Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 168(6): 990-999.e7, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28283070

RESUMO

In the ciliated protozoan Paramecium tetraurelia, Piwi-associated small RNAs are generated upon the elimination of tens of thousands of short transposon-derived DNA segments as part of development. These RNAs then target complementary DNA for elimination in a positive feedback process, contributing to germline defense and genome stability. In this work, we investigate the formation of these RNAs, which we show to be transcribed directly from the short (length mode 27 bp) excised DNA segments. Our data support a mechanism whereby the concatenation and circularization of excised DNA segments provides a template for RNA production. This process allows the generation of a double-stranded RNA for Dicer-like protein cleavage to give rise to a population of small regulatory RNAs that precisely match the excised DNA sequences. VIDEO ABSTRACT.


Assuntos
DNA Concatenado , Paramecium tetraurellia/genética , Núcleo Celular/metabolismo , DNA Ligase Dependente de ATP/metabolismo , Elementos de DNA Transponíveis , Exodesoxirribonucleases/metabolismo , Paramecium tetraurellia/citologia , Paramecium tetraurellia/metabolismo , RNA/genética , Transcrição Gênica
2.
J Cell Sci ; 137(16)2024 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-39212120

RESUMO

The unicellular eukaryote Paramecium tetraurelia contains functionally distinct nuclei: germline micronuclei (MICs) and a somatic macronucleus (MAC). During sex, the MIC genome is reorganized into a new MAC genome and the old MAC is lost. Almost 45,000 unique internal eliminated sequences (IESs) distributed throughout the genome require precise excision to guarantee a functional new MAC genome. Here, we characterize a pair of paralogous PHD finger proteins involved in DNA elimination. DevPF1, the early-expressed paralog, is present in only some of the gametic and post-zygotic nuclei during meiosis. Both DevPF1 and DevPF2 localize in the new developing MACs, where IES excision occurs. Upon DevPF2 knockdown (KD), long IESs are preferentially retained and late-expressed small RNAs decrease; no length preference for retained IESs was observed in DevPF1-KD and development-specific small RNAs were abolished. The expression of at least two genes from the new MAC with roles in genome reorganization seems to be influenced by DevPF1- and DevPF2-KD. Thus, both PHD fingers are crucial for new MAC genome development, with distinct functions, potentially via regulation of non-coding and coding transcription in the MICs and new MACs.


Assuntos
Edição de Genes , Paramecium tetraurellia , Proteínas de Protozoários , Paramecium tetraurellia/genética , Paramecium tetraurellia/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Macronúcleo/genética , Macronúcleo/metabolismo , Genoma de Protozoário , Micronúcleo Germinativo/metabolismo , Micronúcleo Germinativo/genética , Meiose/genética
3.
Proc Natl Acad Sci U S A ; 120(4): e2213887120, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36669098

RESUMO

Massive DNA excision occurs regularly in ciliates, ubiquitous microbial eukaryotes with somatic and germline nuclei in the same cell. Tens of thousands of internally eliminated sequences (IESs) scattered throughout the ciliate germline genome are deleted during the development of the streamlined somatic genome. The genus Blepharisma represents one of the two high-level ciliate clades (subphylum Postciliodesmatophora) and, unusually, has dual pathways of somatic nuclear and genome development. This makes it ideal for investigating the functioning and evolution of these processes. Here we report the somatic genome assembly of Blepharisma stoltei strain ATCC 30299 (41 Mbp), arranged as numerous telomere-capped minichromosomal isoforms. This genome encodes eight PiggyBac transposase homologs no longer harbored by transposons. All appear subject to purifying selection, but just one, the putative IES excisase, has a complete catalytic triad. We hypothesize that PiggyBac homologs were ancestral excisases that enabled the evolution of extensive natural genome editing.


Assuntos
Cilióforos , Paramecium tetraurellia , Edição de Genes , Genoma , Cilióforos/genética , Paramecium tetraurellia/metabolismo , Núcleo Celular/metabolismo , DNA de Protozoário/genética
4.
Traffic ; 18(1): 18-28, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27696651

RESUMO

As most of eukaryotic diversity lies in single-celled protists, they represent unique opportunities to ask questions about the balance of conservation and innovation in cell biological features. Among free-living protists the ciliates offer ease of culturing, a rich array of experimental approaches, and versatile molecular tools, particularly in Tetrahymena thermophila and Paramecium tetraurelia. These attributes have been exploited by researchers to analyze a wealth of cellular structures in these large and complex cells. This mini-review focuses on 3 aspects of ciliate membrane dynamics, all linked with endolysosomal trafficking. First is nutrition based on phagocytosis and maturation of food vacuoles. Secondly, we discuss regulated exocytosis from vesicles that have features of both dense core secretory granules but also lysosome-related organelles. The third topic is the targeting, breakdown and resorption of parental nuclei in mating partners. For all 3 phenomena, it is clear that elements of the canonical membrane-trafficking system have been retained and in some cases repurposed. In addition, there is evidence that recently evolved, lineage-specific proteins provide determinants in these pathways.


Assuntos
Membranas/metabolismo , Transporte Proteico/fisiologia , Animais , Exocitose/fisiologia , Humanos , Lisossomos/metabolismo , Lisossomos/fisiologia , Paramecium tetraurellia/metabolismo , Fagocitose/fisiologia , Proteínas de Protozoários/metabolismo , Vesículas Secretórias/metabolismo , Tetrahymena thermophila/metabolismo
5.
Proc Natl Acad Sci U S A ; 113(30): 8442-7, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27402755

RESUMO

F1Fo-ATP synthases are universal energy-converting membrane protein complexes that synthesize ATP from ADP and inorganic phosphate. In mitochondria of yeast and mammals, the ATP synthase forms V-shaped dimers, which assemble into rows along the highly curved ridges of lamellar cristae. Using electron cryotomography and subtomogram averaging, we have determined the in situ structure and organization of the mitochondrial ATP synthase dimer of the ciliate Paramecium tetraurelia. The ATP synthase forms U-shaped dimers with parallel monomers. Each complex has a prominent intracrista domain, which links the c-ring of one monomer to the peripheral stalk of the other. Close interaction of intracrista domains in adjacent dimers results in the formation of helical ATP synthase dimer arrays, which differ from the loose dimer rows in all other organisms observed so far. The parameters of the helical arrays match those of the cristae tubes, suggesting the unique features of the P. tetraurelia ATP synthase are directly responsible for generating the helical tubular cristae. We conclude that despite major structural differences between ATP synthase dimers of ciliates and other eukaryotes, the formation of ATP synthase dimer rows is a universal feature of mitochondria and a fundamental determinant of cristae morphology.


Assuntos
Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Proteínas de Protozoários/metabolismo , Animais , Microscopia Eletrônica , Mitocôndrias/ultraestrutura , Membranas Mitocondriais/ultraestrutura , ATPases Mitocondriais Próton-Translocadoras/química , Modelos Moleculares , Paramecium tetraurellia/enzimologia , Paramecium tetraurellia/metabolismo , Paramecium tetraurellia/ultraestrutura , Conformação Proteica , Multimerização Proteica , Estrutura Secundária de Proteína , Proteínas de Protozoários/química
6.
Chemistry ; 23(61): 15505-15517, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-28869680

RESUMO

Better understanding of uranyl-protein interactions is a prerequisite to predict uranium chemical toxicity in cells. The EF-hand motif of the calmodulin site I is about thousand times more affine for uranyl than for calcium, and threonine phosphorylation increases the uranyl affinity by two orders of magnitude at pH 7. In this study, we confront X-ray absorption spectroscopy with Fourier transform infrared (FTIR) spectroscopy, time-resolved laser-induced fluorescence spectroscopy (TRLFS), and structural models obtained by molecular dynamics simulations to analyze the uranyl coordination in the native and phosphorylated calmodulin site I. For the native site I, extended X-ray absorption fine structure (EXAFS) data evidence a short U-Oeq distance, in addition to distances compatible with mono- and bidentate coordination by carboxylate groups. Further analysis of uranyl speciation by TRLFS and thorough investigation of the fluorescence decay kinetics strongly support the presence of a hydroxide uranyl ligand. For a phosphorylated site I, the EXAFS and FTIR data support a monodentate uranyl coordination by the phosphoryl group and strong interaction with mono- and bidentate carboxylate ligands. This study confirms the important role of a phosphoryl ligand in the stability of uranyl-protein interactions. By evidencing a hydroxide uranyl ligand in calmodulin site I, this study also highlights the possible role of less studied ligands as water or hydroxide ions in the stability of protein-uranyl complexes.


Assuntos
Calmodulina/metabolismo , Complexos de Coordenação/metabolismo , Urânio/química , Motivos de Aminoácidos , Sítios de Ligação , Calmodulina/química , Complexos de Coordenação/química , Simulação de Dinâmica Molecular , Paramecium tetraurellia/metabolismo , Fosforilação , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier , Espectroscopia por Absorção de Raios X
7.
Nucleic Acids Res ; 43(17): 8157-68, 2015 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-26304543

RESUMO

In Paramecium, the regeneration of a functional somatic genome at each sexual event relies on the elimination of thousands of germline DNA sequences, known as Internal Eliminated Sequences (IESs), from the zygotic nuclear DNA. Here, we provide evidence that IESs' length and sub-terminal bases jointly modulate IES excision by affecting DNA conformation in P. tetraurelia. Our study reveals an excess of complementary base pairing between IESs' sub-terminal and contiguous sites, suggesting that IESs may form DNA loops prior to cleavage. The degree of complementary base pairing between IESs' sub-terminal sites (termed Cin-score) is positively associated with IES length and is shaped by natural selection. Moreover, it escalates abruptly when IES length exceeds 45 nucleotides (nt), indicating that only sufficiently large IESs may form loops. Finally, we find that IESs smaller than 46 nt are favored targets of the cellular surveillance systems, presumably because of their relatively inefficient excision. Our findings extend the repertoire of cis-acting determinants for IES recognition/excision and provide unprecedented insights into the distinct selective pressures that operate on IESs and somatic DNA regions. This information potentially moves current models of IES evolution and of mechanisms of IES recognition/excision forward.


Assuntos
DNA de Protozoário/química , DNA de Protozoário/metabolismo , Paramecium tetraurellia/genética , Sequências Reguladoras de Ácido Nucleico , Pareamento de Bases , Sequência de Bases , Evolução Molecular , Éxons , Expressão Gênica , Íntrons , Paramecium tetraurellia/metabolismo
8.
PLoS Genet ; 10(9): e1004665, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25254958

RESUMO

In the ciliate Paramecium tetraurelia, differentiation of the somatic nucleus from the zygotic nucleus is characterized by massive and reproducible deletion of transposable elements and of 45,000 short, dispersed, single-copy sequences. A specific class of small RNAs produced by the germline during meiosis, the scnRNAs, are involved in the epigenetic regulation of DNA deletion but the underlying mechanisms are poorly understood. Here, we show that trimethylation of histone H3 (H3K27me3 and H3K9me3) displays a dynamic nuclear localization that is altered when the endonuclease required for DNA elimination is depleted. We identified the putative histone methyltransferase Ezl1 necessary for H3K27me3 and H3K9me3 establishment and show that it is required for correct genome rearrangements. Genome-wide analyses show that scnRNA-mediated H3 trimethylation is necessary for the elimination of long, repeated germline DNA, while single copy sequences display differential sensitivity to depletion of proteins involved in the scnRNA pathway, Ezl1- a putative histone methyltransferase and Dcl5- a protein required for iesRNA biogenesis. Our study reveals cis-acting determinants, such as DNA length, also contribute to the definition of germline sequences to delete. We further show that precise excision of single copy DNA elements, as short as 26 bp, requires Ezl1, suggesting that development specific H3K27me3 and H3K9me3 ensure specific demarcation of very short germline sequences from the adjacent somatic sequences.


Assuntos
Epigênese Genética , Rearranjo Gênico , Genoma de Protozoário , Paramecium tetraurellia/genética , Zigoto/metabolismo , Elementos de DNA Transponíveis , Histonas/metabolismo , Macronúcleo , Metilação , Paramecium tetraurellia/classificação , Paramecium tetraurellia/metabolismo , Filogenia , Poliploidia , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Deleção de Sequência
9.
Nucleic Acids Res ; 42(19): 11952-64, 2014 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-25270876

RESUMO

Genome-wide DNA remodelling in the ciliate Paramecium is ensured by RNA-mediated trans-nuclear crosstalk between the germline and the somatic genomes during sexual development. The rearrangements include elimination of transposable elements, minisatellites and tens of thousands non-coding elements called internally eliminated sequences (IESs). The trans-nuclear genome comparison process employs a distinct class of germline small RNAs (scnRNAs) that are compared against the parental somatic genome to select the germline-specific subset of scnRNAs that subsequently target DNA elimination in the progeny genome. Only a handful of proteins involved in this process have been identified so far and the mechanism of DNA targeting is unknown. Here we describe chromatin assembly factor-1-like protein (PtCAF-1), which we show is required for the survival of sexual progeny and localizes first in the parental and later in the newly developing macronucleus. Gene silencing shows that PtCAF-1 is required for the elimination of transposable elements and a subset of IESs. PTCAF-1 depletion also impairs the selection of germline-specific scnRNAs during development. We identify specific histone modifications appearing during Paramecium development which are strongly reduced in PTCAF-1 depleted cells. Our results demonstrate the importance of PtCAF-1 for the epigenetic trans-nuclear cross-talk mechanism.


Assuntos
Fator 1 de Modelagem da Cromatina/fisiologia , DNA de Protozoário/metabolismo , Epigênese Genética , Proteínas de Protozoários/fisiologia , RNA de Protozoário/metabolismo , Pequeno RNA não Traduzido/metabolismo , Sobrevivência Celular , Fator 1 de Modelagem da Cromatina/metabolismo , Histonas/metabolismo , Macronúcleo/metabolismo , Paramecium tetraurellia/genética , Paramecium tetraurellia/crescimento & desenvolvimento , Paramecium tetraurellia/metabolismo , Proteínas de Protozoários/metabolismo , Reprodução
10.
J Eukaryot Microbiol ; 61(1): 95-114, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24001309

RESUMO

Early in eukaryotic evolution, the cell has evolved a considerable inventory of proteins engaged in the regulation of intracellular Ca(2+) concentrations, not only to avoid toxic effects but beyond that to exploit the signaling capacity of Ca(2+) by small changes in local concentration. Among protozoa, the ciliate Paramecium may now be one of the best analyzed models. Ciliary activity and exo-/endocytosis are governed by Ca(2+) , the latter by Ca(2+) mobilization from alveolar sacs and a superimposed store-operated Ca(2+) -influx. Paramecium cells possess plasma membrane- and endoplasmic reticulum-resident Ca(2+) -ATPases/pumps (PMCA, SERCA), a variety of Ca(2+) influx channels, including mechanosensitive and voltage-dependent channels in the plasma membrane, furthermore a plethora of Ca(2+) -release channels (CRC) of the inositol 1,4,5-trisphosphate and ryanodine receptor type in different compartments, notably the contractile vacuole complex and the alveolar sacs, as well as in vesicles participating in vesicular trafficking. Additional types of CRC probably also occur but they have not been identified at a molecular level as yet, as is the equivalent of synaptotagmin as a Ca(2+) sensor for exocytosis. Among established targets and sensors of Ca(2+) in Paramecium are calmodulin, calcineurin, as well as Ca(2+) /calmodulin-dependent protein kinases, all with multiple functions. Thus, basic elements of Ca(2+) signaling are available for Paramecium.


Assuntos
Cálcio/metabolismo , Regulação da Expressão Gênica , Paramecium tetraurellia/metabolismo , Transdução de Sinais , Redes e Vias Metabólicas
11.
Biochim Biophys Acta ; 1818(1): 117-24, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22024023

RESUMO

Many surface proteins of eukaryotic cells are tethered to the membrane by a GPI-anchor which is enzymatically cleavable. Here, we investigate cleavage and release of different GPI-proteins by phospholipase C from the outer membrane of the ciliate Paramecium tetraurelia. Our data indicate that different GPI-proteins are not equally cleaved as proteins of the surface antigen family are preferentially released in vitro compared to several smaller GPI-proteins. Likewise, the analysis of culture medium indicates exclusive in vivo release of surface antigens by two phospholipase C isoforms (PLC2 and PLC6). This suggests that phospholipase C shows affinity for select groups of GPI-anchored proteins. Our data also reveal an up-regulation of PLC isoforms in GPI-anchored protein cleavage during antigenic switching. As a consequence, silencing of these PLCs leads to a drastic decrease of antigen concentration in the medium. These results suggest a higher order of GPI-regulation by phospholipase C as cleavage occurs programmed and specific for single GPI-proteins instead of an unspecific shedding of the entire surface membrane GPI-content.


Assuntos
Antígenos de Superfície/metabolismo , Membrana Celular/metabolismo , Isoenzimas/metabolismo , Proteínas de Membrana/metabolismo , Paramecium tetraurellia/metabolismo , Fosfolipases Tipo C/metabolismo , Variação Antigênica , Antígenos de Superfície/genética , Antígenos de Superfície/imunologia , Western Blotting , Membrana Celular/genética , Meios de Cultivo Condicionados , Ensaio de Imunoadsorção Enzimática , Glicosilfosfatidilinositóis/metabolismo , Isoenzimas/genética , Isoenzimas/imunologia , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Paramecium tetraurellia/genética , Paramecium tetraurellia/imunologia , Ligação Proteica , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Especificidade por Substrato , Fosfolipases Tipo C/genética , Fosfolipases Tipo C/imunologia
12.
Eukaryot Cell ; 11(5): 645-53, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22427431

RESUMO

The individual role of the outer dynein arm light chains in the molecular mechanisms of ciliary movements in response to second messengers, such as Ca(2+) and cyclic nucleotides, is unclear. We examined the role of the gene termed the outer dynein arm light chain 1 (LC1) gene of Paramecium tetraurelia (ODAL1), a homologue of the outer dynein arm LC1 gene of Chlamydomonas reinhardtii, in ciliary movements by RNA interference (RNAi) using a feeding method. The ODAL1-silenced (ODAL1-RNAi) cells swam slowly, and their swimming velocity did not increase in response to membrane-hyperpolarizing stimuli. Ciliary movements on the cortical sheets of ODAL1-RNAi cells revealed that the ciliary beat frequency was significantly lower than that of control cells in the presence of ≥ 1 mM Mg(2+)-ATP. In addition, the ciliary orientation of ODAL1-RNAi cells did not change in response to cyclic AMP (cAMP). A 29-kDa protein phosphorylated in a cAMP-dependent manner in the control cells disappeared in the axoneme of ODAL1-RNAi cells. These results indicate that ODAL1 is essential for controlling the ciliary response by cAMP-dependent phosphorylation.


Assuntos
Cílios/metabolismo , AMP Cíclico/metabolismo , Dineínas/metabolismo , Locomoção , Paramecium tetraurellia/metabolismo , Proteínas de Protozoários/metabolismo , Sequência de Aminoácidos , Axonema/genética , Axonema/metabolismo , Cloreto de Cálcio/farmacologia , Cílios/efeitos dos fármacos , Técnicas de Cultura , Dineínas/genética , Eletroforese em Gel de Poliacrilamida , Genes de Protozoários , Dados de Sequência Molecular , Paramecium tetraurellia/genética , Fenótipo , Fosforilação , Proteínas de Protozoários/genética , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
13.
Nucleic Acids Res ; 39(10): 4249-64, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21216825

RESUMO

Proteins of the Argonaute family are small RNA carriers that guide regulatory complexes to their targets. The family comprises two major subclades. Members of the Ago subclade, which are present in most eukaryotic phyla, bind different classes of small RNAs and regulate gene expression at both transcriptional and post-transcriptional levels. Piwi subclade members appear to have been lost in plants and fungi and were mostly studied in metazoa, where they bind piRNAs and have essential roles in sexual reproduction. Their presence in ciliates, unicellular organisms harbouring both germline micronuclei and somatic macronuclei, offers an interesting perspective on the evolution of their functions. Here, we report phylogenetic and functional analyses of the 15 Piwi genes from Paramecium tetraurelia. We show that four constitutively expressed proteins are involved in siRNA pathways that mediate gene silencing throughout the life cycle. Two other proteins, specifically expressed during meiosis, are required for accumulation of scnRNAs during sexual reproduction and for programmed genome rearrangements during development of the somatic macronucleus. Our results indicate that Paramecium Piwi proteins have evolved to perform both vegetative and sexual functions through mechanisms ranging from post-transcriptional mRNA cleavage to epigenetic regulation of genome rearrangements.


Assuntos
Paramecium tetraurellia/genética , Proteínas de Protozoários/fisiologia , Interferência de RNA , Genoma , Paramecium tetraurellia/crescimento & desenvolvimento , Paramecium tetraurellia/metabolismo , Filogenia , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/genética , RNA de Cadeia Dupla/metabolismo , Transgenes
14.
Methods Cell Biol ; 175: 177-219, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36967141

RESUMO

In this chapter we provide some tools to study the ciliary proteins that make it possible for Paramecium cells to swim by beating their cilia. These proteins include many ion channels, accessory proteins, peripheral proteins, structural proteins, rootlets of cilia, and enzymes. Some of these proteins are also found in the soma membrane, but their distinct and critical functions are in the cilia. Paramecium has 4000 or more cilia per cell, giving it an advantage for biochemical studies over cells that have one primarily cilium per cell. Nonetheless, a challenge for studies of many ciliary proteins in Paramecium is their low abundance. We discuss here several strategies to overcome this challenge and other challenges such as working with very large channel proteins. We also include for completeness other techniques that are critical to the study of swimming behavior, such as genetic crosses, recording of swimming patterns, electrical recordings, expression of very large channel proteins, RNA Interference, among others.


Assuntos
Paramecium tetraurellia , Paramecium , Paramecium tetraurellia/genética , Paramecium tetraurellia/metabolismo , Cílios/metabolismo , Paramecium/genética , Paramecium/metabolismo , Proteínas de Membrana/metabolismo
15.
Eukaryot Cell ; 10(3): 363-72, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21257794

RESUMO

Like all ciliates, Paramecium tetraurelia is a unicellular eukaryote that harbors two kinds of nuclei within its cytoplasm. At each sexual cycle, a new somatic macronucleus (MAC) develops from the germ line micronucleus (MIC) through a sequence of complex events, which includes meiosis, karyogamy, and assembly of the MAC genome from MIC sequences. The latter process involves developmentally programmed genome rearrangements controlled by noncoding RNAs and a specialized RNA interference machinery. We describe our first attempts to identify genes and biological processes that contribute to the progression of the sexual cycle. Given the high percentage of unknown genes annotated in the P. tetraurelia genome, we applied a global strategy to monitor gene expression profiles during autogamy, a self-fertilization process. We focused this pilot study on the genes carried by the largest somatic chromosome and designed dedicated DNA arrays covering 484 genes from this chromosome (1.2% of all genes annotated in the genome). Transcriptome analysis revealed four major patterns of gene expression, including two successive waves of gene induction. Functional analysis of 15 upregulated genes revealed four that are essential for vegetative growth, one of which is involved in the maintenance of MAC integrity and another in cell division or membrane trafficking. Two additional genes, encoding a MIC-specific protein and a putative RNA helicase localizing to the old and then to the new MAC, are specifically required during sexual processes. Our work provides a proof of principle that genes essential for meiosis and nuclear reorganization can be uncovered following genome-wide transcriptome analysis.


Assuntos
Macronúcleo/metabolismo , Micronúcleo Germinativo/metabolismo , Paramecium tetraurellia/metabolismo , Proteínas de Protozoários/metabolismo , Autofertilização , Regulação da Expressão Gênica no Desenvolvimento , Macronúcleo/genética , Micronúcleo Germinativo/genética , Paramecium tetraurellia/genética , Paramecium tetraurellia/crescimento & desenvolvimento , Proteínas de Protozoários/genética
16.
Biochim Biophys Acta Mol Cell Res ; 1869(6): 119239, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35181406

RESUMO

Developmental DNA elimination in Paramecium tetraurelia occurs through a trans-nuclear comparison of the genomes of two distinct types of nuclei: the germline micronucleus (MIC) and the somatic macronucleus (MAC). During sexual reproduction, which starts with meiosis of the germline nuclei, MIC-limited sequences including Internal Eliminated Sequences (IESs) and transposons are eliminated from the developing MAC in a process guided by noncoding RNAs (scnRNAs and iesRNAs). However, our current understanding of this mechanism is still very limited. Therefore, studying both genetic and epigenetic aspects of these processes is a crucial step to understand this phenomenon in more detail. Here, we describe the involvement of homologs of classical meiotic proteins, Spo11, Msh4-1, and Msh5 in this phenomenon. Based on our analyses, we propose that proper functioning of Spo11, Msh4-1, and Msh5 during Paramecium sexual reproduction are necessary for genome reorganization and viable progeny. Also, we show that double-strand breaks (DSBs) in DNA induced during meiosis by Spo11 are crucial for proper IESs excision. In summary, our investigations show that early sexual reproduction processes may significantly influence later somatic genome integrity.


Assuntos
Paramecium tetraurellia , Células Germinativas , Macronúcleo/genética , Macronúcleo/metabolismo , Meiose/genética , Paramecium tetraurellia/genética , Paramecium tetraurellia/metabolismo , RNA não Traduzido/metabolismo
17.
Eukaryot Cell ; 9(2): 288-305, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20023070

RESUMO

We have identified new synaptobrevin-like SNAREs and localized the corresponding gene products with green fluorescent protein (GFP)-fusion constructs and specific antibodies at the light and electron microscope (EM) levels. These SNAREs, named Paramecium tetraurelia synaptobrevins 8 to 12 (PtSyb8 to PtSyb12), showed mostly very restricted, specific localization, as they were found predominantly on structures involved in endo- or phagocytosis. In summary, we found PtSyb8 and PtSyb9 associated with the nascent food vacuole, PtSyb10 near the cell surface, at the cytostome, and in close association with ciliary basal bodies, and PtSyb11 on early endosomes and on one side of the cytostome, while PtSyb12 was found in the cytosol. PtSyb4 and PtSyb5 (identified previously) were localized on small vesicles, PtSyb5 probably being engaged in trichocyst (dense core secretory vesicle) processing. PtSyb4 and PtSyb5 are related to each other and are the furthest deviating of all SNAREs identified so far. Because they show no similarity with any other R-SNAREs outside ciliates, they may represent a ciliate-specific adaptation. PtSyb10 forms small domains near ciliary bases, and silencing slows down cell rotation during depolarization-induced ciliary reversal. NSF silencing supports a function of cell surface SNAREs by revealing vesicles along the cell membrane at sites normally devoid of vesicles. The distinct distributions of these SNAREs emphasize the considerable differentiation of membrane trafficking, particularly along the endo-/phagocytic pathway, in this protozoan.


Assuntos
Paramecium tetraurellia/metabolismo , Proteínas de Protozoários/análise , Proteínas R-SNARE/análise , Proteínas SNARE/metabolismo , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/metabolismo , Sequência de Aminoácidos , Vesículas Citoplasmáticas/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Paramecium tetraurellia/genética , Proteínas de Protozoários/metabolismo , Proteínas R-SNARE/metabolismo , Proteínas SNARE/genética , Proteínas de Ligação a Fator Solúvel Sensível a N-Etilmaleimida/genética
18.
Nucleic Acids Res ; 37(3): 903-15, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19103667

RESUMO

Distinct small RNA pathways are involved in the two types of homology-dependent effects described in Paramecium tetraurelia, as shown by a functional analysis of Dicer and Dicer-like genes and by the sequencing of small RNAs. The siRNAs that mediate post-transcriptional gene silencing when cells are fed with double-stranded RNA (dsRNA) were found to comprise two subclasses. DCR1-dependent cleavage of the inducing dsRNA generates approximately 23-nt primary siRNAs from both strands, while a different subclass of approximately 24-nt RNAs, characterized by a short untemplated poly-A tail, is strictly antisense to the targeted mRNA, suggestive of secondary siRNAs that depend on an RNA-dependent RNA polymerase. An entirely distinct pathway is responsible for homology-dependent regulation of developmental genome rearrangements after sexual reproduction. During early meiosis, the DCL2 and DCL3 genes are required for the production of a highly complex population of approximately 25-nt scnRNAs from all types of germline sequences, including both strands of exons, introns, intergenic regions, transposons and Internal Eliminated Sequences. A prominent 5'-UNG signature, and a minor fraction showing the complementary signature at positions 21-23, indicate that scnRNAs are cleaved from dsRNA precursors as duplexes with 2-nt 3' overhangs at both ends, followed by preferential stabilization of the 5'-UNG strand.


Assuntos
Meiose/genética , Paramecium tetraurellia/genética , Interferência de RNA , RNA Interferente Pequeno/química , Animais , Clonagem Molecular , Proteínas de Membrana/genética , Paramecium tetraurellia/metabolismo , Poliadenilação , Proteínas de Protozoários/genética , RNA Interferente Pequeno/classificação , RNA Interferente Pequeno/metabolismo , Ribonuclease III/genética
19.
Genome Biol Evol ; 13(12)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34849843

RESUMO

Mutation accumulation (MA) experiments are conventionally employed to study spontaneous germline mutations. However, MA experiments can also shed light on somatic genome plasticity in a habitual and genetic drift-maximizing environment. Here, we revisit an MA experiment that uncovered extraordinary germline genome stability in Paramecium tetraurelia, a single-celled eukaryote with nuclear dimorphism. Our re-examination of isogenic P. tetraurelia MA lines propagated in nutrient-rich medium for >40 sexual cycles reveals that their polyploid somatic genome accrued hundreds of intervening DNA segments (IESs), which are normally eliminated during germline-soma differentiation. These IESs frequently occupy a fraction of the somatic DNA copies of a given locus, producing IES excision/retention polymorphisms, and preferentially fall into a class of epigenetically controlled sequences. Relative to control lines, retained IESs are flanked by stronger cis-acting signals and interrupt an excess of highly expressed coding exons. These findings suggest that P. tetraurelia's elevated germline DNA replication fidelity is associated with pervasive somatic genome plasticity. They show that MA regimes are powerful tools for investigating the role that developmental plasticity, somatic mutations, and epimutations have in ecology and evolution.


Assuntos
Paramecium tetraurellia , Paramecium , DNA de Protozoário/genética , Instabilidade Genômica , Células Germinativas/metabolismo , Humanos , Paramecium/genética , Paramecium tetraurellia/genética , Paramecium tetraurellia/metabolismo
20.
Eur J Protistol ; 77: 125756, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33279757

RESUMO

Cilia are highly conserved in most eukaryotes and are regarded as an important organelle for motility and sensation in various species. Cilia are microscopic, hair-like cytoskeletal structures that protrude from the cell surface. The major focus in studies of cilia has been concentrated on the ciliary dysfunction in vertebrates that causes multisymptomatic diseases, which together are referred to as ciliopathies. To date, the understanding of ciliopathies has largely depended on the study of ciliary structure and function in different animal models. Zinc finger MYND-type containing 10 (ZMYND10) is a ciliary protein that was recently found to be mutated in patients with primary ciliary dyskinesia (PCD). In Paramecium tetraurelia, we identified two ZMYND10 genes, arising from a whole-genome duplication. Using RNAi, we found that the depletion of ZMYND10 in P. tetraurelia causes severe ciliary defects, thus provoking swimming dysfunction and lethality. Moreover, we found that the absence of ZMYND10 caused the abnormal localization of the intraflagellar transport (IFT) protein IFT43 along cilia. These results suggest that ZMYND10 is involved in the regulation of ciliary function and IFT, which may contribute to the study of PCD pathogenesis.


Assuntos
Cílios/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Paramecium tetraurellia/genética , Paramecium tetraurellia/metabolismo , Proteínas de Transporte/metabolismo , Cílios/genética , Cílios/patologia , Mutação , Transporte Proteico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA