Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.003
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Cell Sci ; 137(5)2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38345099

RESUMO

Glycosylated mucin proteins contribute to the essential barrier function of the intestinal epithelium. The transmembrane mucin MUC13 is an abundant intestinal glycoprotein with important functions for mucosal maintenance that are not yet completely understood. We demonstrate that in human intestinal epithelial monolayers, MUC13 localized to both the apical surface and the tight junction (TJ) region on the lateral membrane. MUC13 deletion resulted in increased transepithelial resistance (TEER) and reduced translocation of small solutes. TEER buildup in ΔMUC13 cells could be prevented by addition of MLCK, ROCK or protein kinase C (PKC) inhibitors. The levels of TJ proteins including claudins and occludin were highly increased in membrane fractions of MUC13 knockout cells. Removal of the MUC13 cytoplasmic tail (CT) also altered TJ composition but did not affect TEER. The increased buildup of TJ complexes in ΔMUC13 and MUC13-ΔCT cells was dependent on PKC. The responsible PKC member might be PKCδ (or PRKCD) based on elevated protein levels in the absence of full-length MUC13. Our results demonstrate for the first time that a mucin protein can negatively regulate TJ function and stimulate intestinal barrier permeability.


Assuntos
Proteína Quinase C , Proteínas de Junções Íntimas , Humanos , Proteínas de Junções Íntimas/metabolismo , Proteína Quinase C/metabolismo , Intestinos , Mucosa Intestinal/metabolismo , Junções Íntimas/metabolismo , Ocludina , Mucinas/metabolismo , Células Epiteliais/metabolismo
2.
EMBO Rep ; 25(8): 3276-3299, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39039298

RESUMO

Transmigration of circulating monocytes from the bloodstream to tissues represents an early hallmark of inflammation. This process plays a pivotal role during viral neuroinvasion, encephalitis, and HIV-associated neurocognitive disorders. How monocytes locally unzip endothelial tight junction-associated proteins (TJAPs), without perturbing impermeability, to reach the central nervous system remains poorly understood. Here, we show that human circulating monocytes express the TJAP Occludin (OCLN) to promote transmigration through endothelial cells. We found that human monocytic OCLN (hmOCLN) clusters at monocyte-endothelium interface, while modulation of hmOCLN expression significantly impacts monocyte transmigration. Furthermore, we designed OCLN-derived peptides targeting its extracellular loops (EL) and show that transmigration of treated monocytes is inhibited in vitro and in zebrafish embryos, while preserving vascular integrity. Monocyte transmigration toward the brain is an important process for HIV neuroinvasion and we found that the OCLN-derived peptides significantly inhibit HIV dissemination to cerebral organoids. In conclusion, our study identifies an important role for monocytic OCLN during transmigration and provides a proof-of-concept for the development of mitigation strategies to prevent monocyte infiltration and viral neuroinvasion.


Assuntos
Células Endoteliais , Monócitos , Ocludina , Migração Transendotelial e Transepitelial , Peixe-Zebra , Ocludina/metabolismo , Ocludina/genética , Humanos , Monócitos/metabolismo , Monócitos/efeitos dos fármacos , Monócitos/virologia , Animais , Migração Transendotelial e Transepitelial/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/virologia , Células Endoteliais/efeitos dos fármacos , Infecções por HIV/virologia , Infecções por HIV/tratamento farmacológico , HIV-1/fisiologia , HIV-1/efeitos dos fármacos , Peptídeos/farmacologia , Peptídeos/metabolismo , Encéfalo/metabolismo , Encéfalo/virologia
3.
Proc Natl Acad Sci U S A ; 120(17): e2218623120, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37068248

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spreads efficiently by spike-mediated, direct cell-to-cell transmission. However, the underlying mechanism is poorly understood. Herein, we demonstrate that the tight junction protein occludin (OCLN) is critical to this process. SARS-CoV-2 infection alters OCLN distribution and expression and causes syncytium formation that leads to viral spread. OCLN knockdown fails to alter SARS-CoV-2 binding but significantly lowers internalization, syncytium formation, and transmission. OCLN overexpression also has no effect on virus binding but enhances virus internalization, cell-to-cell transmission, and replication. OCLN directly interacts with the SARS-CoV-2 spike, and the endosomal entry pathway is involved in OCLN-mediated cell-to-cell fusion rather than in the cell surface entry pathway. All SARS-CoV-2 strains tested (prototypic, alpha, beta, gamma, delta, kappa, and omicron) are dependent on OCLN for cell-to-cell transmission, although the extent of syncytium formation differs between strains. We conclude that SARS-CoV-2 utilizes OCLN as an internalization factor for cell-to-cell transmission.


Assuntos
COVID-19 , Ocludina , Proteínas de Junções Íntimas , Internalização do Vírus , Humanos , Ocludina/genética , Ocludina/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/genética
4.
PLoS Pathog ; 19(12): e1011887, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38157366

RESUMO

The multi-step process of hepatitis C virus (HCV) entry is facilitated by various host factors, including epidermal growth factor receptor (EGFR) and the tight junction proteins claudin-1 (CLDN1) and occludin (OCLN), which are thought to function at later stages of the HCV entry process. Using single particle imaging of HCV infection of polarized hepatoma spheroids, we observed that EGFR performs multiple functions in HCV entry, both phosphorylation-dependent and -independent. We previously observed, and in this study confirmed, that EGFR is not required for HCV migration to the tight junction. EGFR is required for the recruitment of clathrin to HCV in a phosphorylation-independent manner. EGFR phosphorylation is required for virion internalization at a stage following the recruitment of clathrin. HCV entry activates the RAF-MEK-ERK signaling pathway downstream of EGFR phosphorylation. This signaling pathway regulates the sorting and maturation of internalized HCV into APPL1- and EEA1-associated early endosomes, which form the site of virion uncoating. The tight junction proteins, CLDN1 and OCLN, function at two distinct stages of HCV entry. Despite its appreciated function as a "late receptor" in HCV entry, CLDN1 is required for efficient HCV virion accumulation at the tight junction. Huh-7.5 cells lacking CLDN1 accumulate HCV virions primarily at the initial basolateral surface. OCLN is required for the late stages of virion internalization. This study produced further insight into the unusually complex HCV endocytic process.


Assuntos
Claudina-1 , Hepacivirus , Hepatite C , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Clatrina , Claudina-1/genética , Claudina-1/metabolismo , Receptores ErbB , Hepacivirus/fisiologia , Hepatite C/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Ocludina/metabolismo , Internalização do Vírus
5.
PLoS Biol ; 20(1): e3001518, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35041644

RESUMO

Lipid droplets (LDs) have increasingly been recognized as an essential organelle for eukaryotes. Although the biochemistry of lipid synthesis and degradation is well characterized, the regulation of LD dynamics, including its formation, maintenance, and secretion, is poorly understood. Here, we report that mice lacking Occludin (Ocln) show defective lipid metabolism. We show that LDs were larger than normal along its biogenesis and secretion pathway in Ocln null mammary cells. This defect in LD size control did not result from abnormal lipid synthesis or degradation; rather, it was because of secretion failure during the lactation stage. We found that OCLN was located on the LD membrane and was bound to essential regulators of lipid secretion, including BTN1a1 and XOR, in a C-terminus-dependent manner. Finally, OCLN was a phosphorylation target of Src kinase, whose loss causes lactation failure. Together, we demonstrate that Ocln is a downstream target of Src kinase and promotes LD secretion by binding to BTN1a1 and XOR.


Assuntos
Gotículas Lipídicas/fisiologia , Metabolismo dos Lipídeos , Glândulas Mamárias Animais/metabolismo , Ocludina/metabolismo , Animais , Butirofilinas/metabolismo , Feminino , Lactação/metabolismo , Camundongos , Leite/metabolismo , Ocludina/genética , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/metabolismo
6.
EMBO Rep ; 24(2): e54925, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36440604

RESUMO

Vault RNAs (vtRNAs) are small noncoding RNAs and highly expressed in many eukaryotes. Here, we identified vtRNA2-1 as a novel regulator of the intestinal barrier via interaction with RNA-binding protein HuR. Intestinal mucosal tissues from patients with inflammatory bowel diseases and from mice with colitis or sepsis express increased levels of vtRNAs relative to controls. Ectopically expressed vtRNA2-1 decreases the levels of intercellular junction (IJ) proteins claudin 1, occludin, and E-cadherin and causes intestinal epithelial barrier dysfunction in vitro, whereas vtRNA2-1 silencing promotes barrier function. Increased vtRNA2-1 also decreases IJs in intestinal organoid, inhibits epithelial renewal, and causes Paneth cell defects ex vivo. Elevating the levels of tissue vtRNA2-1 in the intestinal mucosa increases the vulnerability of the gut barrier to septic stress in mice. vtRNA2-1 interacts with HuR and prevents HuR binding to claudin 1 and occludin mRNAs, thus decreasing their translation. These results indicate that vtRNA2-1 impairs intestinal barrier function by repressing HuR-facilitated translation of claudin 1 and occludin.


Assuntos
Colite , MicroRNAs , Celulas de Paneth , Animais , Camundongos , Claudina-1/genética , Claudina-1/metabolismo , Colite/genética , Colite/metabolismo , Mucosa Intestinal/metabolismo , Ocludina/metabolismo , MicroRNAs/metabolismo
7.
Proc Natl Acad Sci U S A ; 119(34): e2204618119, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35969745

RESUMO

Occludin is a tetramembrane-spanning tight junction protein. The long C-terminal cytoplasmic domain, which represents nearly half of occludin sequence, includes a distal bundle of three α-helices that mediates interactions with other tight junction components. A short unstructured region just proximal to the α-helical bundle is a phosphorylation hotspot within which S408 phosphorylation acts as molecular switch that modifies tight junction protein interactions and barrier function. Here, we used NMR to define the effects of S408 phosphorylation on intramolecular interactions between the unstructured region and the α-helical bundle. S408 pseudophosphorylation affected conformation at hinge sites between the three α-helices. Further studies using paramagnetic relaxation enhancement and microscale thermophoresis indicated that the unstructured region interacts with the α-helical bundle. These interactions between the unstructured domain are enhanced by S408 phosphorylation and allow the unstructured region to obstruct the binding site, thereby reducing affinity of the occludin tail for zonula occludens-1 (ZO-1). Conversely, S408 dephosphorylation attenuates intramolecular interactions, exposes the binding site, and increases the affinity of occludin binding to ZO-1. Consistent with an increase in binding to ZO-1, intravital imaging and fluorescence recovery after photobleaching (FRAP) analyses of transgenic mice demonstrated increased tight junction anchoring of enhanced green fluorescent protein (EGFP)-tagged nonphosphorylatable occludin relative to wild-type EGFP-occludin. Overall, these data define the mechanisms by which S408 phosphorylation modifies occludin tail conformation to regulate tight junction protein interactions and paracellular permeability.


Assuntos
Fosfoproteínas , Serina , Animais , Camundongos , Ocludina/genética , Ocludina/metabolismo , Fosfoproteínas/metabolismo , Fosforilação , Conformação Proteica em alfa-Hélice , Serina/metabolismo , Junções Íntimas/metabolismo , Proteína da Zônula de Oclusão-1/genética , Proteína da Zônula de Oclusão-1/metabolismo
8.
J Cell Mol Med ; 28(14): e18545, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39031471

RESUMO

Hypoxia plays an important role in the pathological process of bladder outlet obstruction. Previous research has mostly focused on the dysfunction of bladder smooth muscle cells, which are directly related to bladder contraction. This study delves into the barrier function changes of the urothelial cells under exposure to hypoxia. Results indicated that after a 5-day culture, SV-HUC-1 formed a monolayer and/or bilayer of cell sheets, with tight junction formation, but no asymmetrical unit membrane was observed. qPCR and western blotting revealed the expression of TJ-associated proteins (occludin, claudin1 and ZO-1) was significantly decreased in the hypoxia group in a time-dependent manner. No expression changes were observed in uroplakins. When compared to normoxic groups, immunofluorescent staining revealed a reduction in the expression of TJ-associated proteins in the hypoxia group. Transepithelial electrical resistance (TEER) revealed a statistically significant decrease in resistance in the hypoxia group. Fluorescein isothiocyanate-conjugated dextran assay was inversely proportional to the results of TEER. Taken together, hypoxia down-regulates the expression of TJ-associated proteins and breaks tight junctions, thus impairing the barrier function in human urothelial cells.


Assuntos
Hipóxia Celular , Proteínas de Junções Íntimas , Junções Íntimas , Urotélio , Humanos , Urotélio/metabolismo , Urotélio/patologia , Junções Íntimas/metabolismo , Proteínas de Junções Íntimas/metabolismo , Proteínas de Junções Íntimas/genética , Linhagem Celular , Proteína da Zônula de Oclusão-1/metabolismo , Proteína da Zônula de Oclusão-1/genética , Ocludina/metabolismo , Ocludina/genética , Claudina-1/metabolismo , Claudina-1/genética , Impedância Elétrica , Regulação da Expressão Gênica
9.
Biochem Biophys Res Commun ; 707: 149783, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38493746

RESUMO

Ingestion of Porphyromonas gingivalis, a periodontal pathogen, disrupts the intestinal barrier in mice. However, the involvement of outer membrane vesicles (OMVs) secreted from P. gingivalis in the destruction of the intestinal barrier remains unclear. In this study, we tested the hypothesis that OMVs carrying gingipains, the major cysteine proteases produced by P. gingivalis, affects the intestinal barrier function. OMVs increased the permeability of the Caco-2 cell monolayer, a human intestinal epithelial cell line, accompanied by degradation of the tight junction protein occludin. In contrast, OMVs prepared from mutant strains devoid of gingipains failed to induce intestinal barrier dysfunction or occludin degradation in Caco-2 cells. A close histological examination revealed the intracellular localization of gingipain-carrying OMVs. Gingipain activity was detected in the cytosolic fraction of Caco-2 cells after incubation with OMVs. These results suggest that gingipains were internalized into intestinal cells through OMVs and transported into the cytosol, where they then directly degraded occludin from the cytosolic side. Thus, P. gingivalis OMVs might destroy the intestinal barrier and induce systemic inflammation via OMV itself or intestinal substances leaked into blood vessels, causing various diseases.


Assuntos
Adesinas Bacterianas , Porphyromonas gingivalis , Animais , Camundongos , Humanos , Cisteína Endopeptidases Gingipaínas/metabolismo , Células CACO-2 , Porphyromonas gingivalis/fisiologia , Citosol/metabolismo , Ocludina/metabolismo , Adesinas Bacterianas/metabolismo
10.
J Virol ; 97(6): e0065523, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37272842

RESUMO

Annexins (ANXs) comprise a family of calcium- and phospholipid-binding proteins and are implicated in the hepatitis C virus (HCV) life cycle. Here, we demonstrate a novel role of ANX5 in the HCV life cycle. Comparative analysis by quantitative PCR in human hepatoma cells revealed that ANX2, ANX4, and ANX5 were highly expressed among the ANX family proteins. Knockdown of ANX5 mRNA resulted in marked enhancement of HCV RNA replication but had no effect on either HCV translation or assembly. Using the HCV pseudoparticle (HCVpp) system, we observed enhancement of HCVpp infectivity in ANX5 knockdown Huh-7OK1 cells, suggesting that ANX5 is involved in suppression of HCV entry. Additionally, we observed that subcellular localizations of tight-junction proteins, such as claudin 1 (CLDN1) and occludin (OCLN), were disrupted in the ANX5 knockdown cells. It was reported that HCV infection was facilitated by disruption of OCLN distribution and that proper distribution of OCLN was regulated by its phosphorylation. Knockdown of ANX5 resulted in a decrease of OCLN phosphorylation, thereby disrupting OCLN distribution and HCV infection. Further analysis revealed that protein kinase C (PKC) isoforms, including PKCα and PKCη, play important roles in the regulation of ANX5-mediated phosphorylation and distribution of OCLN and in the restriction of HCV infection. HCV infection reduced OCLN phosphorylation through the downregulation of PKCα and PKCη expression. Taken together, these results suggest that ANX5, PKCα, and PKCη contribute to restriction of HCV infection by regulating OCLN integrity. We propose a model that HCV disrupts ANX5-mediated OCLN integrity through downregulation of PKCα and PKCη expression, thereby promoting HCV propagation. IMPORTANCE Host cells have evolved host defense machinery to restrict viral infection. However, viruses have evolved counteracting strategies to achieve their infection. In the present study, we obtained results suggesting that ANX5 and PKC isoforms, including PKCα and PKCη, contribute to suppression of HCV infection by regulating the integrity of OCLN. The disruption of OCLN integrity increased HCV infection. We also found that HCV disrupts ANX5-mediated OCLN integrity through downregulation of PKCα and PKCη expression, thereby promoting viral infection. We propose that HCV disrupts ANX5-mediated OCLN integrity to establish a persistent infection. The disruption of tight-junction assembly may play important roles in the progression of HCV-related liver diseases.


Assuntos
Anexina A5 , Hepacivirus , Hepatite C , Ocludina , Humanos , Anexina A5/genética , Anexina A5/metabolismo , Regulação para Baixo , Hepacivirus/fisiologia , Ocludina/genética , Ocludina/metabolismo , Isoformas de Proteínas/genética , Proteína Quinase C-alfa/genética , Proteína Quinase C-alfa/metabolismo , Internalização do Vírus
11.
J Transl Med ; 22(1): 308, 2024 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528541

RESUMO

BACKGROUND: Ulcerative colitisis (UC) classified as a form of inflammatory bowel diseases (IBD) characterized by chronic, nonspecific, and recurrent symptoms with a poor prognosis. Common clinical manifestations of UC include diarrhea, fecal bleeding, and abdominal pain. Even though anti-inflammatory drugs can help alleviate symptoms of IBD, their long-term use is limited due to potential side effects. Therefore, alternative approaches for the treatment and prevention of inflammation in UC are crucial. METHODS: This study investigated the synergistic mechanism of Lactobacillus plantarum SC-5 (SC-5) and tyrosol (TY) combination (TS) in murine colitis, specifically exploring their regulatory activity on the dextran sulfate sodium (DSS)-induced inflammatory pathways (NF-κB and MAPK) and key molecular targets (tight junction protein). The effectiveness of 1 week of treatment with SC-5, TY, or TS was evaluated in a DSS-induced colitis mice model by assessing colitis morbidity and colonic mucosal injury (n = 9). To validate these findings, fecal microbiota transplantation (FMT) was performed by inoculating DSS-treated mice with the microbiota of TS-administered mice (n = 9). RESULTS: The results demonstrated that all three treatments effectively reduced colitis morbidity and protected against DSS-induced UC. The combination treatment, TS, exhibited inhibitory effects on the DSS-induced activation of mitogen-activated protein kinase (MAPK) and negatively regulated NF-κB. Furthermore, TS maintained the integrity of the tight junction (TJ) structure by regulating the expression of zona-occludin-1 (ZO-1), Occludin, and Claudin-3 (p < 0.05). Analysis of the intestinal microbiota revealed significant differences, including a decrease in Proteus and an increase in Lactobacillus, Bifidobacterium, and Akkermansia, which supported the protective effect of TS (p < 0.05). An increase in the number of Aspergillus bacteria can cause inflammation in the intestines and lead to the formation of ulcers. Bifidobacterium and Lactobacillus can regulate the micro-ecological balance of the intestinal tract, replenish normal physiological bacteria and inhibit harmful intestinal bacteria, which can alleviate the symptoms of UC. The relative abundance of Akkermansia has been shown to be negatively associated with IBD. The FMT group exhibited alleviated colitis, excellent anti-inflammatory effects, improved colonic barrier integrity, and enrichment of bacteria such as Akkermansia (p < 0.05). These results further supported the gut microbiota-dependent mechanism of TS in ameliorating colonic inflammation. CONCLUSION: In conclusion, the TS demonstrated a remission of colitis and amelioration of colonic inflammation in a gut microbiota-dependent manner. The findings suggest that TS could be a potential natural medicine for the protection of UC health. The above results suggest that TS can be used as a potential therapeutic agent for the clinical regulation of UC.


Assuntos
Colite Ulcerativa , Colite , Doenças Inflamatórias Intestinais , Lactobacillus plantarum , Álcool Feniletílico/análogos & derivados , Simbióticos , Animais , Camundongos , Colite Ulcerativa/tratamento farmacológico , Azeite de Oliva , NF-kappa B , Ocludina , Modelos Animais de Doenças , Colite/induzido quimicamente , Inflamação/complicações , Inflamação/tratamento farmacológico , Colo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Sulfato de Dextrana/efeitos adversos , Camundongos Endogâmicos C57BL
12.
PLoS Pathog ; 18(10): e1010912, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36228044

RESUMO

Glaesserella parasuis (G. parasuis), the primary pathogen of Glässer's disease, colonizes the upper respiratory tract and can break through the epithelial barrier of the respiratory tract, leading to lung infection. However, the underlying mechanisms for this adverse effect remain unclear. The G. parasuis serotype 5 SQ strain (HPS5-SQ) infection decreased the integrity of piglets' lung Occludin and Claudin-1. Autophagy regulates the function of the epithelial barrier and tight junction proteins (TJs) expression. We tested the hypothesis that HPS5-SQ breaking through the porcine respiratory epithelial barrier was linked to autophagy and Claudin-1 degradation. When HPS5-SQ infected swine tracheal epithelial cells (STEC), autophagosomes encapsulated, and autolysosomes degraded oxidatively stressed mitochondria covered with Claudin-1. Furthermore, we found that autophagosomes encapsulating mitochondria resulted in cell membrane Claudin-1 being unable to be replenished after degradation and damaged the respiratory tract epithelial barrier. In conclusion, G. parasuis serotype 5 breaks through the porcine respiratory epithelial barrier by inducing autophagy and interrupting cell membrane Claudin-1 replenishment, clarifying the mechanism of the G. parasuis infection and providing a new potential target for drug design and vaccine development.


Assuntos
Infecções por Haemophilus , Haemophilus parasuis , Doenças dos Suínos , Suínos , Animais , Claudina-1/metabolismo , Ocludina/metabolismo , Sorogrupo , Haemophilus parasuis/metabolismo , Autofagia , Membrana Celular , Proteínas de Junções Íntimas/metabolismo , Traqueia
13.
J Med Virol ; 96(7): e29783, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38965890

RESUMO

Many COVID-19 patients suffer from gastrointestinal symptoms and impaired intestinal barrier function is thought to play a key role in Long COVID. Despite its importance, the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on intestinal epithelia is poorly understood. To address this, we established an intestinal barrier model integrating epithelial Caco-2 cells, mucus-secreting HT29 cells and Raji cells. This gut epithelial model allows efficient differentiation of Caco-2 cells into microfold-like cells, faithfully mimics intestinal barrier function, and is highly permissive to SARS-CoV-2 infection. Early strains of SARS-CoV-2 and the Delta variant replicated with high efficiency, severely disrupted barrier function, and depleted tight junction proteins, such as claudin-1, occludin, and ZO-1. In comparison, Omicron subvariants also depleted ZO-1 from tight junctions but had fewer damaging effects on mucosal integrity and barrier function. Remdesivir, the fusion inhibitor EK1 and the transmembrane serine protease 2 inhibitor Camostat inhibited SARS-CoV-2 replication and thus epithelial barrier damage, while the Cathepsin inhibitor E64d was ineffective. Our results support that SARS-CoV-2 disrupts intestinal barrier function but further suggest that circulating Omicron variants are less damaging than earlier viral strains.


Assuntos
COVID-19 , Mucosa Intestinal , SARS-CoV-2 , Junções Íntimas , Replicação Viral , Humanos , SARS-CoV-2/patogenicidade , Células CACO-2 , COVID-19/virologia , COVID-19/patologia , Mucosa Intestinal/virologia , Mucosa Intestinal/patologia , Junções Íntimas/virologia , Alanina/análogos & derivados , Proteína da Zônula de Oclusão-1/metabolismo , Proteína da Zônula de Oclusão-1/genética , Antivirais/farmacologia , Células HT29 , Ocludina/metabolismo , Ocludina/genética , Monofosfato de Adenosina/análogos & derivados
14.
J Med Virol ; 96(8): e29864, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39158051

RESUMO

Inflammation and autoimmune responses contribute to the pathophysiology of Long COVID, and its affective and chronic fatigue syndrome symptoms, labeled "the physio-affective phenome." To investigate whether Long COVID and its physio-affective phenome are linked to autoimmunity to the tight junction proteins, zonulin and occludin (ZOOC), and immune reactivity to lipopolysaccharides (LPS), and whether the latter are associated with signs of human herpes virus-6 (HHV-6) reactivation, autoimmunity directed against oligodendrocyte and neuronal proteins, including myelin basic protein. IgA/IgM/IgG responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), HHV-6, ZOOC, and neuronal proteins, C-reactive protein (CRP), and advanced oxidation protein products (AOPPs), were measured in 90 Long COVID patients and 90 healthy controls. The physio-affective phenome was conceptualized as a factor extracted from physical and affective symptom domains. Neural network identified IgA directed to LPS (IgA-LPS), IgG-ZOOC, IgG-LPS, and IgA-ZOOC as important variables associated with Long COVID diagnosis with an area under the ROC curve of 0.755. Partial Least Squares analysis showed that 40.9% of the variance in the physio-affective phenome was explained by CRP, IgA-myelin basic protein (MBP), and IgG-MBP. A large part of the variances in both autoimmune responses to MBP (36.3%-39.7%) was explained by autoimmunity (IgA and IgG) directed to ZOOC. The latter was strongly associated with indicants of HHV-6 reactivation, which in turn was associated with increased IgM-SARS-CoV-2. Autoimmunity against components of the tight junctions and increased bacterial translocation may be involved in the pathophysiology of Long COVID's physio-affective phenome.


Assuntos
Autoimunidade , COVID-19 , Síndrome de Fadiga Crônica , Herpesvirus Humano 6 , Inflamação , Junções Íntimas , Humanos , Síndrome de Fadiga Crônica/imunologia , Síndrome de Fadiga Crônica/virologia , Herpesvirus Humano 6/imunologia , Feminino , Masculino , Pessoa de Meia-Idade , Junções Íntimas/imunologia , COVID-19/imunologia , Inflamação/imunologia , Adulto , Ocludina , Depressão/imunologia , SARS-CoV-2/imunologia , Idoso , Imunoglobulina G/sangue , Síndrome de COVID-19 Pós-Aguda , Imunoglobulina A/sangue , Lipopolissacarídeos/imunologia , Autoanticorpos/sangue , Autoanticorpos/imunologia , Anticorpos Antivirais/sangue , Infecções por Roseolovirus/imunologia , Infecções por Roseolovirus/complicações , Infecções por Roseolovirus/virologia , Haptoglobinas , Precursores de Proteínas
15.
Blood ; 140(4): 388-400, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35576527

RESUMO

The current standard of care for moderate to severe ischemic stroke is thrombolytic therapy with tissue plasminogen activator (tPA). Treatment with tPA can significantly improve neurologic outcomes; however, thrombolytic therapy is associated with an increased risk of intracerebral hemorrhage (ICH). The risk of hemorrhage significantly limits the use of thrombolytic therapy, and identifying pathways induced by tPA that increase this risk could provide new therapeutic options to extend thrombolytic therapy to a wider patient population. Here, we investigate the role of protein kinase Cß (PKCß) phosphorylation of the tight junction protein occludin during ischemic stroke and its role in cerebrovascular permeability. We show that activation of this pathway by tPA is associated with an increased risk of ICH. Middle cerebral artery occlusion (MCAO) increased phosphorylation of occludin serine 490 (S490) in the ischemic penumbra in a tPA-dependent manner, as tPA-/- mice were significantly protected from MCAO-induced occludin phosphorylation. Intraventricular injection of tPA in the absence of ischemia was sufficient to induce occludin phosphorylation and vascular permeability in a PKCß-dependent manner. Blocking occludin phosphorylation, either by targeted expression of a non-phosphorylatable form of occludin (S490A) or by pharmacologic inhibition of PKCß, reduced MCAO-induced permeability and improved functional outcome. Furthermore, inhibiting PKCß after MCAO prevented ICH associated with delayed thrombolysis. These results show that PKCß phosphorylation of occludin is a downstream mediator of tPA-induced cerebrovascular permeability and suggest that PKCß inhibitors could improve stroke outcome and prevent ICH associated with delayed thrombolysis, potentially extending the window for thrombolytic therapy in stroke.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Animais , Hemorragia Cerebral/tratamento farmacológico , Hemorragia Cerebral/etiologia , Fibrinolíticos/uso terapêutico , Humanos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Camundongos , Ocludina/genética , Ocludina/metabolismo , Fosforilação , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/etiologia , Terapia Trombolítica/efeitos adversos , Terapia Trombolítica/métodos , Ativador de Plasminogênio Tecidual/metabolismo
16.
Microb Pathog ; 195: 106893, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39197333

RESUMO

BACKGROUND: Vaccination is the best way to prevent influenza virus infection, and insufficient antibodies make it difficult to resist influenza virus invasion. Astragalus Polysaccharide (APS) has a boosting effect on immunity, so we evaluate the effect of APS as an immune adjuvant for H1N1 influenza vaccines in this study. METHODS: The mice were immunized twice with influenza A (H1N1) vaccine and APS. Subsequently, the serum antibody levels were assessed using enzyme-linked immunosorbent assay (ELISA). The frequency of peripheral immune T cells was determined by flow cytometry. Following this, the immunized mice were exposed to a lethal dose of the virus, and changes in body weight and survival rates were recorded. Hematoxylin-eosin staining was employed to observe pathological alterations in lung and intestinal tissues. Western blot analysis was conducted to detect the expression of intestinal barrier function proteins (Occludin and Claudin-1). ELISA was utilized to measure the expression level of serum inflammatory cytokine TNF-α. Fresh mouse feces were collected after the initial immunization as well as after viral infection for 16S rRNA analysis aimed at detecting alterations in gut microbiota. RESULTS: Compared to the Hemagglutinin (HA) group, the APS group demonstrated higher levels of immunoglobulin G (IgG), IgG1, and IgG3, as well as neutralizing antibody levels. Additionally, it increased the frequency of CD8+ cells to enhance resistance against lethal infection. On day 14 post-infection, the high-dose APS group exhibited a higher survival rate (71.40 %) compared to the HA group (14.28 %), along with faster weight recovery. Furthermore, APS was found to ameliorate alveolar damage in lung tissue and rectify intestinal structural disorder. It also upregulated the expression levels of tight junction proteins Occludin and Claudin-1 in intestinal tissue while reducing serum TNF-α expression levels. In addition, populations of Colidextribacter, Peptococcaceae, and Ruminococcaceae were the dominant gut microbiota in the APS group after viral infection. CONCLUSION: APS has an immune-enhancing effect and is expected to be a novel adjuvant in the H1N1 influenza vaccine.


Assuntos
Adjuvantes Imunológicos , Anticorpos Antivirais , Astrágalo , Microbioma Gastrointestinal , Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae , Polissacarídeos , Animais , Vacinas contra Influenza/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Camundongos , Polissacarídeos/farmacologia , Astrágalo/química , Microbioma Gastrointestinal/efeitos dos fármacos , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/imunologia , Anticorpos Antivirais/sangue , Pulmão/patologia , Pulmão/imunologia , Imunoglobulina G/sangue , Feminino , Anticorpos Neutralizantes/sangue , Fator de Necrose Tumoral alfa/metabolismo , Fezes/microbiologia , RNA Ribossômico 16S/genética , Ocludina/metabolismo , Claudina-1/metabolismo
17.
Microvasc Res ; 154: 104681, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38493885

RESUMO

BACKGROUND: Arterial baroreflex dysfunction, like many other central nervous system disorders, involves disruption of the blood-brain barrier, but what causes such disruption in ABR dysfunction is unclear. Here we explored the potential role of platelets in this disruption. METHODS: ABR dysfunction was induced in rats using sinoaortic denervation, and the effects on integrity of the blood-brain barrier were explored based on leakage of Evans blue or FITC-dextran, while the effects on expression of CD40L in platelets and of key proteins in microvascular endothelial cells were explored using immunohistochemistry, western blotting and enzyme-linked immunosorbent assay. Similar experiments were carried out in rat brain microvascular endothelial cell line, which we exposed to platelets taken from rats with ABR dysfunction. RESULTS: Sinoaortic denervation permeabilized the blood-brain barrier and downregulated zonula occludens-1 and occludin in rat brain, while upregulating expression of CD40L on the surface of platelets and stimulating platelet aggregation. Similar effects of permeabilization and downregulation were observed in healthy rats that received platelets from animals with ABR dysfunction, and in rat brain microvascular endothelial cells, but only in the presence of lipopolysaccharide. These effects were associated with activation of NF-κB signaling and upregulation of matrix metalloprotease-9. These effects of platelets from animals with ABR dysfunction were partially blocked by neutralizing antibody against CD40L or the platelet inhibitor clopidogrel. CONCLUSION: During ABR dysfunction, platelets may disrupt the blood-brain barrier when CD40L on their surface activates NF-kB signaling within cerebral microvascular endothelial cells, leading to upregulation of matrix metalloprotease-9. Our findings imply that targeting CD40L may be effective against cerebral diseases involving ABR dysfunction.


Assuntos
Barorreflexo , Plaquetas , Barreira Hematoencefálica , Ligante de CD40 , Permeabilidade Capilar , Modelos Animais de Doenças , Células Endoteliais , Metaloproteinase 9 da Matriz , NF-kappa B , Ratos Sprague-Dawley , Transdução de Sinais , Animais , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/fisiopatologia , Barreira Hematoencefálica/patologia , Plaquetas/metabolismo , Masculino , Células Endoteliais/metabolismo , Ligante de CD40/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , NF-kappa B/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo , Ocludina/metabolismo , Linhagem Celular , Agregação Plaquetária , Pressão Arterial , Ratos
18.
Respir Res ; 25(1): 66, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317159

RESUMO

BACKGROUND: Small airway remodelling is a vital characteristic of chronic obstructive pulmonary disease (COPD), which is mainly caused by epithelial barrier dysfunction and epithelial-mesenchymal transition (EMT). Recent studies have indicated that histone deacetylase 6 (HDAC6) plays an important role in the dysregulation of epithelial function. In this study, we investigated the therapeutic effects and underlying mechanisms of an inhibitor with high selectivity for HDAC6 in COPD. METHODS: Cigarette smoke (CS) exposure was used to establish a CS-induced COPD mouse model. CAY10603 at doses of 2.5 and 10 mg/kg was injected intraperitoneally on alternate days. The protective effects of CAY10603 against CS-induced emphysema, epithelial barrier function and small airway remodeling were evaluated using hematoxylin and eosin (H&E) staining, Masson's trichrome staining, immunohistochemical staining, and western blot. The human lung bronchial epithelial cell line (HBE) was used to elucidate the underlying molecular mechanism of action of CAY10603. RESULTS: HDAC6 levels in the lung homogenates of CS-exposed mice were higher than that those in control mice. Compared to the CS group, the mean linear intercept (MLI) of the CAY10603 treatment group decreased and the mean alveolar number (MAN)increased. Collagen deposition was reduced in groups treated with CAY10603. The expression of α-SMA was markedly upregulated in the CS group, which was reversed by CAY10603 treatment. Conversely, E-cadherin expression in the CS group was further downregulated, which was reversed by CAY10603 treatment. CAY10603 affects the tight junction protein expression of ZO-1 and occludin. ZO-1 and occludin expression were markedly downregulated in the CS group. After CAY10603treatment, the protein expression level of ZO-1 and occludin increased significantly. In HBE cells, Cigarette smoke extract (CSE) increased HDAC6 levels. CAY10603 significantly attenuated the release of TGF-ß1 induced by CSE. CAY10603 significantly increased the E-cadherin levels in TGF-ß1 treated HBE cells, while concurrently attenuated α-SMA expression. This effect was achieved through the suppression of Smad2 and Smad3 phosphorylation. CAY10603 also inhibited TGF-ß1 induced cell migration. CONCLUSIONS: These findings suggested that CAY10603 inhibited CS induced small airway remodelling by regulating epithelial barrier dysfunction and reversing EMT via the TGF-ß1/Smad2/3 signalling pathway.


Assuntos
Carbamatos , Fumar Cigarros , Oxazóis , Doença Pulmonar Obstrutiva Crônica , Animais , Humanos , Camundongos , Remodelação das Vias Aéreas , Caderinas/metabolismo , Fumar Cigarros/efeitos adversos , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Desacetilase 6 de Histona/metabolismo , Ocludina , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/metabolismo , Produtos do Tabaco , Fator de Crescimento Transformador beta1/metabolismo
19.
FASEB J ; 37(2): e22739, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36583647

RESUMO

Transient receptor potential ankyrin 1 (TRPA1) is expressed in gastrointestinal tract and plays important roles in intestinal motility and visceral hypersensitivity. However, the potential role of TRPA1 in host defense, particularly against intestinal pathogens, is unknown. Here, we show that Trpa1 knockout mice exhibited increased susceptibility to Citrobacter rodentium infection, associated with the increased severity of diarrhea and intestinal permeability associated with the disrupted tight junctions (TJs) in colonic epithelia. We further demonstrated the expression of TRPA1 in murine colonic epithelial cells (CECs) and human epithelial Caco-2 cells both at protein level and transcription level. Using calcium imaging, TRPA1 agonists allyl isothiocyanates (AITC) and hydrogen peroxide were observed to induce a transient Ca2+ response in Caco-2 cells, respectively. Moreover, TRPA1 knockdown in Caco-2 cells resulted in the decreased expression of TJ proteins, ZO-1 and Occludin, and in the increased paracellular permeabilities and the reduced TEER values of Caco-2 monolayers in vitro. Furthermore, inhibition of TRPA1 by HC-030031 in the confluent Caco-2 cells caused the altered distribution and expression of TJ proteins, ZO-1, Occludin, and Claudin-3, and exacerbated the bacterial endotoxin lipopolysaccharide (LPS)-induced damage to these TJ proteins and actin cytoskeleton. By contrast, AITC pretreatment restored the distribution and expression of these TJ proteins in the confluent Caco-2 cells upon LPS challenge. Our results identify an unrecognized protective role of TRPA1 in host defense against an enteric bacterial pathogen by maintaining colonic epithelium barrier function, at least in part, via preserving the distribution and expression of TJ proteins in CECs.


Assuntos
Citrobacter rodentium , Infecções por Enterobacteriaceae , Camundongos , Humanos , Animais , Células CACO-2 , Ocludina/genética , Ocludina/metabolismo , Lipopolissacarídeos/metabolismo , Mucosa Intestinal/metabolismo , Células Epiteliais/metabolismo , Permeabilidade , Infecções por Enterobacteriaceae/patologia , Proteínas do Citoesqueleto/metabolismo , Camundongos Knockout , Junções Íntimas/metabolismo , Canal de Cátion TRPA1/genética , Canal de Cátion TRPA1/metabolismo
20.
Immunity ; 43(4): 727-38, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26431948

RESUMO

Whether interleukin-17A (IL-17A) has pathogenic and/or protective roles in the gut mucosa is controversial and few studies have analyzed specific cell populations for protective functions within the inflamed colonic tissue. Here we have provided evidence for IL-17A-dependent regulation of the tight junction protein occludin during epithelial injury that limits excessive permeability and maintains barrier integrity. Analysis of epithelial cells showed that in the absence of signaling via the IL-17 receptor adaptor protein Act-1, the protective effect of IL-17A was abrogated and inflammation was enhanced. We have demonstrated that after acute intestinal injury, IL-23R(+) γδ T cells in the colonic lamina propria were the primary producers of early, gut-protective IL-17A, and this production of IL-17A was IL-23 independent, leaving protective IL-17 intact in the absence of IL-23. These results suggest that IL-17-producing γδ T cells are important for the maintenance and protection of epithelial barriers in the intestinal mucosa.


Assuntos
Colite/fisiopatologia , Interleucina-17/fisiologia , Interleucina-23/fisiologia , Mucosa Intestinal/fisiopatologia , Doença Aguda , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Animais , Linhagem Celular Tumoral , Polaridade Celular , Colite/induzido quimicamente , Neoplasias do Colo/patologia , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Epitélio/fisiopatologia , Proteínas de Homeodomínio/fisiologia , Humanos , Interleucina-17/deficiência , Interleucina-17/farmacologia , Subpopulações de Linfócitos/metabolismo , Camundongos , Camundongos Knockout , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/deficiência , Ocludina/metabolismo , Permeabilidade , Transporte Proteico , Receptores de Antígenos de Linfócitos T gama-delta/análise , Proteínas Recombinantes/farmacologia , Junções Íntimas/fisiologia , Fator de Necrose Tumoral alfa/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA