that gyrA evolution is independent of CC4821 evolution. Some clusters contain sequences from other Neisseria species. Recombination within N.meningitidis strains and between Neisseria species was identified in SimPlot analysis. Finally, amino acid substitutions within GyrA protein were analyzed. Only one position, 91 (83 in E.coli gyrA gene), was linked to CIP resistance. Thirty-one additional putative resistance markers were identified, as amino acid substitutions were only found in resistant strains. CONCLUSIONS: The evolution of gyrA gene of CC4821 N.meningitidis strains is not dependent on CC4821 evolution or on CIP resistance phenotype. Only amino acid 91 is linked to CIP resistance phenotype. Finally, recombination inter- and intra-species is likely to result in the acquisition of various resistance markers, 31 of them being putatively mapped in the present study. Analyzing the evolution of gyrA gene within CC4821 strains is critical to monitor the CIP resistance phenotype and the acquisition of new resistance markers. Such studies are necessary for the control of the meningococcal disease and the development of new drugs targeting DNA gyrase.
Assuntos
Ciprofloxacina/farmacologia , DNA Girase/genética , Farmacorresistência Bacteriana , Neisseria meningitidis/classificação , Proteínas de Bactérias/genética , China , Evolução Molecular , Humanos , Família Multigênica , Neisseria meningitidis/enzimologia , Neisseria meningitidis/genética , Fenótipo , Filogenia , Análise de Sequência de DNARESUMO
NExo is an enzyme from Neisseria meningitidis that is specialized in the removal of the 3'-phosphate and other 3'-lesions, which are potential blocks for DNA repair. NExo is a highly active DNA 3'-phosphatase, and although it is from the class II AP family it lacks AP endonuclease activity. In contrast, the NExo homologue NApe, lacks 3'-phosphatase activity but is an efficient AP endonuclease. These enzymes act together to protect the meningococcus from DNA damage arising mainly from oxidative stress and spontaneous base loss. In this work, we present crystal structures of the specialized 3'-phosphatase NExo bound to DNA in the presence and absence of a 3'-phosphate lesion. We have outlined the reaction mechanism of NExo, and using point mutations we bring mechanistic insights into the specificity of the 3'-phosphatase activity of NExo. Our data provide further insight into the molecular origins of plasticity in substrate recognition for this class of enzymes. From this we hypothesize that these specialized enzymes lead to enhanced efficiency and accuracy of DNA repair and that this is important for the biological niche occupied by this bacterium.
Assuntos
Proteínas de Bactérias/química , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , Proteínas de Ligação a DNA/química , Exodesoxirribonucleases/química , Neisseria meningitidis/enzimologia , Domínio Catalítico , Cristalografia por Raios X , DNA/química , Dano ao DNA , Endonucleases/metabolismo , Mutagênese Sítio-Dirigida , Mutação , Neisseria meningitidis/genética , Estresse Oxidativo , Ligação Proteica , Conformação Proteica , Especificidade por SubstratoRESUMO
Multidrug-resistant (MDR) gram-negative bacteria have increased the prevalence of fatal sepsis in modern times. Colistin is a cationic antimicrobial peptide (CAMP) antibiotic that permeabilizes the bacterial outer membrane (OM) and has been used to treat these infections. The OM outer leaflet is comprised of endotoxin containing lipid A, which can be modified to increase resistance to CAMPs and prevent clearance by the innate immune response. One type of lipid A modification involves the addition of phosphoethanolamine to the 1 and 4' headgroup positions by phosphoethanolamine transferases. Previous structural work on a truncated form of this enzyme suggested that the full-length protein was required for correct lipid substrate binding and catalysis. We now report the crystal structure of a full-length lipid A phosphoethanolamine transferase from Neisseria meningitidis, determined to 2.75-Å resolution. The structure reveals a previously uncharacterized helical membrane domain and a periplasmic facing soluble domain. The domains are linked by a helix that runs along the membrane surface interacting with the phospholipid head groups. Two helices located in a periplasmic loop between two transmembrane helices contain conserved charged residues and are implicated in substrate binding. Intrinsic fluorescence, limited proteolysis, and molecular dynamics studies suggest the protein may sample different conformational states to enable the binding of two very different- sized lipid substrates. These results provide insights into the mechanism of endotoxin modification and will aid a structure-guided rational drug design approach to treating multidrug-resistant bacterial infections.
Assuntos
Proteínas de Bactérias/química , Etanolaminofosfotransferase/química , Lipídeo A/química , Neisseria meningitidis/química , Periplasma/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Etanolaminofosfotransferase/genética , Etanolaminofosfotransferase/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Lipídeo A/metabolismo , Simulação de Dinâmica Molecular , Neisseria meningitidis/enzimologia , Periplasma/enzimologia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por SubstratoRESUMO
Automated chemical oligosaccharide synthesis is an attractive concept that has been successfully applied to a large number of target structures, but requires excess quantities of suitably protected and activated building blocks. Herein we demonstrate the use of biocatalysis to supply such reagents for automated synthesis. By using the promiscuous NmLgtB-B ß1-4 galactosyltransferase from Neisseria meningitidis we demonstrate fast and robust access to the LacNAc motif, common to many cell-surface glycans, starting from either lactose or sucrose as glycosyl donors. The enzymatic product was shown to be successfully incorporated as a complete unit into a tetrasaccharide target by automated assembly.
Assuntos
Automação , Galactosiltransferases/metabolismo , Neisseria meningitidis/enzimologia , Polissacarídeos/biossíntese , Configuração de Carboidratos , Polissacarídeos/químicaRESUMO
Polysialic acids (PSA) are important extracellular virulence factors of the human pathogens Neisseria meningitidis and Escherichia coli. The importance of these polysaccharides in virulence make the polysialyltransferases (PST) targets for therapeutic drugs and protein engineering to facilitate efficient vaccine production. Here, we have generated recombinant bovine nucleotide monophosphate kinase to facilitate steady state kinetic assays of the PST. We have characterized the N. meningitidis group C (NmC) PST kinetically, using substrate analogues to describe the polymerization reaction. We observed a decrease in Km as the length of the oligo-sialic acid acceptor was increased, indicating a tighter binding of longer oligomers. In addition, we observed a biphasic relationship between kcat and chain length, which can be attributed to a switch in the mechanism of transfer of sialic acid from distributive to processive as the chain length increased above six sialic acid units. Substitution of donor substrate with the analogue CMP-9-F-sialic acid had minimal effect on acceptor Km, but it decreased kcat 6-fold. We propose that this decrease in kcat is caused by a destabilization of the transition state and/or an increase affinity of the product due to presence of the fluoro substituent. The acceptor's hydrophobicity also plays a role in catalysis. The kinetic analysis of the NmC PST with hydrophobic aglycon acceptor substrates indicated that they bind tighter and are turned over at a faster rate than the α-2,9 polysialic acid substrates lacking the hydrophobic end. This finding suggests the presence of a secondary ligand binding site that tethers the acceptor substrate to the enzyme active site.