Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.666
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Mol Pain ; 20: 17448069241252654, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38658141

RESUMO

Painful Diabetic Neuropathy (PDN) is a common diabetes complication that frequently causes severe hyperalgesia and allodynia and presents treatment challenges. Mitochondrial-derived peptide (MOTS-c), a novel mitochondrial-derived peptide, has been shown to regulate glucose metabolism, insulin sensitivity, and inflammatory responses. This study aimed to evaluate the effects of MOTS-c in streptozocin (STZ)-induced PDN model and investigate the putative underlying mechanisms. We found that endogenous MOTS-c levels in plasma and spinal dorsal horn were significantly lower in STZ-treated mice than in control animals. Accordingly, MOTS-c treatment significantly improves STZ-induced weight loss, elevation of blood glucose, mechanical allodynia, and thermal hyperalgesia; however, these effects were blocked by dorsomorphin, an adenosine monophosphate-activated protein kinase (AMPK) inhibitor. In addition, MOTS-c treatment significantly enhanced AMPKα1/2 phosphorylation and PGC-1α expression in the lumbar spinal cord of PDN mice. Mechanistic studies indicated that MOTS-c significantly restored mitochondrial biogenesis, inhibited microglia activation, and decreased the production of pro-inflammatory factors, which contributed to the alleviation of pain. Moreover, MOTS-c decreased STZ-induced pain hypersensitivity in PDN mice by activating AMPK/PGC-1α signaling pathway. This provides the pharmacological and biological evidence for developing mitochondrial peptide-based therapeutic agents for PDN.


Assuntos
Neuropatias Diabéticas , Hiperalgesia , Mitocôndrias , Biogênese de Organelas , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Estreptozocina , Animais , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Neuropatias Diabéticas/tratamento farmacológico , Neuropatias Diabéticas/metabolismo , Neuropatias Diabéticas/patologia , Masculino , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por AMP/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Peptídeos/farmacologia , Camundongos , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Medula Espinal/patologia , Microglia/efeitos dos fármacos , Microglia/metabolismo
2.
Acta Neuropathol ; 147(1): 60, 2024 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526612

RESUMO

Preclinical studies indicate that diverse muscarinic receptor antagonists, acting via the M1 sub-type, promote neuritogenesis from sensory neurons in vitro and prevent and/or reverse both structural and functional indices of neuropathy in rodent models of diabetes. We sought to translate this as a potential therapeutic approach against structural and functional indices of diabetic neuropathy using oxybutynin, a muscarinic antagonist approved for clinical use against overactive bladder. Studies were performed using sensory neurons maintained in vitro, rodent models of type 1 or type 2 diabetes and human subjects with type 2 diabetes and confirmed neuropathy. Oxybutynin promoted significant neurite outgrowth in sensory neuron cultures derived from adult normal rats and STZ-diabetic mice, with maximal efficacy in the 1-100 nmol/l range. This was accompanied by a significantly enhanced mitochondrial energetic profile as reflected by increased basal and maximal respiration and spare respiratory capacity. Systemic (3-10 mg/kg/day s.c.) and topical (3% gel daily) oxybutynin reversed paw heat hypoalgesia in the STZ and db/db mouse models of diabetes and reversed paw tactile allodynia in STZ-diabetic rats. Loss of nerve profiles in the skin and cornea of db/db mice was also prevented by daily topical delivery of 3% oxybutynin for 8 weeks. A randomized, double-blind, placebo-controlled interventional trial was performed in subjects with type 2 diabetes and established peripheral neuropathy. Subjects received daily topical treatment with 3% oxybutynin gel or placebo for 6 months. The a priori designated primary endpoint, significant change in intra-epidermal nerve fibre density (IENFD) in skin biopsies taken before and after 20 weeks of treatments, was met by oxybutynin but not placebo. Secondary endpoints showing significant improvement with oxybutynin treatment included scores on clinical neuropathy, pain and quality of life scales. This proof-of-concept study indicates that muscarinic antagonists suitable for long-term use may offer a novel therapeutic opportunity for treatment of diabetic neuropathy. Trial registry number: NCT03050827.


Assuntos
Neuropatias Diabéticas , Antagonistas Muscarínicos , Animais , Humanos , Camundongos , Ratos , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Neuropatias Diabéticas/tratamento farmacológico , Neuropatias Diabéticas/complicações , Neuropatias Diabéticas/patologia , Ácidos Mandélicos , Antagonistas Muscarínicos/farmacologia , Antagonistas Muscarínicos/uso terapêutico , Qualidade de Vida , Receptores Muscarínicos , Diabetes Mellitus Tipo 1
3.
Cell Commun Signal ; 22(1): 368, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030571

RESUMO

BACKGROUND: Painful diabetic neuropathy (PDN) is closely linked to inflammation, which has been demonstrated to be associated with pyroptosis. Emerging evidence has implicated TANK-binding kinase 1 (TBK1) in various inflammatory diseases. However, it remains unknown whether activated TBK1 causes hyperalgesia via pyroptosis. METHODS: PDN mice model of type 1 or type 2 diabetic was induced by C57BL/6J or BKS-DB mice with Lepr gene mutation. For type 2 diabetes PDN model, TBK1-siRNA, Caspase-1 inhibitor Ac-YVAD-cmk or TBK1 inhibitor amlexanox (AMX) were delivered by intrathecal injection or intragastric administration. The pain threshold and plantar skin blood perfusion were evaluated through animal experiments. The assessments of spinal cord, dorsal root ganglion, sciatic nerve, plantar skin and serum included western blotting, immunofluorescence, ELISA, and transmission electron microscopy. RESULTS: In the PDN mouse model, we found that TBK1 was significantly activated in the spinal dorsal horn (SDH) and mainly located in microglia, and intrathecal injection of chemically modified TBK1-siRNA could improve hyperalgesia. Herein, we described the mechanism that TBK1 could activate the noncanonical nuclear factor κB (NF-κB) pathway, mediate the activation of NLRP3 inflammasome, trigger microglia pyroptosis, and ultimately induce PDN, which could be reversed following TBK1-siRNA injection. We also found that systemic administration of AMX, a TBK1 inhibitor, could effectively improve peripheral nerve injury. These results revealed the key role of TBK1 in PDN and that TBK1 inhibitor AMX could be a potential strategy for treating PDN. CONCLUSIONS: Our findings revealed a novel causal role of TBK1 in pathogenesis of PDN, which raises the possibility of applying amlexanox to selectively target TBK1 as a potential therapeutic strategy for PDN.


Assuntos
Neuropatias Diabéticas , Microglia , Proteínas Serina-Treonina Quinases , Piroptose , Animais , Masculino , Camundongos , Aminopiridinas/farmacologia , Aminopiridinas/uso terapêutico , Neuropatias Diabéticas/patologia , Modelos Animais de Doenças , Hiperalgesia/patologia , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Microglia/patologia , Microglia/efeitos dos fármacos , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Piroptose/efeitos dos fármacos , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/genética
4.
Muscle Nerve ; 70(4): 782-790, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39056231

RESUMO

INTRODUCTION/AIMS: Corneal confocal microscopy (CCM) detects small nerve fiber loss and correlates with skin biopsy findings in diabetic neuropathy. In chronic idiopathic axonal polyneuropathy (CIAP) this correlation is unknown. Therefore, we compared CCM and skin biopsy in patients with CIAP to healthy controls, patients with painful diabetic neuropathy (PDN) and diabetics without overt neuropathy (DM). METHODS: Participants with CIAP and suspected small fiber neuropathy (n = 15), PDN (n = 16), DM (n = 15), and healthy controls (n = 16) underwent skin biopsy and CCM testing. Inter-center intraclass correlation coefficients (ICC) were calculated for CCM parameters. RESULTS: Compared with healthy controls, patients with CIAP and PDN had significantly fewer nerve fibers in the skin (IENFD: 5.7 ± 2.3, 3.0 ± 1.8, 3.9 ± 1.5 fibers/mm, all p < .05). Corneal nerve parameters in CIAP (fiber density 23.8 ± 4.9 no./mm2, branch density 16.0 ± 8.8 no./mm2, fiber length 13.1 ± 2.6 mm/mm2) were not different from healthy controls (24.0 ± 6.8 no./mm2, 22.1 ± 9.7 no./mm2, 13.5 ± 3.5 mm/mm2, all p > .05). In patients with PDN, corneal nerve fiber density (17.8 ± 5.7 no./mm2) and fiber length (10.5 ± 2.7 mm/mm2) were reduced compared with healthy controls (p < .05). CCM results did not correlate with IENFD in CIAP patients. Inter-center ICC was 0.77 for fiber density and 0.87 for fiber length. DISCUSSION: In contrast to patients with PDN, corneal nerve parameters were not decreased in patients with CIAP and small nerve fiber damage. Therefore, CCM is not a good biomarker for small nerve fiber loss in CIAP patients.


Assuntos
Córnea , Neuropatias Diabéticas , Microscopia Confocal , Fibras Nervosas , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Córnea/inervação , Córnea/patologia , Fibras Nervosas/patologia , Neuropatias Diabéticas/patologia , Neuropatias Diabéticas/diagnóstico por imagem , Idoso , Adulto , Pele/inervação , Pele/patologia , Polineuropatias/patologia , Polineuropatias/diagnóstico por imagem
5.
Pharmacol Res ; 208: 107394, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39233055

RESUMO

Mitophagy, the cellular process of selectively eliminating damaged mitochondria, plays a crucial role in maintaining metabolic balance and preventing insulin resistance, both key factors in type 2 diabetes mellitus (T2DM) development. When mitophagy malfunctions in diabetic neuropathy, it triggers a cascade of metabolic disruptions, including reduced energy production, increased oxidative stress, and cell death, ultimately leading to various complications. Thus, targeting mitophagy to enhance the process may have emerged as a promising therapeutic strategy for T2DM and its complications. Notably, plant-derived compounds with ß-cell protective and mitophagy-stimulating properties offer potential as novel therapeutic agents. This review highlights the intricate mechanisms linking mitophagy dysfunction to T2DM and its complications, particularly neuropathy, elucidating potential therapeutic interventions for this debilitating disease.


Assuntos
Diabetes Mellitus Tipo 2 , Neuropatias Diabéticas , Mitofagia , Humanos , Mitofagia/efeitos dos fármacos , Neuropatias Diabéticas/metabolismo , Neuropatias Diabéticas/patologia , Animais , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Estresse Oxidativo
6.
BMC Endocr Disord ; 24(1): 83, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849768

RESUMO

OBJECTIVE: Meteorin-like (Metrnl), a secreted myokine, is a newly discovered neurotrophic factor. The aim of this study was to determine if there is a correlation between the Metrnl level and diabetic peripheral neuropathy (DPN). METHODS: The investigation was conducted on a sample of 80 patients with type 2 diabetes mellitus (T2DM) and 60 healthy controls. The T2DM patients were categorized into two subgroups based on skin biopsy: the DPN subgroup (n = 20) and the diabetes without neuropathy subgroup (n = 60). RESULTS: The T2DM groups had higher serum Metrnl concentrations compared with the controls. The serum Metrnl concentration was significantly lower in the DPN group than in T2DM patients without neuropathy. Logistic regression analysis demonstrated a notable correlation between serum Metrnl and DPN (OR: 0.997, 95% CI: 0.995-1.000, P < 0.05). Serum Metrnl level was negatively correlated with age and SBP after a simple logistic regression analysis. CONCLUSION: Serum Metrnl concentration is independently correlated with DPN.


Assuntos
Diabetes Mellitus Tipo 2 , Neuropatias Diabéticas , Humanos , Neuropatias Diabéticas/sangue , Neuropatias Diabéticas/diagnóstico , Neuropatias Diabéticas/patologia , Neuropatias Diabéticas/etiologia , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Masculino , Feminino , Pessoa de Meia-Idade , Estudos de Casos e Controles , Idoso , Biomarcadores/sangue , Adipocinas
7.
BMC Endocr Disord ; 24(1): 129, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075499

RESUMO

BACKGROUND: The white blood cell count to mean platelet volume ratio (WMR) is considered a promising inflammatory marker, and its recognition is increasing. Inflammation is closely related to metabolic diseases such as diabetes and its complications. However, there are currently no reports on the correlation between WMR and type 2 diabetic peripheral neuropathy (DPN). This study aims to explore the correlation between WMR and DPN in type 2 diabetes patients. By understanding this association, we hope to provide a theoretical basis for preventing DPN through the improvement of inflammatory responses. METHODS: This was a cross-sectional study involving 2515 patients with T2DM. Logistic regression analysis was conducted to assess the associations between WMR and DPN. Finally, the receiver operating characteristic curve (ROC curve) was employed to evaluate the predictive efficacy of WMR for DPN. RESULTS: Patients in higher WMR quartiles exhibited increased presence of DPN. Additionally, WMR remained significantly associated with a higher odds ratio (OR) of DPN (OR 4.777, 95% confidence interval [CI] 1.296-17.610, P < 0.05) after multivariate adjustment. Moreover, receiver operating characteristic curve analysis indicated that the optimal cutoff value for WMR in predicting DPN presence was 0.5395 (sensitivity: 65.40%; specificity: 41.80%; and area under the curve [AUC]: 0.540). CONCLUSIONS: In patients with T2DM, WMR was significantly increased in DPN and independently associated with an increased risk of DPN presence in Chinese patients. This suggests that WMR may serve as a useful and reliable biomarker of DPN, highlighting the importance of paying more attention to T2DM patients with high WMR to further prevent and reduce the development of DPN and related unfavorable health outcomes.


Assuntos
Diabetes Mellitus Tipo 2 , Neuropatias Diabéticas , Volume Plaquetário Médio , Humanos , Estudos Transversais , Neuropatias Diabéticas/sangue , Neuropatias Diabéticas/patologia , Neuropatias Diabéticas/etiologia , Neuropatias Diabéticas/epidemiologia , Masculino , Feminino , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/patologia , Pessoa de Meia-Idade , Contagem de Leucócitos , China/epidemiologia , Idoso , Biomarcadores/sangue , Prognóstico , Curva ROC , População do Leste Asiático
8.
Pathol Int ; 74(8): 438-453, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38888200

RESUMO

Currently, there are more than 10 million patients with diabetes mellitus in Japan. Therefore, the need to explore the pathogenesis of diabetes and the complications leading to its cure is becoming increasingly urgent. Pathological examination of pancreatic tissues from patients with type 2 diabetes reveals a decrease in the volume of beta cells because of a combination of various stresses. In human type 2 diabetes, islet amyloid deposition is a unique pathological change characterized by proinflammatory macrophage (M1) infiltration into the islets. The pathological changes in the pancreas with islet amyloid were different according to clinical factors, which suggests that type 2 diabetes can be further subclassified based on islet pathology. On the other hand, diabetic peripheral neuropathy is the most frequent diabetic complication. In early diabetic peripheral neuropathy, M1 infiltration in the sciatic nerve evokes oxidative stress or attenuates retrograde axonal transport, as clearly demonstrated by in vitro live imaging. Furthermore, islet parasympathetic nerve density and beta cell volume were inversely correlated in type 2 diabetic Goto-Kakizaki rats, suggesting that diabetic peripheral neuropathy itself may contribute to the decrease in beta cell volume. These findings suggest that the pathogenesis of diabetes mellitus and diabetic peripheral neuropathy may be interrelated.


Assuntos
Diabetes Mellitus Tipo 2 , Neuropatias Diabéticas , Neuropatias Diabéticas/patologia , Neuropatias Diabéticas/etiologia , Humanos , Animais , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/patologia , Ratos , Células Secretoras de Insulina/patologia , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/patologia , Estresse Oxidativo , Pâncreas/patologia
9.
Endocr Res ; 49(1): 46-58, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37950485

RESUMO

Diabetes mellitus is a multifactorial metabolic disease, of which type 2 diabetes (T2D) is one of the most common. The complications of diabetes are far more harmful than diabetes itself. Type 2 diabetes complications include diabetic nephropathy (DN), diabetic heart disease, diabetic foot ulcers (DFU), diabetic peripheral neuropathy (DPN), and diabetic retinopathy (DR) et al. Many animal models have been developed to study the pathogenesis of T2D and discover an effective strategy to treat its consequences. In this sense, it is crucial to choose the right animal model for the corresponding diabetic complication. This paper summarizes and classifies the animal modeling approaches to T2D complications and provides a comprehensive review of their advantages and disadvantages. It is hopeful that this paper will provide theoretical support for animal trials of diabetic complications.


Assuntos
Diabetes Mellitus Tipo 2 , Pé Diabético , Nefropatias Diabéticas , Neuropatias Diabéticas , Animais , Diabetes Mellitus Tipo 2/complicações , Pé Diabético/complicações , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/metabolismo , Neuropatias Diabéticas/etiologia , Neuropatias Diabéticas/metabolismo , Neuropatias Diabéticas/patologia , Modelos Animais , Fatores de Risco
10.
Int J Mol Sci ; 25(19)2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39409114

RESUMO

Diabetic peripheral neuropathy (DPN) is a prevalent complication of diabetes that affects a significant proportion of diabetic patients worldwide. Although the pathogenesis of DPN involves axonal atrophy and demyelination, the exact mechanisms remain elusive. Current research has predominantly focused on neuronal damage, overlooking the potential contributions of Schwann cells, which are the predominant glial cells in the peripheral nervous system. Schwann cells play a critical role in neurodevelopment, neurophysiology, and nerve regeneration. This review highlights the emerging understanding of the involvement of Schwann cells in DPN pathogenesis. This review explores the potential role of Schwann cell plasticity as an underlying cellular and molecular mechanism in the development of DPN. Understanding the interplay between Schwann cell plasticity and diabetes could reveal novel strategies for the treatment and management of DPN.


Assuntos
Plasticidade Celular , Neuropatias Diabéticas , Células de Schwann , Células de Schwann/metabolismo , Células de Schwann/patologia , Humanos , Neuropatias Diabéticas/patologia , Neuropatias Diabéticas/etiologia , Neuropatias Diabéticas/metabolismo , Animais , Regeneração Nervosa
11.
Int J Mol Sci ; 25(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39125694

RESUMO

Diabetic neuropathy (DN) is a common complication of diabetes, affecting over 50% of patients, leading to significant pain and a burden. Currently, there are no effective treatments available. Cell death is considered a key factor in promoting the progression of DN. This article reviews how cell death is initiated in DN, emphasizing the critical roles of oxidative stress, mitochondrial dysfunction, inflammation, endoplasmic reticulum stress, and autophagy. Additionally, we thoroughly summarize the mechanisms of cell death that may be involved in the pathogenesis of DN, including apoptosis, autophagy, pyroptosis, and ferroptosis, among others, as well as potential therapeutic targets offered by these death mechanisms. This provides potential pathways for the prevention and treatment of diabetic neuropathy in the future.


Assuntos
Morte Celular , Neuropatias Diabéticas , Estresse Oxidativo , Humanos , Neuropatias Diabéticas/patologia , Neuropatias Diabéticas/terapia , Neuropatias Diabéticas/metabolismo , Neuropatias Diabéticas/etiologia , Animais , Autofagia , Estresse do Retículo Endoplasmático , Apoptose , Ferroptose , Mitocôndrias/metabolismo , Mitocôndrias/patologia
12.
Bull Exp Biol Med ; 177(4): 406-411, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39259466

RESUMO

The dynamics of nephropathy development in rats with type 2 diabetes mellitus, caused by a high-fat diet and the streptozotocin administration (25 mg/kg), and metabolic syndrome, caused by addition of 20% fructose solution to the diet, was evaluated during the experiment. Models with moderate severity of metabolic changes without significant changes in body weight were obtained after 24 weeks. To study neuropathy severity, the method of electroneuromyography was used; the velocities of motor and sensory excitation propagation along the caudal nerve fibers were measured. In modeled diabetes mellitus against the background of hyperglycemia, a marked decrease in motor and sensory propagation rates was observed, and an increase in the response durations was noted from week 12 to week 24, indicating pronounced neuropathy. In the fructose model, the motor response duration increased from week 12, which possibly indicates the development of peripheral neuropathy.


Assuntos
Diabetes Mellitus Experimental , Neuropatias Diabéticas , Síndrome Metabólica , Estreptozocina , Animais , Síndrome Metabólica/metabolismo , Síndrome Metabólica/fisiopatologia , Síndrome Metabólica/patologia , Ratos , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Masculino , Neuropatias Diabéticas/fisiopatologia , Neuropatias Diabéticas/patologia , Neuropatias Diabéticas/etiologia , Neuropatias Diabéticas/metabolismo , Estreptozocina/toxicidade , Diabetes Mellitus Tipo 2/fisiopatologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Ratos Wistar , Frutose , Dieta Hiperlipídica/efeitos adversos , Doenças do Sistema Nervoso Periférico/fisiopatologia , Doenças do Sistema Nervoso Periférico/patologia , Doenças do Sistema Nervoso Periférico/etiologia , Modelos Animais de Doenças , Condução Nervosa/fisiologia
13.
Glia ; 71(4): 1099-1119, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36579750

RESUMO

Diabetes patients with painful diabetic neuropathy (PDN) show severe spinal atrophy, suggesting pathological changes of the spinal cord contributes to central sensitization. However, the cellular changes and underlying molecular mechanisms within the diabetic spinal cord are less clear. By using a rat model of type 1 diabetes (T1D), we noted an extensive and irreversible spinal astrocyte degeneration at an early stage of T1D, which is highly associated with the chronification of PDN. Molecularly, acetylation of astrocytic signal transducer and activator of transcription-3 (STAT3) that is essential for maintaining the homeostatic astrocytes population was significantly impaired in the T1D model, resulting in a dramatic loss of spinal astrocytes and consequently promoting pain hypersensitivity. Mechanistically, class IIa histone deacetylase, HDAC5 were aberrantly activated in spinal astrocytes of diabetic rats, which promoted STAT3 deacetylation by direct protein-protein interactions, leading to the PDN phenotypes. Restoration of STAT3 signaling or inhibition of HDAC5 rescued astrocyte deficiency and attenuated PDN in the T1D model. Our work identifies the inhibitory axis of HDAC5-STAT3 induced astrocyte deficiency as a key mechanism underlying the pathogenesis of the diabetic spinal cord that paves the way for potential therapy development for PDN.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Neuropatias Diabéticas , Animais , Ratos , Acetilação , Astrócitos/patologia , Neuropatias Diabéticas/patologia , Histona Desacetilases/genética
14.
Glia ; 71(9): 2196-2209, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37178056

RESUMO

Schwann cells (SCs) form myelin and provide metabolic support for axons, and are essential for normal nerve function. Identification of key molecules specific to SCs and nerve fibers may provide new therapeutic targets for diabetic peripheral neuropathy (DPN). Argonaute2 (Ago2) is a key molecular player that mediates the activity of miRNA-guided mRNA cleavage and miRNA stability. Our study found that Ago2 knockout (Ago2-KO) in proteolipid protein (PLP) lineage SCs in mice resulted in a significant reduction of nerve conduction velocities and impairments of thermal and mechanical sensitivities. Histopathological data revealed that Ago2-KO significantly induced demyelination and neurodegeneration. When DPN was induced in both wild-type and Ago2-KO mice, Ago2-KO mice exhibited further decreased myelin thickness and exacerbated neurological outcomes compared with wild-type mice. Deep sequencing analysis of Ago2 immunoprecipitated complexes showed that deregulated miR-206 in Ago2-KO mice is highly related to mitochondrial function. In vitro data showed that knockdown of miR-200 induced mitochondrial dysfunction and apoptosis in SCs. Together, our data suggest that Ago2 in SCs is essential to maintain peripheral nerve function while ablation of Ago2 in SCs exacerbates SC dysfunction and neuronal degeneration in DPN. These findings provide new insight into the molecular mechanisms of DPN.


Assuntos
Diabetes Mellitus , Neuropatias Diabéticas , MicroRNAs , Camundongos , Animais , Neuropatias Diabéticas/genética , Neuropatias Diabéticas/tratamento farmacológico , Neuropatias Diabéticas/patologia , Células de Schwann/metabolismo , Bainha de Mielina/metabolismo , Axônios/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia
15.
Mol Med ; 29(1): 98, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37464341

RESUMO

BACKGROUND: Diabetic peripheral neuropathy (DPN) is a major complication of diabetes. This study aimed to investigate the therapeutic effects and molecular mechanisms of Compound Qiying Granules (CQYG) for DPN. METHODS: Rats and RSC96 cells of DPN models were established to evaluate the therapeutic effects of CQYG. Then the morphology and apoptotic changes of sciatic nerves were detected. Further, tandem mass tag based quantitative proteomics technology was used to identify differentially expressed proteins (DEPs) and the underlying molecular mechanisms. Protein expression of key signaling pathways was also detected. RESULTS: CQYG treatment significantly improved blood glucose and oxidative stress levels, and further reduced nerve fiber myelination lesions, denervation, and apoptosis in DPN rats. Further, 2176 DEPs were found in CQYG treated DPN rats. Enrichment analysis showed that protein processing in the endoplasmic reticulum (ER), and apoptosis were all inhibited after CQYG treatment. Next, CQYG treatment reduced inflammatory factor expression, mitochondrial damage, and apoptosis in RSC96 cells which induced by high glucose. Transmission electron microscopy results found that CQYG treatment improved the morphology of nerve myelin, mitochondria, and ER. CQYG treatment decreased ER stress and apoptosis pathway proteins that were highly expressed in DPN models. In addition, we also predicted the potential targets of CQYG in DEPs. CONCLUSIONS: CQYG exerts neuroprotective effects in experimental diabetic neuropathy through anti-ER stress and anti-apoptosis.


Assuntos
Diabetes Mellitus , Neuropatias Diabéticas , Ratos , Animais , Neuropatias Diabéticas/tratamento farmacológico , Neuropatias Diabéticas/patologia , Ratos Sprague-Dawley , Estresse do Retículo Endoplasmático/fisiologia , Bainha de Mielina , Transdução de Sinais , Nervo Isquiático
16.
Ann Neurol ; 91(6): 821-833, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35285061

RESUMO

OBJECTIVE: Although the microenvironment for peripheral nerve regeneration is permissive, such a mechanism is defective in diabetes, and the molecular mediators remain elusive. [Correction added on May 11, 2022, after first online publication: In the preceding sentence, "is ok" was changed to "is defective".] This study aimed to (1) investigate the relationship between skin innervation and collagen pathology in diabetic neuropathy and to (2) clarify the molecular alterations that occur in response to hyperglycemia and their effects on axon regeneration. METHODS: We addressed this issue using two complementary systems: (1) human skin from patients with diabetic neuropathy and to (2) a coculture model of human dermal fibroblasts (HDFs) with rat dorsal root ganglia neurons in the context of intrinsic neuronal factor and extrinsic microenvironmental collagen and its biosynthetic pathways. RESULTS: In diabetic neuropathy, the skin innervation of intraepidermal nerve fiber density (IENFd), a measure of sensory nerve degeneration, was reduced with similar expression of a growth associated protein 43, a marker of nerve regeneration. In contrast, the content and packing of collagen in the diabetic skin became more rigid than the control skin. Sec31a, a protein that regulates the collagen biosynthetic pathway, was upregulated and inversely correlated with IENFd. In the cell model, activated HDFs exposed to high-glucose medium enhanced the expression of Sec31a and collagen I through the activation of transforming growth factor ß, a profibrotic molecule. Sec31a upregulation impaired neurite outgrowth. This effect was reversed by silencing Sec31a expression and neurite outgrowth was resumed. INTERPRETATION: The current study provides evidence that Sec31a plays a key role in inhibiting nerve regeneration in diabetic neuropathy. ANN NEUROL 2022;91:821-833.


Assuntos
Diabetes Mellitus Experimental , Neuropatias Diabéticas , Animais , Axônios/patologia , Diabetes Mellitus Experimental/patologia , Neuropatias Diabéticas/patologia , Gânglios Espinais/patologia , Humanos , Regeneração Nervosa , Ratos , Pele/patologia
17.
Diabet Med ; 40(1): e14890, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35616949

RESUMO

AIMS: The pathogenesis of diabetic peripheral neuropathy (DPN) is complex, and its treatment is extremely challenging. MicroRNA-7a-5p (miR-7a-5p) has been widely reported to alleviate apoptosis and oxidative stress in various diseases. This study aimed to investigate the mechanism of miR-7a-5p in DPN. METHODS: DPN cell model was constructed with high-glucose-induced RSC96 cells. Cell apoptosis and viability were detected by flow cytometry analysis and cell counting kit-8 (CCK-8) assay respectively. The apoptosis and Jun N-terminal kinase (JNK)/c-JUN signalling pathway-related proteins expression were detected by Western blotting. The intracellular calcium content and oxidative stress levels were detected by flow cytometry and reagent kits. Mitochondrial membrane potential was evaluated by tetrechloro-tetraethylbenzimidazol carbocyanine iodide (JC-1) staining. The targeting relationship between miR-7a-5p and voltage-dependent anion-selective channel protein 1 (VDAC1) was determined by RNA pull-down assay and dual-luciferase reporter gene assay. The streptozotocin (STZ) rat model was constructed to simulate DPN in vivo. The paw withdrawal mechanical threshold (PTW) was measured by Frey capillary line, and the motor nerve conduction velocity (MNCV) was measured by electromyography. RESULTS: MiR-7a-5p expression was decreased, while VDAC1 expression was increased in HG-induced RSC96 cells and STZ rats. In HG-induced RSC96 cells, miR-7a-5p overexpression promoted cell proliferation, inhibited apoptosis, down-regulated calcium release, improved mitochondrial membrane potential and repressed oxidative stress response. MiR-7a-5p negatively regulated VDAC1 expression. VDAC1 knockdown improved cell proliferation activity, suppressed cell apoptosis and mitochondrial dysfunction by inhibiting JNK/c-JUN pathway activation. MiR-7a-5p overexpression raised PTW, restored MNCV and reduced oxidative stress levels and nerve cell apoptosis in STZ rats. CONCLUSION: MiR-7a-5p overexpression ameliorated mitochondrial dysfunction and inhibited apoptosis in DPN by regulating VDAC1/JNK/c-JUN pathway.


Assuntos
Diabetes Mellitus Experimental , Neuropatias Diabéticas , MicroRNAs , Animais , Ratos , Apoptose , Cálcio/efeitos adversos , Cálcio/metabolismo , Neuropatias Diabéticas/genética , Neuropatias Diabéticas/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Estreptozocina , Canal de Ânion 1 Dependente de Voltagem
18.
Acta Pharmacol Sin ; 44(12): 2388-2403, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37580494

RESUMO

Diabetic peripheral neuropathy (DPN) is a common complication of diabetes, which has yet no curable medication. Neuroinflammation and mitochondrial dysfunction are tightly linked to DPN pathology. G-protein-coupled receptor 40 (GPR40) is predominantly expressed in pancreatic ß-cells, but also in spinal dorsal horn and dorsal root ganglion (DRG) neurons, regulating neuropathic pain. We previously have reported that vincamine (Vin), a monoterpenoid indole alkaloid extracted from Madagascar periwinkle, is a GPR40 agonist. In this study, we evaluated the therapeutic potential of Vin in ameliorating the DPN-like pathology in diabetic mice. Both STZ-induced type 1 (T1DM) and db/db type 2 diabetic (T2DM) mice were used to establish late-stage DPN model (DPN mice), which were administered Vin (30 mg·kg-1·d-1, i.p.) for 4 weeks. We showed that Vin administration did not lower blood glucose levels, but significantly ameliorated neurological dysfunctions in DPN mice. Vin administration improved the blood flow velocities and blood perfusion areas of foot pads and sciatic nerve tissues in DPN mice. We demonstrated that Vin administration protected against sciatic nerve myelin sheath injury and ameliorated foot skin intraepidermal nerve fiber (IENF) density impairment in DPN mice. Moreover, Vin suppressed NLRP3 inflammasome activation through either ß-Arrestin2 or ß-Arrestin2/IκBα/NF-κB signaling, improved mitochondrial dysfunction through CaMKKß/AMPK/SIRT1/PGC-1α signaling and alleviated oxidative stress through Nrf2 signaling in the sciatic nerve tissues of DPN mice and LPS/ATP-treated RSC96 cells. All the above-mentioned beneficial effects of Vin were abolished by GPR40-specific knockdown in dorsal root ganglia and sciatic nerve tissues. Together, these results support that pharmacological activation of GPR40 as a promising therapeutic strategy for DPN and highlight the potential of Vin in the treatment of this disease.


Assuntos
Diabetes Mellitus Experimental , Neuropatias Diabéticas , Vincamina , Animais , Camundongos , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/patologia , Neuropatias Diabéticas/tratamento farmacológico , Neuropatias Diabéticas/patologia , Alcaloides Indólicos/química , Alcaloides Indólicos/farmacologia , Monoterpenos/química , Monoterpenos/farmacologia , Receptores Acoplados a Proteínas G , Nervo Isquiático/patologia , Transdução de Sinais , Vincamina/farmacologia , Vincamina/uso terapêutico
19.
Int J Mol Sci ; 24(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37047786

RESUMO

The two-hit model has been proposed to explain the effects of diabetes on mothers who are already in a putative subclinical damaged state and then undergo neuronal damage during the delivery process. However, the anatomical and pathophysiological mechanisms are not well understood. Our overarching hypothesis in this review paper is that pregnant women who are diabetic have a damaged peripheral nervous system, constituting the "first hit" hypothesis. The delivery process itself-the "second hit"-can produce neurological damage to the mother. Women with diabetes mellitus (DM) are at risk for neurological damage during both hits, but the cumulative effects of both "hits" pose a greater risk of neurological damage and pathophysiological changes during delivery. In our analysis, we introduce the different steps of our concept paper. Subsequently, we describe each of the topics. First, we outline the mechanisms by which diabetes acts as a detrimental variable in neuropathy by focusing on the most common form of diabetic neuropathy, diabetic distal symmetrical polyneuropathy, also known as distal sensorimotor neuropathy. The possible role of macrosomia in causing diabetic neuropathy and obstetric neurological injury is discussed. Second, we describe how vaginal delivery can cause various obstetrical neurological syndromes and pathophysiological changes. Third, we highlight the risk of obstetric neuropathy and discuss anatomical sites at which lesions may occur, including lesions during delivery. Fourth, we characterize the pathophysiological pathways involved in the causation of diabetic neuropathy. Finally, we highlight diabetic damage to sensory vs. motor nerves, including how hyperglycemia causes different types of damage depending on the location of nerve cell bodies.


Assuntos
Diabetes Mellitus , Neuropatias Diabéticas , Hiperglicemia , Gravidez , Humanos , Feminino , Neuropatias Diabéticas/patologia
20.
Int J Mol Sci ; 24(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37175987

RESUMO

Neuropathic pain is a frequent feature of diabetic peripheral neuropathy (DPN) and small fiber neuropathy (SFN). Resolving the genetic architecture of these painful neuropathies will lead to better disease management strategies, counselling and intervention. Our aims were to profile ten sodium channel genes (SCG) expressed in a nociceptive pathway in painful and painless DPN and painful and painless SFN patients, and to provide a perspective for clinicians who assess patients with painful peripheral neuropathy. Between June 2014 and September 2016, 1125 patients with painful-DPN (n = 237), painless-DPN (n = 309), painful-SFN (n = 547) and painless-SFN (n = 32), recruited in four different centers, were analyzed for SCN3A, SCN7A-SCN11A and SCN1B-SCN4B variants by single molecule Molecular inversion probes-Next Generation Sequence. Patients were grouped based on phenotype and the presence of SCG variants. Screening of SCN3A, SCN7A-SCN11A, and SCN1B-SCN4B revealed 125 different (potential) pathogenic variants in 194 patients (17.2%, n = 194/1125). A potential pathogenic variant was present in 18.1% (n = 142/784) of painful neuropathy patients vs. 15.2% (n = 52/341) of painless neuropathy patients (17.3% (n = 41/237) for painful-DPN patients, 14.9% (n = 46/309) for painless-DPN patients, 18.5% (n = 101/547) for painful-SFN patients, and 18.8% (n = 6/32) for painless-SFN patients). Of the variants detected, 70% were in SCN7A, SCN9A, SCN10A and SCN11A. The frequency of SCN9A and SCN11A variants was the highest in painful-SFN patients, SCN7A variants in painful-DPN patients, and SCN10A variants in painless-DPN patients. Our findings suggest that rare SCG genetic variants may contribute to the development of painful neuropathy. Genetic profiling and SCG variant identification should aid in a better understanding of the genetic variability in patients with painful and painless neuropathy, and may lead to better risk stratification and the development of more targeted and personalized pain treatments.


Assuntos
Diabetes Mellitus , Neuropatias Diabéticas , Neuralgia , Neuropatia de Pequenas Fibras , Humanos , Neuralgia/patologia , Neuropatias Diabéticas/patologia , Canais de Sódio , Canal de Sódio Disparado por Voltagem NAV1.7/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA