Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(16): e2401313121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38602916

RESUMO

All forms of life are presumed to synthesize arginine from citrulline via a two-step pathway consisting of argininosuccinate synthetase and argininosuccinate lyase using citrulline, adenosine 5'-triphosphate (ATP), and aspartate as substrates. Conversion of arginine to citrulline predominantly proceeds via hydrolysis. Here, from the hyperthermophilic archaeon Thermococcus kodakarensis, we identified an enzyme which we designate "arginine synthetase". In arginine synthesis, the enzyme converts citrulline, ATP, and free ammonia to arginine, adenosine 5'-diphosphate (ADP), and phosphate. In the reverse direction, arginine synthetase conserves the energy of arginine deimination and generates ATP from ADP and phosphate while releasing ammonia. The equilibrium constant of this reaction at pH 7.0 is [Cit][ATP][NH3]/[Arg][ADP][Pi] = 10.1 ± 0.7 at 80 °C, corresponding to a ΔG°' of -6.8 ± 0.2 kJ mol-1. Growth of the gene disruption strain was compared to the host strain in medium composed of amino acids. The results suggested that arginine synthetase is necessary in providing ornithine, the precursor for proline biosynthesis, as well as in generating ATP. Growth in medium supplemented with citrulline indicated that arginine synthetase can function in the direction of arginine synthesis. The enzyme is widespread in nature, including bacteria and eukaryotes, and catalyzes a long-overlooked energy-conserving reaction in microbial amino acid metabolism. Along with ornithine transcarbamoylase and carbamate kinase, the pathway identified here is designated the arginine synthetase pathway.


Assuntos
Arginina , Ligases , Arginina/metabolismo , Citrulina/metabolismo , Amônia , Ornitina/genética , Trifosfato de Adenosina/metabolismo , Fosfatos , Adenosina , Catálise
2.
Plant Physiol ; 189(4): 1943-1960, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35604104

RESUMO

Leaf senescence can be induced by stress or aging, sometimes in a synergistic manner. It is generally acknowledged that the ability to withstand senescence-inducing conditions can provide plants with stress resilience. Although the signaling and transcriptional networks responsible for a delayed senescence phenotype, often referred to as a functional stay-green trait, have been actively investigated, very little is known about the subsequent metabolic adjustments conferring this aptitude to survival. First, using the individually darkened leaf (IDL) experimental setup, we compared IDLs of wild-type (WT) Arabidopsis (Arabidopsis thaliana) to several stay-green contexts, that is IDLs of two functional stay-green mutant lines, oresara1-2 (ore1-2) and an allele of phytochrome-interacting factor 5 (pif5), as well as to leaves from a WT plant entirely darkened (DP). We provide compelling evidence that arginine and ornithine, which accumulate in all stay-green contexts-likely due to the lack of induction of amino acids (AAs) transport-can delay the progression of senescence by fueling the Krebs cycle or the production of polyamines (PAs). Secondly, we show that the conversion of putrescine to spermidine (SPD) is controlled in an age-dependent manner. Thirdly, we demonstrate that SPD represses senescence via interference with ethylene signaling by stabilizing the ETHYLENE BINDING FACTOR1 and 2 (EBF1/2) complex. Taken together, our results identify arginine and ornithine as central metabolites influencing the stress- and age-dependent progression of leaf senescence. We propose that the regulatory loop between the pace of the AA export and the progression of leaf senescence provides the plant with a mechanism to fine-tune the induction of cell death in leaves, which, if triggered unnecessarily, can impede nutrient remobilization and thus plant growth and survival.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Arginina/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Ornitina/genética , Ornitina/metabolismo , Folhas de Planta/metabolismo , Senescência Vegetal , Fatores de Transcrição/metabolismo
3.
Proc Natl Acad Sci U S A ; 117(27): 15731-15739, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32561643

RESUMO

De novo emergence demands a transition from disordered polypeptides into structured proteins with well-defined functions. However, can polypeptides confer functions of evolutionary relevance, and how might such polypeptides evolve into modern proteins? The earliest proteins present an even greater challenge, as they were likely based on abiotic, spontaneously synthesized amino acids. Here we asked whether a primordial function, such as nucleic acid binding, could emerge with ornithine, a basic amino acid that forms abiotically yet is absent in modern-day proteins. We combined ancestral sequence reconstruction and empiric deconstruction to unravel a gradual evolutionary trajectory leading from a polypeptide to a ubiquitous nucleic acid-binding protein. Intermediates along this trajectory comprise sequence-duplicated functional proteins built from 10 amino acid types, with ornithine as the only basic amino acid. Ornithine side chains were further modified into arginine by an abiotic chemical reaction, improving both structure and function. Along this trajectory, function evolved from phase separation with RNA (coacervates) to avid and specific double-stranded DNA binding. Our results suggest that phase-separating polypeptides may have been an evolutionary resource for the emergence of early proteins, and that ornithine, together with its postsynthesis modification to arginine, could have been the earliest basic amino acids.


Assuntos
Arginina/química , Nucleoproteínas/genética , Ornitina/química , Peptídeos/genética , Sequência de Aminoácidos/genética , Aminoácidos/química , Aminoácidos/genética , Arginina/genética , DNA/química , DNA/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Nucleoproteínas/química , Ornitina/genética , Peptídeos/química , Proteínas/química , Proteínas/genética , RNA/química , RNA/genética
4.
Carcinogenesis ; 42(5): 705-713, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33780524

RESUMO

Advanced glycation end-products (AGEs) are a heterogeneous group of compounds formed by the non-enzymatic reaction between amino acids and reducing sugars, or dicarbonyls as intermediate compounds. Experimental studies suggest that AGEs may promote colorectal cancer, but prospective epidemiologic studies are inconclusive. We conducted a case-control study nested within a large European cohort. Plasma concentrations of three protein-bound AGEs-Nε-(carboxy-methyl)lysine (CML), Nε-(carboxy-ethyl)lysine (CEL) and Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine (MG-H1)-were measured by ultra-performance liquid chromatography-tandem mass spectrometry in baseline samples collected from 1378 incident primary colorectal cancer cases and 1378 matched controls. Multivariable-adjusted odds ratios (ORs) and 95% confidence intervals (CIs) were computed using conditional logistic regression for colorectal cancer risk associated with CML, CEL, MG-H1, total AGEs, and [CEL+MG-H1: CML] and [CEL:MG-H1] ratios. Inverse colorectal cancer risk associations were observed for CML (OR comparing highest to lowest quintile, ORQ5 versus Q1 = 0.40, 95% CI: 0.27-0.59), MG-H1 (ORQ5 versus Q1 = 0.73, 95% CI: 0.53-1.00) and total AGEs (OR Q5 versus Q1 = 0.52, 95% CI: 0.37-0.73), whereas no association was observed for CEL. A higher [CEL+MG-H1: CML] ratio was associated with colorectal cancer risk (ORQ5 versus Q1 = 1.91, 95% CI: 1.31-2.79). The associations observed did not differ by sex, or by tumour anatomical sub-site. Although individual AGEs concentrations appear to be inversely associated with colorectal cancer risk, a higher ratio of methylglyoxal-derived AGEs versus those derived from glyoxal (calculated by [CEL+MG-H1: CML] ratio) showed a strong positive risk association. Further insight on the metabolism of AGEs and their dicarbonyls precursors, and their roles in colorectal cancer development is needed.


Assuntos
Neoplasias Colorretais/genética , Produtos Finais de Glicação Avançada/genética , Lisina/análogos & derivados , Ornitina/análogos & derivados , Adulto , Idoso , Cromatografia Líquida , Estudos de Coortes , Neoplasias Colorretais/sangue , Neoplasias Colorretais/patologia , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Produtos Finais de Glicação Avançada/sangue , Humanos , Imidazóis/sangue , Lisina/sangue , Lisina/genética , Masculino , Pessoa de Meia-Idade , Razão de Chances , Ornitina/sangue , Ornitina/genética , Espectrometria de Massas em Tandem
5.
Rev Argent Microbiol ; 50(2): 115-125, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29132716

RESUMO

Pseudomonas syringae pv. phaseolicola is a phytopathogenic bacterium in beans that produces a phytotoxin called phaseolotoxin, in whose synthesis a group of genes that belong to the "Pht cluster" are involved. This cluster comprises 23 genes arranged in 5 transcriptional units, two monocistronic (argK, phtL) and three polycistronic (phtA, phtD, phtM) operons, whose expression is increased at 18°C, correlating with the production of phaseolotoxin by the bacterium. So far, the regulatory mechanisms involved in phaseolotoxin synthesis are poorly understood and only the requirement of low temperatures for its synthesis has been demonstrated. Therefore, in this study we searched for regulatory proteins that could be involved in the phaseolotoxin synthesis, focusing on the regulation of the phtM operon. Gel shift assays showed that the promoter region of the phtM operon contains binding sites for putative regulatory proteins, which are encoded outside the Pht cluster and are independent of the GacS-GacA two-component system. Deletion assays with the promoter region of the phtM operon show that the binding site for a putative transcription factor is located within a 58bp region. The putative transcription factor of the phtM operon has an apparent molecular mass in the 14-20kDa range. Furthermore, the results demonstrate that the transcription factor recognizes and binds the upstream phtM region as monomer o multimer of a single polypeptide. Our findings provide new insights into the regulatory mechanisms involved in phaseolotoxin production, and suggest that the Pht cluster was integrated into the global regulatory mechanism of P. syringae pv. phaseolicola.


Assuntos
Óperon , Ornitina/análogos & derivados , Pseudomonas syringae , Ornitina/genética , Ornitina/metabolismo , Pseudomonas syringae/genética
6.
J Biol Chem ; 291(41): 21630-21643, 2016 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-27566549

RESUMO

We recently discovered a biosynthetic system using a novel amino group carrier protein called LysW for lysine biosynthesis via α-aminoadipate (AAA), and revealed that this system is also utilized in the biosynthesis of arginine by Sulfolobus In the present study, we focused on the biosynthesis of lysine and ornithine in the hyperthermophilic archaeon Thermococcus kodakarensis, and showed that their biosynthesis is accomplished by a single set of metabolic enzymes. We also determined the crystal structure of the LysX family protein from T. kodakarensis, which catalyzes the conjugation of LysW with either AAA or glutamate, in a complex with LysW-γ-AAA. This crystal structure is the first example to show how LysX recognizes AAA as a substrate and provides a structural basis for the bifunctionality of the LysX family protein from T. kodakarensis Based on comparisons with other LysX family proteins, we propose a mechanism for substrate recognition and its relationship with molecular evolution among LysX family proteins, which have different substrate specificities.


Assuntos
Proteínas Arqueais , Proteínas de Transporte , Lisina , Ornitina , Thermococcus , Proteínas Arqueais/química , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cristalografia por Raios X , Lisina/biossíntese , Lisina/química , Lisina/genética , Ornitina/química , Ornitina/genética , Ornitina/metabolismo , Domínios Proteicos , Thermococcus/química , Thermococcus/genética , Thermococcus/metabolismo
7.
Biochemistry ; 55(6): 927-39, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26794841

RESUMO

Staphylococcus aureus assembles the siderophore, staphyloferrin B, from l-2,3-diaminopropionic acid (l-Dap), α-ketoglutarate, and citrate. Recently, SbnA and SbnB were shown to produce l-Dap and α-ketoglutarate from O-phospho-l-serine (OPS) and l-glutamate. SbnA is a pyridoxal 5'-phosphate (PLP)-dependent enzyme with homology to O-acetyl-l-serine sulfhydrylases; however, SbnA utilizes OPS instead of O-acetyl-l-serine (OAS), and l-glutamate serves as a nitrogen donor instead of a sulfide. In this work, we examined how SbnA dictates substrate specificity for OPS and l-glutamate using a combination of X-ray crystallography, enzyme kinetics, and site-directed mutagenesis. Analysis of SbnA crystals incubated with OPS revealed the structure of the PLP-α-aminoacrylate intermediate. Formation of the intermediate induced closure of the active site pocket by narrowing the channel leading to the active site and forming a second substrate binding pocket that likely binds l-glutamate. Three active site residues were identified: Arg132, Tyr152, Ser185 that were essential for OPS recognition and turnover. The Y152F/S185G SbnA double mutant was completely inactive, and its crystal structure revealed that the mutations induced a closed form of the enzyme in the absence of the α-aminoacrylate intermediate. Lastly, l-cysteine was shown to be a competitive inhibitor of SbnA by forming a nonproductive external aldimine with the PLP cofactor. These results suggest a regulatory link between siderophore and l-cysteine biosynthesis, revealing a potential mechanism to reduce iron uptake under oxidative stress.


Assuntos
Citratos/biossíntese , Ornitina/análogos & derivados , Sequência de Aminoácidos , Sítios de Ligação/fisiologia , Catálise , Citratos/química , Cristalografia por Raios X , Dados de Sequência Molecular , Ornitina/biossíntese , Ornitina/química , Ornitina/genética , Estrutura Secundária de Proteína , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Especificidade por Substrato/fisiologia
8.
Brain ; 138(Pt 8): 2191-205, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26026163

RESUMO

Hereditary spastic paraplegias are heterogeneous neurological disorders characterized by a pyramidal syndrome with symptoms predominantly affecting the lower limbs. Some limited pyramidal involvement also occurs in patients with an autosomal recessive neurocutaneous syndrome due to ALDH18A1 mutations. ALDH18A1 encodes delta-1-pyrroline-5-carboxylate synthase (P5CS), an enzyme that catalyses the first and common step of proline and ornithine biosynthesis from glutamate. Through exome sequencing and candidate gene screening, we report two families with autosomal recessive transmission of ALDH18A1 mutations, and predominant complex hereditary spastic paraplegia with marked cognitive impairment, without any cutaneous abnormality. More interestingly, we also identified monoallelic ALDH18A1 mutations segregating in three independent families with autosomal dominant pure or complex hereditary spastic paraplegia, as well as in two sporadic patients. Low levels of plasma ornithine, citrulline, arginine and proline in four individuals from two families suggested P5CS deficiency. Glutamine loading tests in two fibroblast cultures from two related affected subjects confirmed a metabolic block at the level of P5CS in vivo. Besides expanding the clinical spectrum of ALDH18A1-related pathology, we describe mutations segregating in an autosomal dominant pattern. The latter are associated with a potential trait biomarker; we therefore suggest including amino acid chromatography in the clinico-genetic work-up of hereditary spastic paraplegia, particularly in dominant cases, as the associated phenotype is not distinct from other causative genes.


Assuntos
Aldeído Desidrogenase/genética , Mutação/genética , Ornitina/genética , Ornitina/metabolismo , Paraplegia Espástica Hereditária/genética , Adolescente , Adulto , Arginina/metabolismo , Feminino , Ácido Glutâmico/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Paraplegia Espástica Hereditária/metabolismo , Adulto Jovem
9.
Environ Microbiol ; 17(5): 1487-96, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25040623

RESUMO

Ornithine lipids (OLs) are phosphorus-free membrane lipids that can be formed by many bacteria but that are absent from archaea and eukaryotes. A function for OLs in stress conditions and in host-bacteria interactions has been shown in some bacteria. Some bacterial species have been described that can form OLs, but lack the known genes (olsBA) involved in its biosynthesis, which implied the existence of a second pathway. Here we describe the bifunctional protein OlsF from Serratia proteamaculans involved in OL formation. Expression of OlsF and its homologue from Flavobacterium johnsoniae in Escherichia coli causes OL formation. Deletion of OlsF in S. proteamaculans caused the absence of OL formation. Homologues of OlsF are widely distributed among γ-, δ- and ε-Proteobacteria and in the Cytophaga-Flavobacterium-Bacteroidetes group of bacteria, including several well-studied pathogens for which the presence of OLs has not been suspected, such as for example Vibrio cholerae and Klebsiella pneumonia. Using genomic data, we predict that about 50% of bacterial species can form OLs.


Assuntos
Aciltransferases/metabolismo , Lipídeos/genética , Lipídeos de Membrana/metabolismo , Ornitina/análogos & derivados , Serratia/enzimologia , Bacteroidetes/metabolismo , Cytophaga/metabolismo , Flavobacterium/metabolismo , Deleção de Genes , Lipídeos/biossíntese , Ornitina/biossíntese , Ornitina/genética , Proteobactérias/metabolismo , Serratia/metabolismo
10.
Microbiology (Reading) ; 161(8): 1671-1682, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26271664

RESUMO

L-Ornithine production in the alfalfa microsymbiont Sinorhizobium meliloti occurs as an intermediate step in arginine biosynthesis. Ornithine is required for effective symbiosis but its synthesis in S. meliloti has been little studied. Unlike most bacteria, S. meliloti 1021 is annotated as encoding two enzymes producing ornithine: N-acetylornithine (NAO) deacetylase (ArgE) hydrolyses NAO to acetate and ornithine, and glutamate N-acetyltransferase (ArgJ) transacetylates l-glutamate with the acetyl group from NAO, forming ornithine and N-acetylglutamate (NAG). NAG is the substrate for the second step of arginine biosynthesis catalysed by NAG kinase (ArgB). Inactivation of argB in strain 1021 resulted in arginine auxotrophy. The activity of purified ArgB was significantly inhibited by arginine but not by ornithine. The purified ArgJ was highly active in NAO deacetylation/glutamate transacetylation and was significantly inhibited by ornithine but not by arginine. The purified ArgE protein (with a 6His-Sumo affinity tag) was also active in deacetylating NAO. argE and argJ single mutants, and an argEJ double mutant, are arginine prototrophs. Extracts of the double mutant contained aminoacylase (Ama) activity that deacetylated NAO to form ornithine. The purified products of three candidate ama genes (smc00682 (hipO1), smc02256 (hipO2) and smb21279) all possessed NAO deacetylase activity. hipO1 and hipO2, but not smb21279, expressed in trans functionally complemented an Escherichia coli ΔargE : : Km mutant. We conclude that Ama activity accounts for the arginine prototrophy of the argEJ mutant. Transcriptional assays of argB, argE and argJ, fused to a promoterless gusA gene, showed that their expression was not significantly affected by exogenous arginine or ornithine.


Assuntos
Arginina/biossíntese , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , Acetiltransferases/genética , Acetiltransferases/metabolismo , Amidoidrolases/genética , Amidoidrolases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Vias Biossintéticas , Ornitina/análogos & derivados , Ornitina/genética , Ornitina/metabolismo , Sinorhizobium meliloti/enzimologia
11.
Mol Genet Metab ; 115(1): 27-32, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25818551

RESUMO

HHH syndrome is an autosomal recessive urea cycle disorder caused by alterations in the SLC25A15 gene encoding the mitochondrial ornithine carrier 1, which catalyzes the transport of cytosolic ornithine into the mitochondria in exchange for intramitochondrial citrulline. In this study the functional effects of several SLC25A15 missense mutations p.G27R, p.M37R, p.N74A, p.F188L, p.F188Y, p.S200K, p.R275Q and p.R275K have been tested by transport assays in reconstituted liposomes and complementation of Saccharomyces cerevisiae ORT1 null mutant in arginine-less synthetic complete medium. The HHH syndrome-causing mutations p.G27R, p.M37R, p.F188L and p.R275Q had impaired transport and did not complement ORT1∆ cells (except p.M37R slightly after 5 days in solid medium). The experimentally produced mutations p.N74A, p.S200K and p.R275K exhibited normal or considerable transport activity and complemented ORT1∆ cells after 3 days (p.N74A, p.S200K) or 5 days (p.R275K) incubation. Furthermore, the experimentally produced p.F188Y mutation displayed a substantial transport activity but did not complement the ORT1∆ cells in both liquid and solid media. In view of the disagreement in the results obtained between the two methods, it is recommended that the method of complementing the S. cerevisiae ORT1 knockout strain is used complimentary with the measurement of the catalytic activity, in order to distinguish HHH syndrome-causing mutations from isomorphisms.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos/genética , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Arginina , Transporte Biológico , Meios de Cultura , Escherichia coli/genética , Teste de Complementação Genética , Humanos , Hiperamonemia/genética , Lipossomos/metabolismo , Mutação de Sentido Incorreto , Ornitina/deficiência , Ornitina/genética , Proteínas Recombinantes , Saccharomyces cerevisiae/crescimento & desenvolvimento , Distúrbios Congênitos do Ciclo da Ureia/genética
12.
Hong Kong Med J ; 20(1): 63-6, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24473688

RESUMO

Hyperornithinaemia-hyperammonaemia-homocitrullinuria syndrome is an autosomal recessive disorder caused by a defect in ornithine translocase. This condition leads to variable clinical presentations, including episodic hyperammonaemia, hepatic derangement, and chronic neurological manifestations. Fewer than 100 affected patients have been reported worldwide. Here we report the first two cases in Hong Kong Chinese, who were compound heterozygous siblings for c.535C>T (p.Arg179*) and c.815C>T (p.Thr272Ile) in the SLC25A15 gene. When the mother refused prenatal diagnosis for the second pregnancy, urgent genetic testing provided the definitive diagnosis within 24 hours to enable specific treatment. Optimal management of these two patients relied on the concerted efforts of a multidisciplinary team and illustrates the importance of an expanded newborn screening service for early detection and treatment of inherited metabolic diseases.


Assuntos
Hiperamonemia/diagnóstico , Triagem Neonatal , Ornitina/deficiência , Distúrbios Congênitos do Ciclo da Ureia/diagnóstico , Sistemas de Transporte de Aminoácidos Básicos/genética , Aminoácidos/sangue , Criança , Pré-Escolar , Heterozigoto , Humanos , Hiperamonemia/genética , Hiperamonemia/terapia , Lactente , Recém-Nascido , Masculino , Proteínas de Transporte da Membrana Mitocondrial , Ornitina/genética , Diagnóstico Pré-Natal , Distúrbios Congênitos do Ciclo da Ureia/genética , Distúrbios Congênitos do Ciclo da Ureia/terapia
13.
Poult Sci ; 103(1): 103220, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37980748

RESUMO

The eggshell color of avian species is an important trait that is predominantly determined by the pigments biliverdin and protoporphyrin. Various factors affect eggshell pigment deposition and coloration; however, the underlying mechanisms remain unclear. We analyzed the hepatic transcriptomes and metabolomes of Changshun green-shell hens laying dark green and light green eggs to investigate the potential role of the liver in regulating the intensity of the green eggshell color. In total, 350 differentially expressed genes and 211 differentially altered metabolites were identified. Gene set enrichment analysis revealed that the enriched pathways and Gene Ontology (GO) terms were mainly associated with energy, immunity, and nutrient metabolism. Metabolite set enrichment analysis revealed that the enriched pathways were mainly associated with amino acid, vitamin, bile acid, and lipid metabolism. Moreover, gene-metabolite interaction network analysis revealed 1 subnetwork. Most genes and metabolites in this subnetwork were determined to be related to melanin metabolism and transport. In conclusion, our results suggest that hepatic melanin metabolism and transport are critical for eggshell coloration. Six candidate genes (CDKN2B, DDC, PYCR1, ABCG5, SLC3A1, and P2RX2) and 7 candidate metabolites (serotonin, 5-hydroxyindoleacetic acid, ornithine, acetylcholine, L-tryptophan, D-ornithine, and ADP) were suggested to play important roles in this process. Meanwhile, this study suggests that changes in hepatic energy metabolism, immune status, antioxidation activity, nutrient availability, and bile acid synthesis can impair eggshell coloration.


Assuntos
Casca de Ovo , Transcriptoma , Animais , Feminino , Casca de Ovo/fisiologia , Galinhas/fisiologia , Melaninas/genética , Fígado/metabolismo , Metaboloma , Ácidos e Sais Biliares/metabolismo , Ornitina/análise , Ornitina/genética , Ornitina/metabolismo , Cor
14.
J Biol Chem ; 287(11): 7925-34, 2012 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-22262851

RESUMO

Mitochondrial carriers are a large family of proteins that transport specific metabolites across the inner mitochondrial membrane. Sequence and structure analysis has indicated that these transporters have substrate binding sites in a similar location of the central cavity consisting of three major contact points. Here we have characterized mutations of the proposed substrate binding site in the human ornithine carriers ORC1 and ORC2 by carrying out transport assays with a set of different substrates. The different substrate specificities of the two isoforms, which share 87% identical amino acids, were essentially swapped by exchanging a single residue located at position 179 that is arginine in ORC1 and glutamine in ORC2. Altogether the substrate specificity changes demonstrate that Arg-179 and Glu-180 of contact point II bind the C(α) carboxylate and amino group of the substrates, respectively. Residue Glu-77 of contact point I most likely interacts with the terminal amino group of the substrate side chain. Furthermore, it is likely that all three contact points are involved in the substrate-induced conformational changes required for substrate translocation because Arg-179 is probably connected with Arg-275 of contact point III through Trp-224 by cation-π interactions. Mutations at position 179 also affected the turnover number of the ornithine carrier severely, implying that substrate binding to residue 179 is a rate-limiting step of the catalytic transport cycle. Given that Arg-179 is located in the vicinity of the matrix gate, it is concluded that it is a key residue in the opening of the carrier to the matrix side.


Assuntos
Substituição de Aminoácidos , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Proteínas Mitocondriais/metabolismo , Mutação de Sentido Incorreto , Sistemas de Transporte de Aminoácidos Básicos/química , Sistemas de Transporte de Aminoácidos Básicos/genética , Sítios de Ligação , Transporte Biológico Ativo/fisiologia , Humanos , Proteínas de Transporte da Membrana Mitocondrial , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Ornitina/química , Ornitina/genética , Ornitina/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato
15.
Environ Microbiol ; 15(3): 895-906, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22958119

RESUMO

Ornithine lipids (OLs) are phosphorus-free membrane lipids that are widespread among Gram-negative bacteria. Their basic structure consists of a 3-hydroxy fatty acyl group attached in amide linkage to the α-amino group of ornithine and a second fatty acyl group ester-linked to the 3-hydroxy position of the first fatty acid. It has been shown that OLs can be hydroxylated within the amide-linked fatty acyl moiety, the secondary fatty acyl moiety or within the ornithine moiety. These modifications have been related to increased stress tolerance and symbiotic proficiency in different organisms such as Rhizobium tropici or Burkholderia cenocepacia. Analysing the membrane lipid composition of the plant pathogen Agrobacterium tumefaciens we noticed that it forms two different OLs. In the present work we studied if OLs play a role in stress tolerance and pathogenicity in A. tumefaciens. Mutants deficient in the OLs biosynthesis genes olsB or olsE were constructed and characterized. They either completely lack OLs (ΔolsB) or only form the unmodified OL (ΔolsE). Here we present a characterization of both OL mutants under stress conditions and in a plant transformation assay using potato tuber discs. Surprisingly, the lack of agrobacterial OLs promotes earlier tumour formation on the plant host.


Assuntos
Agrobacterium/genética , Agrobacterium/metabolismo , Ornitina/análogos & derivados , Tumores de Planta/microbiologia , Agrobacterium/patogenicidade , Lipídeos/genética , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Ornitina/genética , Ornitina/metabolismo , Tubérculos/microbiologia , Solanum tuberosum/microbiologia , Estresse Fisiológico
16.
Am J Physiol Regul Integr Comp Physiol ; 304(11): R991-1000, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23576614

RESUMO

Although the majority of adult teleosts excrete most of their nitrogenous wastes as ammonia, several fish species are capable of producing urea early in development. In zebrafish, it is unclear whether this results from a functional ornithine-urea cycle (O-UC) and, if so, how it might be regulated. This study examined the spatiotemporal patterns of gene expression of four major O-UC enzymes: carbamoyl phosphate synthase III (CPSIII), ornithine transcarboxylase, arginosuccinate synthetase, and arginosuccinate lyase, using real-time PCR and whole mount in situ hybridization. In addition, we hypothesized that CPSIII gene expression was epigenetically regulated through methylation of its promoter, a widespread mode of differential gene regulation between tissues and life stages in vertebrates. Furthermore, to assess CPSIII functionality, we used morpholinos to silence CPSIII in zebrafish embryos and assessed their nitrogenous waste handling during development, and in response to ammonia injections. Our results suggest that mRNAs of O-UC enzymes are expressed early in zebrafish development and colocalize to the embryonic endoderm. In addition, the methylation status of CPSIII promoter is not consistent with the patterns of expression observed in developing larvae or adult tissues, suggesting other means of transcriptional regulation of this enzyme. Finally, CPSIII morphants exhibited a transient reduction in CPSIII enzyme activity 24 h postfertilization, which was paralleled by reduced urea production during development and in response to an ammonia challenge. Overall, we conclude that the O-UC is functional in zebrafish embryos, providing further evidence that the capacity to produce urea via the O-UC is widespread in developing teleosts.


Assuntos
Envelhecimento/genética , Envelhecimento/metabolismo , Expressão Gênica/genética , Ornitina/genética , Ornitina/metabolismo , Ureia/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Amônia/metabolismo , Animais , Sequência de Bases , Carbono-Nitrogênio Ligases/genética , Carbono-Nitrogênio Ligases/metabolismo , Digoxigenina , Embrião não Mamífero , Inativação Gênica , Hibridização in Situ Fluorescente , Dados de Sequência Molecular , Sondas RNA , Reação em Cadeia da Polimerase em Tempo Real
17.
EMBO Mol Med ; 15(4): e17033, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36647689

RESUMO

Gyrate atrophy of choroid and retina (GACR) is a chorioretinal degeneration caused by pathogenic variants in the gene encoding ornithine aminotransferase (OAT), an enzyme mainly expressed in liver. Affected patients have increased ornithine concentrations in blood and other body fluids and develop progressive constriction of vision fields leading to blindness. Current therapies are unsatisfactory and better treatments are highly needed. In two mouse models of OAT deficiency that recapitulates biochemical and retinal changes of GACR, we investigated the efficacy of an intravenously injected serotype 8 adeno-associated (AAV8) vector expressing OAT under the control of a hepatocyte-specific promoter. Following injections, OAT-deficient mice showed reductions of ornithine concentrations in blood and eye cups compared with control mice injected with a vector expressing green fluorescent protein. AAV-injected mice showed improved electroretinogram response and partial restoration of retinal structure up to one-year post-injection. In summary, hepatic OAT expression by AAV8 vector was effective at correction of hyperornithinemia and improved function and structure of the retina. In conclusion, this study provides proof-of-concept of efficacy of liver-directed AAV-mediated gene therapy of GACR.


Assuntos
Atrofia Girata , Degeneração Retiniana , Animais , Camundongos , Atrofia Girata/genética , Atrofia Girata/patologia , Ornitina-Oxo-Ácido Transaminase/genética , Ornitina-Oxo-Ácido Transaminase/metabolismo , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Ornitina/genética , Ornitina/metabolismo , Terapia Genética , Fígado/patologia
18.
Plant J ; 65(3): 335-45, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21265888

RESUMO

Arabidopsis thaliana reticulate mutants exhibit differential pigmentation of the veinal and interveinal leaf regions, a visible phenotype that often indicates impaired mesophyll development. We performed a metabolomic analysis of one ven6 (venosa6) and three ven3 reticulate mutants that revealed altered levels of arginine precursors, namely increased ornithine and reduced citrulline levels. In addition, the mutants were more sensitive than the wild-type to exogenous ornithine, and leaf reticulation and mesophyll defects of these mutants were completely rescued by exogenous citrulline. Taken together, these results indicate that ven3 and ven6 mutants experience a blockage of the conversion of ornithine into citrulline in the arginine pathway. Consistent with the participation of VEN3 and VEN6 in the same pathway, the morphological phenotype of ven3 ven6 double mutants was synergistic. Map-based cloning showed that the VEN3 and VEN6 genes encode subunits of Arabidopsis carbamoyl phosphate synthetase (CPS), which is assumed to be required for the conversion of ornithine into citrulline in arginine biosynthesis. Heterologous expression of the Arabidopsis VEN3 and VEN6 genes in a CPS-deficient Escherichia coli strain fully restored bacterial growth in minimal medium, demonstrating the enzymatic activity of the VEN3 and VEN6 proteins, and indicating a conserved role for CPS in these distinct and distant species. Detailed study of the reticulate leaf phenotype in the ven3 and ven6 mutants revealed that mesophyll development is highly sensitive to impaired arginine biosynthesis.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arginina/biossíntese , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/metabolismo , Mutação , Alelos , Sequência de Aminoácidos , Substituição de Aminoácidos , Arabidopsis/anatomia & histologia , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arginina/farmacologia , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/genética , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/metabolismo , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/genética , Citrulina/genética , Citrulina/metabolismo , Citrulina/farmacologia , Escherichia coli/genética , Escherichia coli/metabolismo , Metanossulfonato de Etila/farmacologia , Células do Mesofilo/metabolismo , Metabolômica , Dados de Sequência Molecular , Morfogênese/genética , Ornitina/genética , Ornitina/metabolismo , Ornitina/farmacologia , Fenótipo , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Alinhamento de Sequência
19.
Amino Acids ; 42(1): 295-308, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21082203

RESUMO

Arginine (Arg) and ornithine (Orn), both derived from glutamate (Glu), are the primary substrates for polyamine (PA) biosynthesis, and also play important roles as substrates and intermediates of overall N metabolism in plants. Their cellular homeostasis is subject to multiple levels of regulation. Using reverse transcription quantitative PCR (RT-qPCR), we studied changes in the expression of all genes of the Orn/Arg biosynthetic pathway in response to up-regulation [via transgenic expression of mouse Orn decarboxylase (mODC)] of PA biosynthesis in poplar (Populus nigra × maximowiczii) cells grown in culture. Cloning and sequencing of poplar genes involved in the Orn/Arg biosynthetic pathway showed that they have high homology with similar genes in other plants. The expression of the genes of Orn, Arg and PA biosynthetic pathway fell into two hierarchical clusters; expression of one did not change in response to high putrescine, while members of the other cluster showed a shift in expression pattern during the 7-day culture cycle. Gene expression of branch point enzymes (N-acetyl-Glu synthase, Orn aminotransferase, Arg decarboxylase, and spermidine synthase) in the sub-pathways, constituted a separate cluster from those involved in intermediary reactions of the pathway (N-acetyl-Glu kinase, N-acetyl-Glu-5-P reductase, N-acetyl-Orn aminotransferase, N (2)-acetylOrn:N-acetyl-Glu acetyltransferase, N (2)-acetyl-Orn deacetylase, Orn transcarbamylase, argininosuccinate synthase, carbamoylphosphate synthetase, argininosuccinate lyase, S-adenosylmethionine decarboxylase, spermine synthase). We postulate that expression of all genes of the Glu-Orn-Arg pathway is constitutively coordinated and is not influenced by the increase in flux rate through this pathway in response to increased utilization of Orn by mODC; thus the pathway involves mostly biochemical regulation rather than changes in gene expression. We further suggest that Orn itself plays a major role in the regulation of this pathway.


Assuntos
Arginina/biossíntese , Ornitina/biossíntese , Populus/metabolismo , Putrescina/biossíntese , Animais , Arginina/genética , Arginina/metabolismo , Células Cultivadas , Camundongos , Camundongos Transgênicos , Ornitina/genética , Ornitina/metabolismo , Populus/química , Populus/citologia , Putrescina/química , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA