Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Bioconjug Chem ; 35(7): 922-933, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38654427

RESUMO

Bioorthogonal chemistry has gained widespread use in the study of many biological systems of interest, including protein prenylation. Prenylation is a post-translational modification, in which one or two 15- or 20-carbon isoprenoid chains are transferred onto cysteine residues near the C-terminus of a target protein. The three main enzymes─protein farnesyltransferase (FTase), geranylgeranyl transferase I (GGTase I), and geranylgeranyl transferase II (GGTase II)─that catalyze this process have been shown to tolerate numerous structural modifications in the isoprenoid substrate. This feature has previously been exploited to transfer an array of farnesyl diphosphate analogues with a range of functionalities, including an alkyne-containing analogue for copper-catalyzed bioconjugation reactions. Reported here is the synthesis of an analogue of the isoprenoid substrate embedded with norbornene functionality (C10NorOPP) that can be used for an array of applications, ranging from metabolic labeling to selective protein modification. The probe was synthesized in seven steps with an overall yield of 7% and underwent an inverse electron demand Diels-Alder (IEDDA) reaction with tetrazine-containing tags, allowing for copper-free labeling of proteins. The use of C10NorOPP for the study of prenylation was explored in the metabolic labeling of prenylated proteins in HeLa, COS-7, and astrocyte cells. Furthermore, in HeLa cells, these modified prenylated proteins were identified and quantified using label-free quantification (LFQ) proteomics with 25 enriched prenylated proteins. Additionally, the unique chemistry of C10NorOPP was utilized for the construction of a multiprotein-polymer conjugate for the targeted labeling of cancer cells. That construct was prepared using a combination of norbornene-tetrazine conjugation and azide-alkyne cycloaddition, highlighting the utility of the additional degree of orthogonality for the facile assembly of new protein conjugates with novel structures and functions.


Assuntos
Química Click , Farnesiltranstransferase , Norbornanos , Prenilação de Proteína , Norbornanos/química , Farnesiltranstransferase/metabolismo , Humanos , Animais
2.
Chemistry ; 30(34): e202400322, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629212

RESUMO

This study presents the synthesis and characterization of two fluorescent norbornadiene (NBD) photoswitches, each incorporating two conjugated pyrene units. Expanding on the limited repertoire of reported photoswitchable fluorescent NBDs, we explore their properties with a focus on applications in bioimaging of amyloid beta (Aß) plaques. While the fluorescence emission of the NBD decreases upon photoisomerization, aligning with what has been previously reported, for the first time we observed luminescence after irradiation of the quadricyclane (QC) isomer. We deduce how the observed emission is induced by photoisomerization to the excited state of the parent isomer (NBD) which is then the emitting species. Thorough characterizations including NMR, UV-Vis, fluorescence, X-ray structural analysis and density functional theory (DFT) calculations provide a comprehensive understanding of these systems. Notably, one NBD-QC system exhibits exceptional durability. Additionally, these molecules serve as effective fluorescent stains targeting Aß plaques in situ, with observed NBD/QC switching within the plaques. Molecular docking simulations explore NBD interactions with amyloid, unveiling novel binding modes. These insights mark a crucial advancement in the comprehension and design of future photochromic NBDs for bioimaging applications and beyond, emphasizing their potential in studying and addressing protein aggregates.


Assuntos
Peptídeos beta-Amiloides , Corantes Fluorescentes , Pirenos , Corantes Fluorescentes/química , Pirenos/química , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Humanos , Simulação de Acoplamento Molecular , Norbornanos/química , Placa Amiloide/química , Placa Amiloide/diagnóstico por imagem , Teoria da Densidade Funcional , Isomerismo , Espectrometria de Fluorescência
3.
Biomacromolecules ; 25(5): 2875-2889, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38554086

RESUMO

We present a novel group of tryptophan (Trp)-based fluorescent polymeric probes synthesized via ring-opening metathesis polymerization (ROMP) of Trp-derived norbornene monomers. These probes, in mono- and disubstituted forms, incorporate amide and ester anchoring groups. The quantity of Trp substituents did not affect fluorescence selectivity but influenced quenching percentage. Poly-diamide-Trp, Poly-monoamide-Trp, Poly-diester-Trp, and Poly-monoester-Trp probes displayed selective detection of Fe2+ and Fe3+ ions with fluorescence on-off characteristics. Poly-diamide-Trp and Poly-monoamide-Trp exhibited a limit of detection (LOD) for Fe2+ and Fe3+ ions of 0.86-11.32 µM, while Poly-diester-Trp and Poly-monoester-Trp showed higher LODs (21.8-108.7 µM). These probes exhibited high selectivity over Fe2+, a crucial metal ion in the body known for its redox properties causing oxidative stress and cell damage. Cell cytotoxicity tests in various cell types confirmed biocompatibility. Additionally, Poly-diamide-Trp displayed excellent cell permeability and iron ion detection in EA.hy926 cells, suggesting potential for bioimaging and clinical applications.


Assuntos
Corantes Fluorescentes , Ferro , Plásticos , Triptofano , Corantes Fluorescentes/química , Triptofano/química , Triptofano/análise , Humanos , Ferro/química , Ferro/análise , Plásticos/química , Biomarcadores/análise , Polímeros/química , Norbornanos/química
4.
Chem Biodivers ; 21(6): e202302033, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38616167

RESUMO

To explore more potential fungicides with new scaffolds, thirty-seven norbornene carboxamide/sulfonamide derivatives were designed, synthesized, and assayed for inhibitory activity against six plant pathogenic fungi and oomycetes. The preliminary antifungal assay suggested that the title derivatives showed moderate to good antifungal activity against six plant pathogens. Especially, compound 6 e presented excellent in vitro antifungal activity against Sclerotinia sclerotiorum (EC50=0.71 mg/L), which was substantially stronger than pydiflumetofen. In vivo antifungal assay indicated 6 e displayed prominent protective and curative effects on rape leaves infected by S. sclerotiorum. The preliminary mechanism research displayed that 6 e could damage the surface morphology and inhibit the sclerotia formation of S. sclerotiorum. In addition, the in vitro enzyme inhibition bioassay indicated that 6 e displayed pronounced laccase inhibition activity (IC50=0.63 µM), much stronger than positive control cysteine. Molecular docking elucidated the binding modes between 6 e and laccase. The bioassay results and mechanism investigation demonstrated that this class of norbornene carboxamide/sulfonamide derivatives could be promising laccase inhibitors for novel fungicide development.


Assuntos
Lacase , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Norbornanos , Sulfonamidas , Sulfonamidas/química , Sulfonamidas/farmacologia , Sulfonamidas/síntese química , Lacase/metabolismo , Lacase/antagonistas & inibidores , Lacase/química , Relação Estrutura-Atividade , Norbornanos/química , Norbornanos/farmacologia , Norbornanos/síntese química , Antifúngicos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Fungicidas Industriais/farmacologia , Fungicidas Industriais/síntese química , Fungicidas Industriais/química , Ascomicetos/efeitos dos fármacos , Estrutura Molecular , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Relação Dose-Resposta a Droga
5.
Int J Mol Sci ; 25(10)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38791607

RESUMO

This work investigated the cocatalytic activity of recently prepared guanidinium salts containing an oxanorbornane subunit in an (S)-proline-catalyzed aldol reaction. The activity was interpreted by the diastereoselectivity of the reaction (anti/syn ratio) and for the most interesting polycyclic guanidinium salt, the enantioselectivity of the reaction was determined. The results indicated a negative impact on the oxanorbornane unit if present as the flexible substituent. For most of the tested aldehydes, the best cocatalysts provided enantioselectivities above 90% and above 95% at room temperature and 0 °C, respectively, culminating in >99.5% for 4-chloro- and 2-nitrobenzaldehyde as the substrate. The barriers for forming four possible enantiomers were calculated and the results for two anti-enantiomers are qualitatively consistent with the experiment. Obtained results suggest that the representatives of furfurylguanidinium and rigid polycyclic oxanorbornane-substituted guanidinium salts are good lead structures for developing new cocatalysts by tuning the chemical space around the guanidine moiety.


Assuntos
Guanidinas , Prolina , Catálise , Prolina/química , Guanidinas/química , Estereoisomerismo , Aldeídos/química , Norbornanos/química , Guanidina/química , Estrutura Molecular
6.
Int J Mol Sci ; 25(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38928235

RESUMO

The reaction mechanism of tthe formation of azomethine ylides from isatins and sarcosine is addressed in the literature in a general manner. This computational study aims to explore the mechanistic steps for this reaction in detail and to assess the reactivity of formed ylide in a 1,3-dipolar cycloaddition reaction with 7-oxabenzonorbornadiene. For this purpose, density functional theory (DFT) calculations at the M06-2X(SMD,EtOH)/6-31G(d,p) level were employed. The results indicate that CO2 elimination is the rate-determining step, the activation barrier for 1,3-dipolar cycloaddition is lower, and the formed ylide will readily react with dipolarophiles. The substitution of isatine with electron-withdrawal groups slightly decreases the activation barrier for ylide formation.


Assuntos
Compostos Azo , Reação de Cicloadição , Sarcosina , Tiossemicarbazonas , Tiossemicarbazonas/química , Compostos Azo/química , Sarcosina/química , Sarcosina/análogos & derivados , Isatina/química , Modelos Moleculares , Teoria da Densidade Funcional , Norbornanos/química , Estrutura Molecular
7.
Angew Chem Int Ed Engl ; 63(20): e202320247, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38501674

RESUMO

Protein O-GlcNAcylation is a ubiquitous posttranslational modification of cytosolic and nuclear proteins involved in numerous fundamental regulation processes. Investigation of O-GlcNAcylation by metabolic glycoengineering (MGE) has been carried out for two decades with peracetylated N-acetylglucosamine (GlcNAc) and N-acetylgalactosamine derivatives modified with varying reporter groups. Recently, it has been shown that these derivatives can result in non-specific protein labeling termed S-glyco modification. Here, we report norbornene-modified GlcNAc derivatives with a protected phosphate at the anomeric position and their application in MGE. These derivatives overcome two limitations of previously used O-GlcNAc reporters. They do not lead to detectable S-glyco modification, and they efficiently react in the inverse-electron-demand Diels-Alder (IEDDA) reaction, which can be carried out even within living cells. Using a derivative with an S-acetyl-2-thioethyl-protected phosphate, we demonstrate the protein-specific detection of O-GlcNAcylation of several proteins and the protein-specific imaging of O-GlcNAcylation inside living cells by Förster resonance energy transfer (FRET) visualized by confocal fluorescence lifetime imaging microscopy (FLIM).


Assuntos
Acetilglucosamina , Glicoproteínas , Imagem Molecular , Norbornanos , Processamento de Proteína Pós-Traducional , Glicosilação , Engenharia Metabólica , Norbornanos/química , Acetilglucosamina/análogos & derivados , Acetilglucosamina/química , Transferência Ressonante de Energia de Fluorescência , Glicoproteínas/análise , Humanos , Células HeLa
8.
Org Lett ; 26(12): 2495-2499, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38506235

RESUMO

The selective functionalization of remote C-H bonds in free primary amines holds significant promise for the late-stage diversification of pharmaceuticals. However, to date, the direct functionalization of the meta position of amine substrates lacking additional directing groups remains underexplored. In this Letter, we present a successful meta-C-H arylation of free primary amine derivatives using aryl iodides, resulting in synthetically valuable yields. This meta-selective C-H functionalization is achieved through a sequence involving native amino-directed Pd-catalyzed seven-membered cyclometalation, followed by the utilization of a norbornene-type transient mediator.


Assuntos
Aminas , Paládio , Aminas/química , Paládio/química , Estrutura Molecular , Catálise , Norbornanos/química
9.
J Chromatogr A ; 1727: 464969, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38776606

RESUMO

Polymerization of 5-n-alkyl-substituted 2-norbornenes synthesized a series of polymers having the same structure of the main polymer chain, but differing in the length of the alkyl substituent (up to 14 methylene units). The obtained polymers were studied by the capillary IGC method as a stationary phase during separation of a mixture of normal hydrocarbons C6-C10. Retention data in the form of a logarithm of the retention factor lnk were correlated with the size of the sorbate (via the carbon number of the alkane ZS) and with the size of the n-alkyl substituent in the polymer chain (via the carbon number of the polymer ZP). Correlation of lnk vs. ZS turned out to be linear for all polymers, but the angle of the slope of linear dependence dlnk/dZS increases with a decrease in the carbon number of the polymer ZP. Dependency of dlnk/dZS vs. ZP is not linear and indicates an increase in the retention of sorbates by the stationary phase with a decrease in the length of the alkyl substituent in the polymer chain. The correlation of the retention of lnk analytes with the carbon number of the polymer ZP is not linear and indicates an increase in the sorbate/sorbent interaction with a decrease in the length of the alkyl substituent. Inflection points were found at both correlations with ZP in the region of ZP = 8, which indicates a possible change in the sorption mechanism or a change in the phase state of the polymer. In polymer chemistry, the phase state of a polymer is characterized by the glass transition temperature Tg, the dependence of which vs. ZP turned out to be nonlinear with an inflection point at ZP ∼11. Thus, a decrease in the length of the alkyl substituent leads to the transition of the polymer from a rubbery state to a glassy one at ZP ∼ 11, which in turn, with a further decrease in the carbon number of the polymer to ZP ∼ 8, causes a change in the sorption mechanism from bulk sorption to surface sorption. The change in the sorption mechanism is accompanied by an increase in the interaction of the sorbate with the stationary phase, which manifests itself both in an increase in the retention time of analytes and in an increase in the enthalpy and entropy of sorption. The reason for this increase can be seen in the formation of a microporous structure in 5-alkyl-substituted polynorbornenes in a glassy state.


Assuntos
Norbornanos , Norbornanos/química , Polímeros/química , Polimerização , Alcanos/química
10.
ACS Macro Lett ; 13(6): 726-733, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38809767

RESUMO

Plants, essential for food, oxygen, and economic stability, are under threat from human activities, biotic threats, and climate change, requiring rapid technological advancements for protection. Biohybrid systems, merging synthetic macromolecules with biological components, have provided improvement to biological systems in the past, namely, in the biomedical arena, motivating an opportunity to enhance plant well-being. Nevertheless, strategies for plant biohybrid systems remain limited. In this study, we present a method using grafting-from ring-opening metathesis polymerization (ROMP) under physiological conditions to integrate norbornene-derived polymers into live plants by spray coating. The approach involves creating biological macroinitiators on leaf surfaces, which enable subsequent polymerization of norbornene-derived monomers. Characterization techniques, including FTIR spectroscopy, SEM EDS imaging, ICP-MS, nanoindentation, and XPS, confirmed the presence and characterized the properties of the polymeric layers on leaves. The demonstrated modifiability and biocompatibility could offer the potential to maintain plant health in various applications, including the development of thermal barriers, biosensors, and crop protection layers.


Assuntos
Norbornanos , Folhas de Planta , Norbornanos/química , Folhas de Planta/química , Polimerização , Polímeros/química , Plásticos
11.
Biomolecules ; 14(7)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39062494

RESUMO

The search for new compounds with biocidal potential was carried out, focusing on the longipinenes 1-7 from the plant species Santolina viscosa Lag. Compounds 1, 2, and 5 showed remarkable molecular diversity when treated in acidic reaction conditions. Protonic, Lewis, and heterogeneous compounds were used in the treatment. Three main models of reaction have been observed: isomerization of the double bond (8-10); rearrangements to longibornane-based skeleton (11-15) and ring-opening to himachalane-based skeleton (16-18). Secolongibornane aldehydes 23 and 24 were obtained after epoxide opening under the same reaction conditions. The elucidation of the structures of the new compounds was carried out using spectroscopic data and was supported by computational theoretical calculations of 13C NMR spectra. Additionally, high-resolution mass spectrometry and single-crystal X-ray diffraction analysis were employed for certain compounds. Natural longipinenes 4-7, methyl esters 1-3 of corresponding natural carboxylic acids and the isomerized and derivatives compounds 8-19 exhibit moderate to high insecticidal activity against R. padi and M. persicae insects. Longipinene 5 shows potent inhibition against the root growth of the plants L. perenne and L. sativa, as well as compound 2 on the leaves of L. perenne. Furthermore, significant ixocidal and nematicidal activity was found for this latter compound.


Assuntos
Inseticidas , Animais , Inseticidas/química , Inseticidas/farmacologia , Catálise , Estrutura Molecular , Norbornanos/química , Norbornanos/farmacologia
12.
Biomed Mater ; 19(2)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38266277

RESUMO

Thiol-norbornene chemistry offers great potential in the field of hydrogel development, given its step growth crosslinking mechanism. However, limitations exist with regard to deposition-based bioprinting of thiol-containing hydrogels, associated with premature crosslinking of thiolated (bio)polymers resulting from disulfide formation in the presence of oxygen. More specifically, disulfide formation can result in an increase in viscosity thereby impeding the printing process. In the present work, hydrogels constituting norbornene-modified dextran (DexNB) combined with thiolated gelatin (GelSH) are selected as case study to explore the potential of incorporating the reducing agent tris(2-carboxyethyl)phosphine (TCEP), to prevent the formation of disulfides. We observed that, in addition to preventing disulfide formation, TCEP also contributed to premature, spontaneous thiol-norbornene crosslinking without the use of UV light as evidenced via1H-NMR spectroscopy. Herein, an optimal concentration of 25 mol% TCEP with respect to the amount of thiols was found, thereby limiting auto-gelation by both minimizing disulfide formation and spontaneous thiol-norbornene reaction. This concentration results in a constant viscosity during at least 24 h, a more homogeneous network being formed as evidenced using atomic force microscopy while retaining bioink biocompatibility as evidenced by a cell viability of human foreskin fibroblasts exceeding 70% according to ISO 10993-6:2016.


Assuntos
Bioimpressão , Fosfinas , Compostos de Sulfidrila , Humanos , Compostos de Sulfidrila/química , Engenharia Tecidual/métodos , Gelatina/química , Polissacarídeos , Norbornanos/química , Hidrogéis/química , Dissulfetos , Impressão Tridimensional , Bioimpressão/métodos , Alicerces Teciduais/química
13.
STAR Protoc ; 5(2): 102994, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38568815

RESUMO

Here, we present a protocol for 3D printing heart tissues using thiol-norbornene photoclick collagen (NorCol). We describe steps for synthesizing NorCol, preparing bioink and the support bath, and cell-laden printing. We then detail procedures for the loading of C2C12 cells into NorCol, ensuring structural integrity and cell viability after printing. This protocol is adaptable to various cell lines and allows for the printing of diverse complex structures, which can be used in drug screening and disease modeling.


Assuntos
Colágeno , Norbornanos , Impressão Tridimensional , Compostos de Sulfidrila , Engenharia Tecidual , Animais , Compostos de Sulfidrila/química , Colágeno/química , Camundongos , Engenharia Tecidual/métodos , Norbornanos/química , Miocárdio/citologia , Miocárdio/metabolismo , Linhagem Celular , Alicerces Teciduais/química , Coração , Sobrevivência Celular/efeitos dos fármacos
14.
Pest Manag Sci ; 80(6): 2773-2784, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38298140

RESUMO

BACKGROUND: Pheromones have unique advantages for pest control. Current aphid pheromone research focuses on alarm and sex pheromones. However, practical applications are limited so far, as (E)-ß-farnesene has only been investigated to a small extent as an alarm pheromone and only male aphids are targeted by sex pheromones. Previous literature reports electrophysiological responses and repellent behavior of asexual aphids to nepetalactone (1B), therefore our objective was to modify nepetalactone's structure to identify key fragments responsible for repellent effects, as guidance for subsequent modifications and further investigation. RESULTS: In this study, seven derivatives were designed and synthesized based on nepetalactol (1A) and nepetalactone (1B) as lead compounds. Free-choice tests, conducted using cowpea aphids (Aphis craccivora), revealed that the lactone moiety was crucial for the repellent activity, and the removal of the carbonyl group eliminated the repelling effect. Compound (±)1I, an analogue of nepetalactone (1B), demonstrated a significantly higher repellent value than nepetalactone (1B) at three different concentrations, and even at 0.1 mg/mL it maintained a considerable repellent effect (26.5%). Electrostatic potential and density functional theory calculations supported the importance of the carbonyl group for the repellent effects. CONCLUSION: The newly discovered para-pheromone (±)1I shows improved repellent effects and potential for development as a novel biological control agent. Based on our innovative findings, analogues with improved efficacy and properties can be designed and prepared. Our research contributes to understanding the effects of structural modifications on pheromone activity and properties, which is crucial for exploring novel pheromone-based products for crop protection. © 2024 Society of Chemical Industry.


Assuntos
Afídeos , Feromônios , Animais , Afídeos/efeitos dos fármacos , Feromônios/farmacologia , Masculino , Repelentes de Insetos/farmacologia , Repelentes de Insetos/química , Pironas/farmacologia , Pironas/química , Lactonas/farmacologia , Lactonas/química , Monoterpenos Ciclopentânicos , Feminino , Norbornanos/química , Norbornanos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes
15.
Acta Biomater ; 177: 203-215, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38354874

RESUMO

The tumor microenvironment (TME) in pancreatic adenocarcinoma (PDAC) is a complex milieu of cellular and non-cellular components. Pancreatic cancer cells (PCC) and cancer-associated fibroblasts (CAF) are two major cell types in PDAC TME, whereas the non-cellular components are enriched with extracellular matrices (ECM) that contribute to high stiffness and fast stress-relaxation. Previous studies have suggested that higher matrix rigidity promoted aggressive phenotypes of tumors, including PDAC. However, the effects of dynamic viscoelastic matrix properties on cancer cell fate remain largely unexplored. The focus of this work was to understand the effects of such dynamic matrix properties on PDAC cell behaviors, particularly in the context of PCC/CAF co-culture. To this end, we engineered gelatin-norbornene (GelNB) based hydrogels with a built-in mechanism for simultaneously increasing matrix elastic modulus and viscoelasticity. Two GelNB-based macromers, namely GelNB-hydroxyphenylacetic acid (GelNB-HPA) and GelNB-boronic acid (GelNB-BA), were modularly mixed and crosslinked with 4-arm poly(ethylene glycol)-thiol (PEG4SH) to form elastic hydrogels. Treating the hybrid hydrogels with tyrosinase not only increased the elastic moduli of the gels (due to HPA dimerization) but also concurrently produced 1,2-diols that formed reversible boronic acid-diol bonding with the BA groups on GelNB-BA. We employed patient-derived CAF and a PCC cell line COLO-357 to demonstrate the effect of increasing matrix stiffness and viscoelasticity on CAF and PCC cell fate. Our results indicated that in the stiffened environment, PCC underwent epithelial-mesenchymal transition. In the co-culture PCC and CAF spheroid, CAF enhanced PCC spreading and stimulated collagen 1 production. Through mRNA-sequencing, we further showed that stiffened matrices, regardless of the degree of stress-relaxation, heightened the malignant phenotype of PDAC cells. STATEMENT OF SIGNIFICANCE: The pancreatic cancer microenvironment is a complex milieu composed of various cell types and extracellular matrices. It has been suggested that stiffer matrices could promote aggressive behavior in pancreatic cancer, but the effect of dynamic stiffening and matrix stress-relaxation on cancer cell fate remains largely undefined. This study aimed to explore the impact of dynamic changes in matrix viscoelasticity on pancreatic ductal adenocarcinoma (PDAC) cell behavior by developing a hydrogel system capable of simultaneously increasing stiffness and stress-relaxation on demand. This is achieved by crosslinking two gelatin-based macromers through orthogonal thiol-norbornene photochemistry and post-gelation stiffening with mushroom tyrosinase. The results revealed that higher matrix stiffness, regardless of the degree of stress relaxation, exacerbated the malignant characteristics of PDAC cells.


Assuntos
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patologia , Gelatina , Hidrogéis/farmacologia , Hidrogéis/química , Adenocarcinoma/patologia , Monofenol Mono-Oxigenase/metabolismo , Carcinoma Ductal Pancreático/patologia , Norbornanos/química , Compostos de Sulfidrila/química , Ácidos Borônicos , Microambiente Tumoral
16.
Adv Healthc Mater ; 13(14): e2304386, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38373601

RESUMO

Tissue engineering at single-cell resolution has enhanced therapeutic efficacy. Droplet microfluidics offers a powerful platform that allows deterministic single-cell encapsulation into aqueous droplets, yet the direct encapsulation of cells into microgels remains challenging. Here, the design of a microfluidic device that is capable of single-cell encapsulation within polyethylene glycol norbornene (PEGNB) hydrogels on-chip is reported. Cells are first ordered in media within a straight microchannel via inertial focusing, followed by the introduction of PEGNB solution from two separate, converging channels. Droplets are thoroughly mixed by passage through a serpentine channel, and microgels are formed by photo-photopolymerization. This platform uniquely enables both single-cell encapsulation and excellent cell viability post-photo-polymerization. More than 90% of singly encapsulated mesenchymal stromal cells (MSCs) remain alive for 7 days. Notably, singly encapsulated MSCs have elevated expression levels in genes that code anti-inflammatory cytokines, for example, IL-10 and TGF-ß, thus enhancing the secretion of proteins of interest. Following injection into a mouse model with induced inflammation, singly encapsulated MSCs show a strong retention rate in vivo, reduce overall inflammation, and mitigate liver damage. These translational results indicate that deterministic single-cell encapsulation could find use in a broad spectrum of tissue engineering applications.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Norbornanos , Polietilenoglicóis , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Animais , Polietilenoglicóis/química , Camundongos , Transplante de Células-Tronco Mesenquimais/métodos , Norbornanos/química , Microgéis/química , Encapsulamento de Células/métodos , Hidrogéis/química , Hidrogéis/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Humanos
17.
Pest Manag Sci ; 80(9): 4273-4285, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38625031

RESUMO

BACKGROUND: To discover novel fungicide candidates, five series of novel norbornene hydrazide, bishydrazide, oxadiazole, carboxamide and acylthiourea derivatives (2a-2t, 3a-3f, 4a-4f, 5a-5f and 7a-7f) were designed, synthesized and assayed for their antifungal activity toward seven representative plant fungal pathogens. RESULTS: In the in vitro antifungal assay, some title norbornene derivatives presented good antifungal activity against Botryosphaeria dothidea, Sclerotinia sclerotiorum and Fusarium graminearum. Especially, compound 2b exhibited the best inhibitory activity toward B. dothidea with the median effective concentration (EC50) of 0.17 mg L-1, substantially stronger than those of the reference fungicides boscalid and carbendazim. The in vivo antifungal assay on apples revealed that 2b had significant curative and protective effects, both of which were superior to boscalid. In the preliminary antifungal mechanism study, 2b was able to injure the surface morphology of hyphae, destroy the cell membrane integrity and increase the intracellular reactive oxygen species (ROS) level of B. dothidea. In addition, 2b could considerably inhibit the laccase activity with the median inhibitory concentration (IC50) of 1.02 µM, much stronger than that of positive control cysteine (IC50 = 35.50 µM). The binding affinity and interaction mode of 2b with laccase were also confirmed by molecular docking. CONCLUSION: This study presented a promising lead compound for the study of novel laccase inhibitors as fungicidal agrochemicals, which demonstrate significant anti-B. dothidea activity and laccase inhibitory activity. © 2024 Society of Chemical Industry.


Assuntos
Ascomicetos , Fungicidas Industriais , Fusarium , Lacase , Norbornanos , Fungicidas Industriais/farmacologia , Fungicidas Industriais/síntese química , Fungicidas Industriais/química , Fusarium/efeitos dos fármacos , Norbornanos/farmacologia , Norbornanos/química , Norbornanos/síntese química , Ascomicetos/efeitos dos fármacos , Lacase/metabolismo , Simulação de Acoplamento Molecular , Desenho de Fármacos , Relação Estrutura-Atividade , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Antifúngicos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Doenças das Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA