Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Exp Cell Res ; 436(2): 113980, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38401686

RESUMO

BACKGROUND: Hypospadias is a common congenital abnormality of the penile. Abnormal regulation of critical genes involved in urethral development leads to hypospadias. We used the Rab25-/- mice and foreskin fibroblasts transfected with lentivirus in vitro and in vivo to investigate the role of Rab25 in hypospadias. METHODS: The expression levels of various molecules in tissue samples and foreskin fibroblasts were confirmed using molecular biology methods (western blotting, PCR, immunohistochemistry, etc.). A scanning electron microscope (SEM) was used to visualize the external morphology of genital tubercles (GTs) of gestation day (GD) 18.5 male wild-type (WT) and Rab25-/- mice. RESULTS: An expanded distal cleft and V-shaped urethral opening were observed in GD 18.5 Rab25-/- mice. We demonstrated that Rab25 mediated hypospadias through the ß1 integrin/EGFR pathway. In addition, silencing Rab25 inhibited cell proliferation and migration and promoted apoptosis in the foreskin fibroblasts; Ki-67- and TUNEL-positive cells were mainly concentrated near the urethral seam. CONCLUSION: These findings suggest that Rab25 plays an essential role in hypospadias by activation of ß1 integrin/EGFR pathway, and Rab25 is a critical mediator of urethral seam formation in GD18.5 male fetal mice.


Assuntos
Hipospadia , Humanos , Masculino , Camundongos , Animais , Hipospadia/genética , Hipospadia/metabolismo , Integrina beta1/genética , Integrina beta1/metabolismo , Uretra/metabolismo , Pênis/metabolismo , Receptores ErbB/metabolismo , Proteínas rab de Ligação ao GTP/genética
2.
J Sex Med ; 21(5): 367-378, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38451311

RESUMO

BACKGROUND: Cavernous nerve (CN) injury, caused by prostatectomy and diabetes, initiates a remodeling process (smooth muscle apoptosis and increased collagen) in the corpora cavernosa of the penis of patients and animal models that is an underlying cause of erectile dysfunction (ED), and the Sonic hedgehog (SHH) pathway plays an essential role in the response of the penis to denervation, as collagen increases with SHH inhibition and decreases with SHH treatment. AIM: We examined if part of the mechanism of how SHH prevents penile remodeling and increased collagen with CN injury involves bone morphogenetic protein 4 (BMP4) and gremlin1 (GREM1) and examined the relationship between SHH, BMP4, GREM1, and collagen in penis of ED patients and rat models of CN injury, SHH inhibition, and SHH, BMP4, and GREM1 treatment. METHODS: Corpora cavernosa of Peyronie's disease (control), prostatectomy, and diabetic ED patients were obtained (N = 30). Adult Sprague Dawley rats (n = 90) underwent (1) CN crush (1-7 days) or sham surgery; (2) CN injury and BMP4, GREM1, or mouse serum albumin (control) treatment via Affi-Gel beads or peptide amphiphile (PA) for 14 days; (3) 5E1 SHH inhibitor, IgG, or phosphate-buffered saline (control) treatment for 2 to 4 days; or (4) CN crush with mouse serum albumin or SHH for 9 days. OUTCOMES: Immunohistochemical and Western analysis for BMP4 and GREM1, and collagen analysis by hydroxyproline and trichrome stain were performed. RESULTS: BMP4 and GREM1 proteins were identified in corpora cavernosa smooth muscle of prostatectomy, diabetic, and Peyronie's patients, and in rat smooth muscle, sympathetic nerve fibers, perineurium, blood vessels, and urethra. Collagen decreased 25.4% in rats with CN injury and BMP4 treatment (P = .02) and increased 61.3% with CN injury and GREM1 treatment (P = .005). Trichrome stain showed increased collagen in rats treated with GREM1. Western analysis identified increased BMP4 and GREM1 in corpora cavernosa of prostatectomy and diabetic patients, and after CN injury (1-2 days) in our rat model. Localization of BMP4 and GREM1 changed with SHH inhibition. SHH treatment increased the monomer form of BMP4 and GREM1, altering their range of signaling. CLINICAL IMPLICATIONS: A better understanding of penile remodeling and how fibrosis occurs with loss of innervation is essential for development of novel ED therapies. STRENGTHS AND LIMITATIONS: The relationship between SHH, BMP4, GREM1, and collagen is complex in the penis. CONCLUSION: BMP4 and GREM1 are downstream targets of SHH that impact collagen and may be useful in collaboration with SHH to prevent penile remodeling and ED.


Assuntos
Proteína Morfogenética Óssea 4 , Colágeno , Disfunção Erétil , Proteínas Hedgehog , Peptídeos e Proteínas de Sinalização Intercelular , Pênis , Transdução de Sinais , Animais , Humanos , Masculino , Pessoa de Meia-Idade , Ratos , Proteína Morfogenética Óssea 4/metabolismo , Colágeno/metabolismo , Citocinas , Modelos Animais de Doenças , Disfunção Erétil/metabolismo , Disfunção Erétil/etiologia , Proteínas Hedgehog/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Induração Peniana/metabolismo , Pênis/inervação , Pênis/metabolismo , Prostatectomia , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia
3.
J Sex Med ; 21(8): 663-670, 2024 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-38972662

RESUMO

BACKGROUND: The mechanism by which a state of low testosterone leads to erectile dysfunction (ED) has not been determined. Endocan is a novel marker of endothelial function. However, whether endocan is involved in the regulation of erectile function under low testosterone levels remains unclear. AIM: In this study we sought to determine whether a low-testosterone state inhibits erectile function by regulating endocan expression in the endothelial cells of the rat penile corpus cavernosum. METHODS: Thirty-six male Sprague-Dawley rats aged 8 weeks were randomly assigned to 6 groups (n = 6 per group) as follows: (1) control, (2) castration, (3) castration + testosterone treatment (treated with 3 mg/kg testosterone propionate per 2 days), (4) control + transfection (4 weeks after castration, injected with lentiviral vector (1 × 108 transduction units/mL, 10 µL), (5) castration + transfection, or (6) castration + empty transfection. One week after the injection, we measured the maximal intracavernous pressure/mean arterial pressure (ICPmax/MAP), serum testosterone and nitric oxide (NO) levels, and the expression of endocan, phospho-endothelial NO synthase (p-eNOS), eNOS, phospho-protein kinase B (p-AKT), and AKT in the rat penile corpus cavernosum. OUTCOMES: Under a low-androgen state, the expression of endocan in the rat penile corpus cavernosum was significantly increased, which inhibited the AKT/eNOS/NO signaling pathway and resulted in ED. RESULTS: In the castration group, the expression of endocan in the rat penile corpus cavernosum was significantly higher than that in the control group (P < .05). Additionally, the levels of p-AKT/AKT, p-eNOS/eNOS, and NO in the rat penile corpus cavernosum and ICPmax/MAP were significantly lower in the castration group than in the control group (P < .05). In the castration + transfection group compared with the castration group there was a significant decrease in the expression of endocan (P < .05) and an increase in the ratios of p-AKT/AKT, p-eNOS/eNOS, and ICPmax/MAP (P < .05) in the rat penile corpus cavernosum. CLINICAL IMPLICATIONS: Downregulating the expression of endocan in the penile corpus cavernosum may be a feasible approach for treating ED caused by hypoandrogenism. STRENGTHS AND LIMITATIONS: The results of this study indicte that endocan may affect NO levels and erectile function through multiple signaling pathways, but further experiments are needed to clarify the relationship between endocan and androgens. CONCLUSION: A low-testosterone state inhibits the AKT/eNOS/NO signaling pathway by increasing the expression of endocan in the rat penile corpus cavernosum and impairing erectile function in rats. Decreasing the expression of endocan in the penile corpus cavernosum can improve erectile function in rats with low testosterone levels.


Assuntos
Disfunção Erétil , Óxido Nítrico Sintase Tipo III , Pênis , Proteoglicanas , Ratos Sprague-Dawley , Testosterona , Animais , Masculino , Pênis/metabolismo , Disfunção Erétil/etiologia , Disfunção Erétil/metabolismo , Ratos , Testosterona/sangue , Óxido Nítrico Sintase Tipo III/metabolismo , Proteoglicanas/metabolismo , Ereção Peniana/fisiologia , Ereção Peniana/efeitos dos fármacos , Óxido Nítrico/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Endoteliais/metabolismo
4.
Histol Histopathol ; 39(8): 1009-1015, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38221876

RESUMO

Exposure to prolonged stress in pregnancy and/or lactation can lead to the future development of diseases. We aimed to study the effects of maternal stress on the biometry, metabolism, and penile morphology of young Wistar rats. Animals were divided into two experimental groups: Control Group (C) - pups from control mothers, without any intervention (n=5); and Chronic Stress Group (S) - pups from mothers who suffered variable stress in the third week of pregnancy (14th to 21st day; n=5). Food intake and body mass of the pups (n=10, in the C group and n=9 in the S group) were checked; at euthanasia (three months old), fat deposits and penis were removed. At birth and weaning, S animals were lighter than C animals, [-33.72% (p=0.0422) and -17.07% (p=0.0018)], respectively. However, the final body mass and body mass delta showed no differences. Food intake and fat deposits also did not differ. However, the S group was hyperglycemic at 30 and 60 days of life [+20.59% (p=0.0042) and +14.56% (p=0.0079), respectively], despite the glycemia measured at 90 days showing no difference between groups. Penile areas and surface densities of the corpora cavernosa components were similar between groups. The results indicate that maternal stress is an important metabolic programmer, which generates low birth weight and accelerated recovery of body mass after birth (catch-up). However, in an early analysis (90 days of life), exposure to gestational stress did not change the morphology of the offspring's penis in adulthood.


Assuntos
Pênis , Efeitos Tardios da Exposição Pré-Natal , Ratos Wistar , Estresse Psicológico , Animais , Masculino , Feminino , Gravidez , Pênis/metabolismo , Ratos , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/patologia , Estresse Psicológico/metabolismo , Animais Recém-Nascidos , Peso Corporal
5.
Elife ; 122024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856719

RESUMO

Erectile dysfunction (ED) affects a significant proportion of men aged 40-70 and is caused by cavernous tissue dysfunction. Presently, the most common treatment for ED is phosphodiesterase 5 inhibitors; however, this is less effective in patients with severe vascular disease such as diabetic ED. Therefore, there is a need for development of new treatment, which requires a better understanding of the cavernous microenvironment and cell-cell communications under diabetic condition. Pericytes are vital in penile erection; however, their dysfunction due to diabetes remains unclear. In this study, we performed single-cell RNA sequencing to understand the cellular landscape of cavernous tissues and cell type-specific transcriptional changes in diabetic ED. We found a decreased expression of genes associated with collagen or extracellular matrix organization and angiogenesis in diabetic fibroblasts, chondrocytes, myofibroblasts, valve-related lymphatic endothelial cells, and pericytes. Moreover, the newly identified pericyte-specific marker, Limb Bud-Heart (Lbh), in mouse and human cavernous tissues, clearly distinguishing pericytes from smooth muscle cells. Cell-cell interaction analysis revealed that pericytes are involved in angiogenesis, adhesion, and migration by communicating with other cell types in the corpus cavernosum; however, these interactions were highly reduced under diabetic conditions. Lbh expression is low in diabetic pericytes, and overexpression of LBH prevents erectile function by regulating neurovascular regeneration. Furthermore, the LBH-interacting proteins (Crystallin Alpha B and Vimentin) were identified in mouse cavernous pericytes through LC-MS/MS analysis, indicating that their interactions were critical for maintaining pericyte function. Thus, our study reveals novel targets and insights into the pathogenesis of ED in patients with diabetes.


Assuntos
Disfunção Erétil , Pênis , Pericitos , Análise da Expressão Gênica de Célula Única , Animais , Humanos , Masculino , Camundongos , Disfunção Erétil/genética , Disfunção Erétil/metabolismo , Camundongos Endogâmicos C57BL , Pênis/metabolismo , Pericitos/metabolismo , Transcriptoma
6.
J Pediatr Surg ; 59(8): 1526-1530, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38631998

RESUMO

BACKGROUND: A buried penis (BP) is rare in which the penile body is retracted into the prepubic adipose tissue. This research focuses on differences in smooth muscle myosin heavy chain (SMMHC) isoform expressions in the dartos fascia. METHODS: A total of 82 children, 41 of whom had BPs, who applied for circumcision between May and November 2021, were included in the study. The cases were divided into four groups aged ≥6 years (NP6, n = 18) and aged ≤3 years (NP3, n = 17) with normal penile appearance, aged ≥6 years (BP6, n = 23) and aged ≤3 years (BP,n = 24) with a BP. SMMHC isoforms mRNA gene expression analyses were performed by quantitative PCR technique in dartos fascia obtained from foreskin removed by circumcision. RESULTS: Compared to the NP3 group, the SM1 mRNA expressed in the BP6 group was statistically significantly higher (p < 0.005). SM2 mRNA levels expressed in dartos fascia were considerably higher in NP6 and NP3 groups compared to BP6 and BP3 groups (p < 0.001). The SM2/SM1 ratio was 0.85 in the BP6 group and 1.46 in the NP6 group, which was statistically significant (p = 0.006) and increased from 0.87 in the BP3 group to 2.21 in the NP3 group (p < 0.001). CONCLUSION: In a buried penis, there is a difference in the expression of SMMHC isoforms. SM1 is highly expressed, while SM2 decreases, increasing the SM2/SM1 ratio. This causes increased contractility in the smooth muscle, leading to retraction of the penile body. The dartos fascia surrounding it resembles aberrant muscle tissue in boys with a BP. LEVEL OF EVIDENCE: Level III. TYPE OF STUDY: Case-control study.


Assuntos
Cadeias Pesadas de Miosina , Pênis , Isoformas de Proteínas , Humanos , Masculino , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Criança , Pré-Escolar , Isoformas de Proteínas/genética , Pênis/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro/análise , Lactente , Circuncisão Masculina , Doenças do Pênis/metabolismo , Doenças do Pênis/genética , Miosinas de Músculo Liso/metabolismo , Miosinas de Músculo Liso/genética , Miosinas de Músculo Liso/análise
7.
Andrology ; 12(6): 1280-1293, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38227138

RESUMO

BACKGROUND: Diabetes mellitus-induced erectile dysfunction (DMED) has become a common disease in adult men that can seriously reduce the quality of life of patients, and new therapies are urgently needed. miRNA-100 has many targets and can induce autophagy and reduce fibrosis by inhibiting the mTOR pathway and the TGF-ß pathway. However, no research has been conducted with miR-100 in the field of DMED, and the specific mechanism of action is still unclear. OBJECTIVES: To ascertain the effects of miR-100 on corpus cavernosum tissue of DMED rats and vascular endothelial cells in a high glucose environment and to elucidate the relevant mechanisms in autophagy, fibrosis and inflammation to find a new approach for the DMED therapy. METHODS: Thirty rats were divided into three groups: the control group, the DMED group, and the DMED + miR-100 group. Using intraperitoneal injections of streptozotocin, all rats except the control group were modeled with diabetes mellitus, which was verified using the apomorphine (APO) test. For rats in the DMED + miR-100 group, rno-miR-100-5p agomir (50 nmol/kg, every 2 days, 6 times in total) was injected via the tail vein. After 13 weeks, the erectile function of each rat was assessed using cavernous manometry, and the corpus cavernosum tissue was harvested for subsequent experiments. For cellular experiments, human coronary microartery endothelial cells (HCMEC) were divided into four groups: the control group, the high-glucose (HG, 40 mM) group, the HG + mimic group, and the HG + inhibitor group. The cells were cultured for 6 days and collected for subsequent experiments 2 days after transfection. RESULTS: Diabetic modeling impaired the erectile function in rats, and miR-100 reversed this effect. By measuring autophagy-related proteins such as mTOR/Raptor/Beclin1/p62/LC3B, we found that miR-100 could suppress the expression of mTOR and induce autophagy. The analysis of the eNOS/NO/cGMP axis function indicated that impaired endothelial function was improved by miR-100. By evaluating the TGF-ß1/CTGF/Smad2/3 and NF-κB/TNF-α pathways, we found that miR-100 could lower the level of inflammation and fibrosis, which contributed to the improvement of the erectile function. Cellular experiments can be used as supporting evidence for these findings. CONCLUSION: MiR-100 can improve the erectile function by inhibiting mTOR and thus inducing autophagy, improving the endothelial function through the eNOS/NO/cGMP axis, and exerting antifibrotic and anti-inflammatory effects, which may provide new ideas and directions for the treatment of DMED.


Assuntos
Autofagia , Diabetes Mellitus Experimental , Disfunção Erétil , Fibrose , MicroRNAs , Animais , Masculino , Disfunção Erétil/etiologia , Disfunção Erétil/metabolismo , MicroRNAs/metabolismo , MicroRNAs/genética , Ratos , Diabetes Mellitus Experimental/complicações , Ratos Sprague-Dawley , Pênis/metabolismo , Células Endoteliais/metabolismo
8.
Br J Pharmacol ; 181(15): 2566-2582, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38604613

RESUMO

BACKGROUND AND PURPOSE: An estimated 40% of patients with erectile dysfunction have a poor prognosis for improvement with currently available treatments. The present study investigated whether a newly developed monoamine transport inhibitor, IP2015, improves erectile function. EXPERIMENTAL APPROACH: We investigated the effects of IP2015 on monoamine uptake and binding, erectile function in rats and diabetic mice and the effect on corpus cavernosum contractility. KEY RESULTS: IP2015 inhibited the uptake of 5-HT, noradrenaline and dopamine by human monoamine transporters expressed in cells and in rat brain synaptosomes. Intracavernosal pressure measurement in anaesthetized rats revealed that IP2015 dose-dependently increased the number and the duration of spontaneous erections. Whereas pretreatment with the dopamine D2-like receptor antagonists, clozapine and (-)-sulpiride, or cutting the cavernosal nerve inhibited IP2015-induced erectile responses, the phosphodiesterase type 5 inhibitor sildenafil further enhanced the IP2015-mediated increase in intracavernosal pressure. IP2015 also increased the number of erections in type 2 diabetic db/db mice. Direct intracavernosal injection of IP2015 increased penile pressure, and in corpus cavernosum strips, IP2015 induced concentration-dependent relaxations. These relaxations were enhanced by sildenafil and blunted by endothelial cell removal, a nitric oxide synthase inhibitor, NG-nitro-l-arginine and a D1-like receptor antagonist, SCH23390. Quantitative polymerase chain reaction (qPCR) showed the expression of the dopamine transporter in the rat corpus cavernosum. CONCLUSION AND IMPLICATIONS: Our findings suggest that IP2015 stimulates erectile function by a central mechanism involving dopamine reuptake inhibition and direct NO-mediated relaxation of the erectile tissue. This novel multi-modal mechanism of action could offer a new treatment approach to erectile dysfunction.


Assuntos
Dopamina , Óxido Nítrico , Ereção Peniana , Ratos Sprague-Dawley , Masculino , Animais , Dopamina/metabolismo , Óxido Nítrico/metabolismo , Ereção Peniana/efeitos dos fármacos , Ratos , Camundongos , Humanos , Camundongos Endogâmicos C57BL , Disfunção Erétil/tratamento farmacológico , Disfunção Erétil/metabolismo , Piperazinas/farmacologia , Pênis/efeitos dos fármacos , Pênis/metabolismo , Relação Dose-Resposta a Droga
9.
Adv Sci (Weinh) ; 11(30): e2306514, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38874549

RESUMO

The mechanisms of adenosine and specific adenosine receptor subtypes in promoting penile rehabilitation remain unclear. Single-cell RNA sequencing of human corpus cavernosum,  adenosine deaminase (ADA) and adenosine receptors knock-out mice (ADA-/-, A1-/-, A2a-/-, A2b-/-, and A3-/-), and primary corpus cavernosum smooth muscle cells are used to determine receptor subtypes responsible for adenosine-induced erection. Three rat models are established to characterize refractory erectile dysfunction (ED): age-related ED, bilateral cavernous nerve crush related ED (BCNC), and diabetes mellitus-induced ED. In single-cell RNA sequencing data, the corpus cavernosum of ED patients show a decrease in adenosine A1, A2a and A2b receptors. In vivo, A2b receptor knock-out abolishes adenosine-induced erection but not that of A1, A2a, or A3 receptor. Under hypoxic conditions in vitro, activating the A2b receptor increases HIF-1α and decreases PDE5 expression. In refractory ED models, activating the A2b receptor with Bay 60-6583 improves erectile function and down-regulates HIF-1α and TGF-ß. Administering Dipyridamole (40 mg Kg-1) to BCNC rats improve penile adenosine levels and erectile function. Our study reveals that the A2b receptor mediates adenosine-induced penile erection. Activating the A2b receptor promotes penile rehabilitation of refractory ED by alleviating hypoxia and fibrosis.


Assuntos
Modelos Animais de Doenças , Disfunção Erétil , Receptor A2B de Adenosina , Masculino , Animais , Disfunção Erétil/metabolismo , Disfunção Erétil/reabilitação , Disfunção Erétil/tratamento farmacológico , Disfunção Erétil/genética , Receptor A2B de Adenosina/metabolismo , Receptor A2B de Adenosina/genética , Ratos , Camundongos , Humanos , Pênis/metabolismo , Pênis/fisiopatologia , Camundongos Knockout , Ratos Sprague-Dawley , Adenosina/metabolismo , Ereção Peniana/efeitos dos fármacos , Ereção Peniana/fisiologia
10.
Andrology ; 12(6): 1449-1462, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38273709

RESUMO

BACKGROUND: The relationship between erectile dysfunction (ED) and type 1 diabetes mellitus (T1DM) is currently a hot topic of medical research. It has been reported that autophagy plays a crucial role in causing erectile dysfunction in T1DM. Recent research has shown that mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2) is strongly linked to the development of T1DM. However, the specific mechanism by which it regulates the erectile function is not yet fully understood. OBJECTIVES: To investigate whether HMGCS2 affects erectile function in type 1 diabetic rats by regulating autophagy in corpus cavernosum endothelial cells (CCECs). MATERIALS AND METHODS: First, the rat model of T1DM was established. Then, the ratio of maximum penile intracavernous pressure (ICPmax) and mean arterial pressure (MAP) was detected to assess the erectile function in various groups, and the protein expression of HMGCS2, mTOR and p-mTOR was evaluated by western blot (WB) and immunohistochemistry (IHC). To explore the relationship between HMGCS2 and the mTOR signaling pathway in T1DM ED rats, we silenced the expression of HMGCS2 and activated the mTOR signaling pathway with MHY1485 in CCECs and then assessed the expression of beclin1, P62, LC3, autophagosome, endothelial nitric oxide synthase (eNOS), phosphorylation of eNOS (p-eNOS), and nitric oxide (NO) to evaluate autophagy and the erectile function by reverse transcription quantitative polymerase chain reaction and western blot. RESULTS: The study conducted on T1DM ED rats showed that the expression of HMGCS2 was significantly increased, while the autophagy was suppressed. Additionally, the mTOR signaling pathway was highly activated. In contrast, when HMGCS2 was silenced in vitro, p-mTOR/mTOR was reduced, and autophagy was improved. These effects were accompanied by the enhanced activity of eNOS. Furthermore, when HMGCS2 was silenced and the mTOR signaling pathway was simultaneously activated, the results revealed a decrease in autophagy as well as a reduction in activity of eNOS in comparison to just silencing HMGCS2 alone. DISCUSSION AND CONCLUSION: HMGCS2 upregulation in T1DM rats inhibited autophagy and eNOS activity by activating the mTOR pathway and led to a decrease in the erectile function.


Assuntos
Autofagia , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Disfunção Erétil , Hidroximetilglutaril-CoA Sintase , Ratos Sprague-Dawley , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Masculino , Disfunção Erétil/metabolismo , Disfunção Erétil/fisiopatologia , Serina-Treonina Quinases TOR/metabolismo , Ratos , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicações , Hidroximetilglutaril-CoA Sintase/metabolismo , Hidroximetilglutaril-CoA Sintase/genética , Pênis/metabolismo , Células Endoteliais/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo
11.
Sci Rep ; 14(1): 16457, 2024 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014129

RESUMO

Erectile dysfunction (ED) is the most prevalent consequences in men with diabetes mellitus (DM). Recent studies demonstrates that neutrophil extracellular traps (NETs) play important roles in DM and its complications. Nevertheless, whether NETs are involved in ED remains unknown. This work intended to explore the role and mechanisms of NETs in ED in the context of DM. Here, we observed that NET generation and pyroptosis were promoted in DM rats with ED compared with controls. Mechanistically, NETs facilitated NLRP3 inflammasome activation and subsequently triggered pyroptosis under high glucose stress, ultimately leading to ED. Intriguingly, DNase I (a NET degrading agent) alleviated ED and corpus cavernosum injury in DM rats. Overall, NETs might induce ED in DM by promoting NLRP3-mediated pyroptosis in the corpus cavernosum.


Assuntos
Diabetes Mellitus Experimental , Disfunção Erétil , Armadilhas Extracelulares , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , Animais , Armadilhas Extracelulares/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Masculino , Disfunção Erétil/metabolismo , Disfunção Erétil/etiologia , Ratos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicações , Neutrófilos/metabolismo , Ratos Sprague-Dawley , Inflamassomos/metabolismo , Desoxirribonuclease I/metabolismo , Pênis/metabolismo , Pênis/patologia
12.
Biomed Pharmacother ; 177: 116987, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38897159

RESUMO

Erectile dysfunction is a complex and common complication of diabetes mellitus, which lacks an effective treatment. The repairing role of vascular endothelium is the current research hotspot of diabetic mellitus erectile dysfunction (DMED), and the activation of PI3K/AKT/eNOS pathway positively affects the repair of vascular endothelium. The herbal extract isorhamnetin has significant vasoprotective effects and has great potential in treating DMED. This study aimed to clarify whether isorhamnetin has an ameliorative effect on DMED and to investigate the modulation of the PI3K/AKT/eNOS signaling pathway by isorhamnetin to discover its potential mechanism of action. In vivo experiments were performed using a streptozotocin-induced diabetic rat model, and efficacy was assessed after 4 weeks of isorhamnetin gavage administration at 10 mg/kg or 20 mg/kg. Erectile function in rats was assessed by maximum intracavernous pressure/mean arterial pressure (ICPmax/MAP), and changes in corpus cavernosum (CC) fibrosis, inflammation levels, oxidative stress levels, and apoptosis were assessed by molecular biology techniques. In vitro experiments using high glucose-induced corpus cavernosum endothelial cells were performed to further validate the anti-apoptotic effect of isorhamnetin and its regulation of the PI3K/AKT/eNOS pathway. The findings demonstrated that isorhamnetin enhanced erectile function, decreased collagen content, and increased smooth muscle content in the CC of diabetic rats. In addition, isorhamnetin decreased the serum levels of pro-inflammatory factors IL-6, TNF-α, and IL-1ß, increased the levels of anti-inflammatory factors IL-10 and IL-4, increased the activities of SOD, GPx, and CAT as well as the levels of NO, and decreased the levels of MDA in corpus cavernosum tissues. Isorhamnetin also increased the content of CD31 in CC tissues of diabetic rats, activated the PI3K/AKT/eNOS signaling pathway, and inhibited apoptosis. In conclusion, isorhamnetin exerts a protective effect on erectile function in diabetic rats by reducing the inflammatory response, attenuating the level of oxidative stress and CC fibrosis, improving the endothelial function and inhibiting apoptosis. The mechanism underlying these effects may be linked to the activation of the PI3K/AKT/eNOS pathway.


Assuntos
Disfunção Erétil , Estresse Oxidativo , Quercetina , Transdução de Sinais , Animais , Masculino , Ratos , Apoptose/efeitos dos fármacos , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Disfunção Erétil/tratamento farmacológico , Disfunção Erétil/etiologia , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ereção Peniana/efeitos dos fármacos , Pênis/efeitos dos fármacos , Pênis/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quercetina/farmacologia , Quercetina/análogos & derivados , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
13.
PLoS One ; 19(7): e0306926, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38990890

RESUMO

The primary objective of this work was to delve into the potential therapeutic advantages and dissect the molecular mechanisms of salidroside in enhancing erectile function in rats afflicted with diabetic microvascular erectile dysfunction (DMED), addressing both the whole-animal and cellular dimensions.We established a DMED model in Sprague‒Dawley (SD) rats and conducted in vivo experiments. The DMED rats were administered varying doses of salidroside, the effects of which on DMED were compared. Erectile function was evaluated by applying electrical stimulation to the cavernous nerves and measuring intracavernous pressure in real time. The penile tissue underwent histological examination and Western blotting. Hydrogen peroxide (H2O2) was employed in the in vitro trial to induce an oxidative stress for the purpose of identifying alterations in cell viability. The CCK-8 assay was used to measure the viability of corpus cavernous smooth muscle cells (CCSMCs) treated with vs. without salidroside. Flow cytometry was utilized to detect alterations in intracellular reactive oxygen species (ROS). Apoptosis was assessed through Western blotting and TdT-mediated dUTP nick-end labelling (TUNEL). Animal and cellular experiments indicate that the Nrf2/HO-1 signalling pathway may be upregulated by salidroside, leading to the improvement of erectile function in diabetic male rats by alleviating oxidative stress and reducing apoptosis in corpus cavernosum tissue.


Assuntos
Apoptose , Disfunção Erétil , Glucosídeos , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Fenóis , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio , Transdução de Sinais , Animais , Masculino , Estresse Oxidativo/efeitos dos fármacos , Disfunção Erétil/tratamento farmacológico , Disfunção Erétil/metabolismo , Disfunção Erétil/etiologia , Apoptose/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Fenóis/farmacologia , Fenóis/uso terapêutico , Glucosídeos/farmacologia , Ratos , Transdução de Sinais/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/tratamento farmacológico , Pênis/efeitos dos fármacos , Pênis/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Heme Oxigenase (Desciclizante)/metabolismo , Heme Oxigenase-1/metabolismo , Sobrevivência Celular/efeitos dos fármacos
14.
Braz. j. med. biol. res ; 51(3): e6329, 2018. graf
Artigo em Inglês | LILACS | ID: biblio-889035

RESUMO

Recent evidence shows that chronic ethanol consumption increases endothelin (ET)-1 induced sustained contraction of trabecular smooth muscle cells of the corpora cavernosa in corpus cavernosum of rats by a mechanism that involves increased expression of ETA and ETB receptors. Our goal was to evaluate the effects of alcohol and diabetes and their relationship to miRNA-155, miRNA-199 and endothelin receptors in the corpus cavernosum and blood of rats submitted to the experimental model of diabetes mellitus and chronic alcoholism. Forty-eight male Wistar rats were divided into four groups: control (C), alcoholic (A), diabetic (D), and alcoholic-diabetic (AD). Samples of the corpus cavernosum were prepared to study the protein expression of endothelin receptors by immunohistochemistry and expression of miRNAs-155 and -199 in serum and the cavernous tissue. Immunostaining for endothelin receptors was markedly higher in the A, D, and AD groups than in the C group. Moreover, a significant hypoexpression of the miRNA-199 in the corpus cavernosum tissue from the AD group was observed, compared to the C group. When analyzing the microRNA profile in blood, a significant hypoexpression of miRNA-155 in the AD group was observed compared to the C group. The miRNA-199 analysis demonstrated significant hypoexpression in D and AD groups compared to the C group. Our findings in corpus cavernosum showed downregulated miRNA-155 and miRNA-199 levels associated with upregulated protein expression and unaltered mRNA expression of ET receptors suggesting decreased ET receptor turnover, which can contribute to erectile dysfunction in diabetic rats exposed to high alcohol levels.


Assuntos
Animais , Masculino , Ratos , Alcoolismo/metabolismo , Diabetes Mellitus Experimental/metabolismo , Endotelina-1/análise , MicroRNAs/análise , Pênis/metabolismo , Receptor de Endotelina A/análise , Receptor de Endotelina B/análise , Alcoolismo/complicações , Alcoolismo/fisiopatologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/fisiopatologia , Imuno-Histoquímica , Pênis/fisiopatologia , Ratos Wistar
15.
Braz. j. med. biol. res ; 47(10): 876-885, 10/2014. tab, graf
Artigo em Inglês | LILACS | ID: lil-722165

RESUMO

The aim of the present study was to determine the mechanisms underlying the relaxant effect of adrenomedullin (AM) in rat cavernosal smooth muscle (CSM) and the expression of AM system components in this tissue. Functional assays using standard muscle bath procedures were performed in CSM isolated from male Wistar rats. Protein and mRNA levels of pre-pro-AM, calcitonin receptor-like receptor (CRLR), and Subtypes 1, 2 and 3 of the receptor activity-modifying protein (RAMP) family were assessed by Western immunoblotting and quantitative real-time polymerase chain reaction, respectively. Nitrate and 6-keto-prostaglandin F1α (6-keto-PGF1α; a stable product of prostacyclin) levels were determined using commercially available kits. Protein and mRNA of AM, CRLR, and RAMP 1, -2, and -3 were detected in rat CSM. Immunohistochemical assays demonstrated that AM and CRLR were expressed in rat CSM. AM relaxed CSM strips in a concentration-dependent manner. AM22-52, a selective antagonist for AM receptors, reduced the relaxation induced by AM. Conversely, CGRP8-37, a selective antagonist for calcitonin gene-related peptide receptors, did not affect AM-induced relaxation. Preincubation of CSM strips with NG-nitro-L-arginine-methyl-ester (L-NAME, nitric oxide synthase inhibitor), 1H-(1,2,4)oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, quanylyl cyclase inhibitor), Rp-8-Br-PET-cGMPS (cGMP-dependent protein kinase inhibitor), SC560 [5-(4-chlorophenyl)-1-(4-methoxyphenyl)-3-trifluoromethyl pyrazole, selective cyclooxygenase-1 inhibitor], and 4-aminopyridine (voltage-dependent K+ channel blocker) reduced AM-induced relaxation. On the other hand, 7-nitroindazole (selective neuronal nitric oxide synthase inhibitor), wortmannin (phosphatidylinositol 3-kinase inhibitor), H89 (protein kinase A inhibitor), SQ22536 [9-(tetrahydro-2-furanyl)-9H-purin-6-amine, adenylate cyclase inhibitor], glibenclamide (selective blocker of ATP-sensitive K+ channels), and apamin (Ca2+-activated channel blocker) did not affect AM-induced relaxation. AM increased nitrate levels and 6-keto-PGF1α in rat CSM. The major new contribution of this research is that it demonstrated expression of AM and its receptor in rat CSM. Moreover, we provided evidence that AM-induced relaxation in this tissue is mediated by AM receptors by a mechanism that involves the nitric oxide-cGMP pathway, a vasodilator prostanoid, and the opening of voltage-dependent K+ channels.


Assuntos
Animais , Masculino , Adrenomedulina/farmacologia , Proteína Semelhante a Receptor de Calcitonina/análise , Músculo Liso/efeitos dos fármacos , Parassimpatolíticos/farmacologia , Pênis/efeitos dos fármacos , Vasodilatadores/farmacologia , /farmacologia , /análise , Adrenomedulina/genética , Adrenomedulina/metabolismo , Western Blotting , Proteína Semelhante a Receptor de Calcitonina/antagonistas & inibidores , Proteínas Quinases Dependentes de GMP Cíclico/antagonistas & inibidores , Inibidores de Ciclo-Oxigenase/farmacologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Imuno-Histoquímica , Indazóis/farmacologia , Relaxamento Muscular , Músculo Liso/metabolismo , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico/análise , Óxido Nítrico/análogos & derivados , Pênis/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , RNA Mensageiro/metabolismo , Proteína 1 Modificadora da Atividade de Receptores/genética , Proteína 1 Modificadora da Atividade de Receptores/metabolismo , /metabolismo , /genética , /metabolismo , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA