Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 372(1): 73-82, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31771994

RESUMO

Itch stimuli are detected by specialized primary afferents that convey the signal to the spinal cord, but how itch transmission is regulated is still not completely known. Here, we investigated the roles of the neuropeptide Y (NPY)/Y2 receptor system on scratch behavior. The inhibitory Y2 receptor is expressed on mouse primary afferents, and intrathecal administration of the Y2 agonist peptide YY (PYY)3-36 reduced scratch episode frequency and duration induced by compound 48/80, an effect that could be reversed by intrathecal preadministration of the Y2 antagonist BIIE0246. Also, scratch episode duration induced by histamine could be reduced by PYY3-36 In contrast, scratch behavior induced by α-methyl-5HT, protease-activated receptor-2-activating peptide SLIGRL, chloroquine, topical dust mite extract, or mechanical itch induced by von Frey filaments was unaffected by stimulation of Y2 Primary afferent neurons expressing the Npy2r gene were found to coexpress itch-associated markers such as natriuretic peptide precursor b, oncostatin M receptor, and interleukin (IL) 31 receptor A. Accordingly, intrathecal PYY3-36 reduced the scratch behavior induced by IL-31. Our findings imply that the NPY/Y2 system reduces histaminergic and IL-31-associated itch through presynaptic inhibition of a subpopulation of itch-associated primary afferents. SIGNIFICANCE STATEMENT: The spinal neuropeptide Y system dampens scratching behavior induced by histaminergic compounds and interleukin 31, a cytokine involved in atopic dermatitis, through interactions with the Y2 receptor. The Y2 receptor is expressed by primary afferent neurons that are rich in itch-associated neurotransmitters and receptors such as somatostatin, natriuretic peptide precursor b, and interleukin 31 receptors.


Assuntos
Antipruriginosos/farmacologia , Dermatite Atópica/metabolismo , Neurônios Aferentes/metabolismo , Fragmentos de Peptídeos/farmacologia , Peptídeo YY/farmacologia , Prurido/metabolismo , Receptores de Neuropeptídeo Y/metabolismo , Animais , Antipruriginosos/administração & dosagem , Antipruriginosos/uso terapêutico , Arginina/análogos & derivados , Arginina/toxicidade , Benzazepinas/toxicidade , Células Cultivadas , Cloroquina/farmacologia , Dermatite Atópica/tratamento farmacológico , Gânglios Espinais/citologia , Histamina/farmacologia , Histamina/toxicidade , Interleucinas/farmacologia , Interleucinas/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peptídeo Natriurético Encefálico/genética , Peptídeo Natriurético Encefálico/metabolismo , Neurônios Aferentes/efeitos dos fármacos , Neurônios Aferentes/fisiologia , Oligopeptídeos/farmacologia , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/uso terapêutico , Peptídeo YY/administração & dosagem , Peptídeo YY/uso terapêutico , Prurido/tratamento farmacológico , Prurido/etiologia , Receptores de Neuropeptídeo Y/genética , Receptores de Oncostatina M/genética , Receptores de Oncostatina M/metabolismo , Serotonina/farmacologia
2.
Mol Pharm ; 16(8): 3665-3677, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31310716

RESUMO

Peptide YY3-36 (PYY3-36) is an endogenous ligand of the neuropeptide Y2 receptor (Y2R), on which it acts to reduce food intake. Chemically modified PYY3-36 analogues with extended half-lives are potential therapeutics for the treatment of obesity. Here we show that the common half-life extending strategies PEGylation and lipidation not only control PYY3-36's pharmacokinetics but also affect central aspects of its pharmacodynamics. PEGylation of PYY3-36 inhibited endocytosis by increasing receptor dissociation rates (koff), which reduced arrestin-3 (Arr3) activity. This is the first link between Arr3 recruitment and Y2R residence time. C16-lipidation of PYY3-36 had a negligible impact on Y2R signaling, binding, and endocytosis. In contrast, C18acid-lipidation minimized endocytosis, which indicated a decreased internalization through non-arrestin-related mechanisms. We propose a temporal model that connects the properties and position of the half-life extender with receptor Gi versus Arr3 signaling bias. We believe that this will be important for future design of peptide therapeutics.


Assuntos
Fármacos Antiobesidade/farmacologia , Desenho de Fármacos , Fragmentos de Peptídeos/farmacologia , Peptídeo YY/farmacologia , Receptores de Neuropeptídeo Y/metabolismo , Fármacos Antiobesidade/química , Fármacos Antiobesidade/uso terapêutico , Arrestinas/metabolismo , Células HEK293 , Meia-Vida , Humanos , Microscopia Intravital , Lipídeos/química , Lipossomos , Modelos Biológicos , Modelos Químicos , Estrutura Molecular , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/uso terapêutico , Peptídeo YY/química , Peptídeo YY/uso terapêutico , Polietilenoglicóis/química , Relação Estrutura-Atividade
3.
Bioorg Med Chem ; 26(3): 566-572, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29279243

RESUMO

Neuropeptide Y2 receptor (Y2R) agonism is an important anorectic signal and a target of antiobesity drug discovery. Recently, we synthesized a short-length Y2R agonist, PYY-1119 (4-imidazolecarbonyl-[d-Hyp24,Iva25,Pya(4)26,Cha27,36,γMeLeu28,Lys30,Aib31]PYY(23-36), 1) as an antiobesity drug candidate. Compound 1 induced marked body weight loss in diet-induced obese (DIO) mice; however, 1 also induced severe vomiting in dogs at a lower dose than the minimum effective dose administered to DIO mice. The rapid absorption of 1 after subcutaneous administration caused the severe vomiting. Polyethylene glycol (PEG)- and alkyl-modified derivatives of 1 were synthesized to develop Y2R agonists with improved pharmacokinetic profiles, i.e., lower maximum plasma concentration (Cmax) and longer time at maximum concentration (Tmax). Compounds 5 and 10, modified with 20 kDa PEG at the N-terminus and eicosanedioic acid at the Lys30 side chain of 1, respectively, showed high Y2R binding affinity and induced significant body weight reduction upon once-daily administration to DIO mice. Compounds 5 and 10, with their relatively low Cmax and long Tmax, partially attenuated emesis in dogs compared with 1. These results indicate that optimization of pharmacokinetic properties of Y2R agonists is an effective strategy to alleviate emesis induced by Y2R agonism.


Assuntos
Fármacos Antiobesidade/química , Obesidade/tratamento farmacológico , Peptídeo YY/química , Polietilenoglicóis/química , Alquilação , Sequência de Aminoácidos , Animais , Fármacos Antiobesidade/farmacocinética , Fármacos Antiobesidade/uso terapêutico , Cães , Eméticos/química , Eméticos/uso terapêutico , Eméticos/toxicidade , Meia-Vida , Infusões Subcutâneas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/patologia , Peptídeo YY/farmacocinética , Peptídeo YY/uso terapêutico , Receptores de Neuropeptídeo Y/agonistas , Receptores de Neuropeptídeo Y/metabolismo , Vômito/etiologia
4.
Scand J Gastroenterol ; 52(6-7): 635-640, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28276830

RESUMO

Obesity with a body mass index (BMI) over 30 kg/m2 represents a significant risk for increased morbidity and mortality, with reduced life expectancy of about 10 years. Until now, surgical treatment has been the only effective longterm intervention. The currently standardized method of bariatric surgery, gastric bypass, means that many gastrointestinal peptide hormones are activated, yielding net reductions in appetite and food intake. Among the most important gut peptide hormones in this perspective is glucagon-like peptide-1 (GLP-1), which rises sharply after gastric bypass. Consistent with outcomes of this surgery, GLP-1 suppresses appetite and reduces food intake. This implies that GLP-1 has the potential to achieve a similar therapeutic outcome as gastric bypass. GLP-1 analogs, which are used for the treatment of type 2 diabetes mellitus, also lead to significant weight loss. Altered hormonal profiles after gastric bypass therefore indicate a logical connection between gut peptide hormone levels, weight loss and glucose homeostasis. Furthermore, combinations of GLP-1 with other gut hormones such as peptide YY (PYY) and cholecystokinin (CCK) may be able to reinforce GLP-1 driven reduction in appetite and food intake. Pharmacological intenvention in obesity by use of GLP-1 analogs (exenatide, liraglutide, albiglutide, dulaglutide, lixisenatide, taspoglutide) and inhibitors of dipeptidyl peptidase-IV (DPP-IV) degradation that inactivate GLP-1 (sitagliptin, vildagliptin), leading to reduced appetite and weight with positive effects on metabolic control, are realistically achievable. This may be regarded as a low-risk therapeutic alternative to surgery for reducing obesity-related risk factors in the obese with lower BMIs.


Assuntos
Derivação Gástrica , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Obesidade/terapia , Redução de Peso/efeitos dos fármacos , Apetite/efeitos dos fármacos , Hormônios Gastrointestinais/uso terapêutico , Peptídeo 1 Semelhante ao Glucagon/análogos & derivados , Humanos , Peptídeo YY/uso terapêutico
5.
Drug Dev Ind Pharm ; 42(1): 150-156, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26006332

RESUMO

OBJECTIVE: Peptide YY3-36 [PYY(3-36)] has shown efficacy in appetite suppression when dosed by injection modalities (intraperitoneal (IP)/subcutaneous). Transitioning to needle-free delivery, towards inhalation, often utilizes systemic pharmacokinetics as a key endpoint to compare different delivery methods and doses. Systemic pharmacokinetics were evaluated for PYY3-36 when delivered by IP, subcutaneous, and inhalation, the systemic pharmacokinetics were then used to select doses in an appetite suppression pharmacodynamic study. METHODS: Dry-powder formulations were manufactured by spray drying and delivered to mice via nose only inhalation. The systemic plasma, lung tissue, and bronchoalveolar lavage fluid pharmacokinetics of different inhalation doses of PYY(3-36) were compared to IP and subcutaneous efficacious doses. Based on these pharmacokinetic data, inhalation doses of 70:30 PYY(3-36):Dextran T10 were evaluated in a mouse model of appetite suppression and compared to IP and subcutaneous data. RESULTS: Inhalation pharmacokinetic studies showed that plasma exposure was similar for a 2 × higher inhalation dose when compared to subcutaneous and IP delivery. Inhalation doses of 0.22 and 0.65 mg/kg were for efficacy studies. The results showed a dose-dependent (not dose proportional) decrease in food consumption over 4 h, which is similar to IP and subcutaneous delivery routes. CONCLUSIONS: The pharmacokinetic and pharmacodynamics results substantiate the ability of pharmacokinetic data to inform pharmacodynamics dose selection for inhalation delivery of the peptide PYY(3-36). Additionally, engineered PYY(3-36):Dextran T10 particles delivered to the respiratory tract show promise as a non-invasive therapeutic for appetite suppression.


Assuntos
Depressores do Apetite/farmacologia , Apetite/efeitos dos fármacos , Composição de Medicamentos/métodos , Fragmentos de Peptídeos/farmacologia , Peptídeo YY/farmacologia , Administração por Inalação , Aerossóis , Animais , Depressores do Apetite/administração & dosagem , Depressores do Apetite/farmacocinética , Depressores do Apetite/uso terapêutico , Disponibilidade Biológica , Dessecação , Dextranos/química , Portadores de Fármacos/química , Cálculos da Dosagem de Medicamento , Inaladores de Pó Seco , Injeções Intraperitoneais , Injeções Subcutâneas , Camundongos , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/farmacocinética , Fragmentos de Peptídeos/uso terapêutico , Peptídeo YY/administração & dosagem , Peptídeo YY/farmacocinética , Peptídeo YY/uso terapêutico , Pós
6.
Biomacromolecules ; 16(8): 2282-7, 2015 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-26161672

RESUMO

The hydrophilic peptide YY (PYY) is a promising hormone-based antiobesity drug. We present a new concept for the delivery of PYY from pH-responsive chitosan-based nanocarriers. To overcome the drawbacks while retaining the merits of the polyelectrolyte complex (PEC) method, we propose a one-pot approach for the encapsulation of a hydrophilic peptide drug in cross-linked PEC nanocarriers. First, the hydrophilic peptide is encapsulated via polyelectrolyte complexation within water-in-oil miniemulsion droplets. In a second step, the PEC surface is reinforced by controlled interfacial cross-linking. PYY is efficiently encapsulated and released upon pH change. Such nanocarriers are promising candidates for the fight against obesity and, in general, for the oral delivery of protein drugs.


Assuntos
Quitosana/química , Portadores de Fármacos , Obesidade/tratamento farmacológico , Peptídeo YY/química , Alginatos/química , Quitosana/uso terapêutico , Eletrólitos/química , Ácidos Hexurônicos/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Peptídeo YY/uso terapêutico , Polímeros/química , Polímeros/uso terapêutico
7.
J Physiol ; 592(23): 5153-67, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25217372

RESUMO

Bayliss and Starling first coined the term 'hormone' with reference to secretin, a substance they found that was produced by the gut, but released into the blood stream to act at a distance. The intestine is now known as the largest endocrine organ in the body, and it produces numerous hormones with a wide range of functions. These include controlling appetite and energy homeostasis. Obesity is one of the greatest health threats facing the world today. At present, the only successful treatment is surgery. Bariatric procedures such as the Roux-en-Y bypass work by elevating gut hormones that induce satiety. Significant research has gone into producing versions of these hormones that can be delivered therapeutically to treat obesity. This review looks at the role of gut hormones in obesity, and the development of gut hormone-derived obesity treatments.


Assuntos
Hormônios Gastrointestinais/fisiologia , Hormônios Gastrointestinais/uso terapêutico , Obesidade/fisiopatologia , Obesidade/terapia , Animais , Apetite/fisiologia , Regulação do Apetite/fisiologia , Distinções e Prêmios , Cirurgia Bariátrica , Metabolismo Energético/fisiologia , Feminino , Peptídeo 1 Semelhante ao Glucagon/fisiologia , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Humanos , Masculino , Obesidade/epidemiologia , Pandemias , Peptídeo YY/fisiologia , Peptídeo YY/uso terapêutico , Sociedades Científicas
8.
Pharmacol Res Perspect ; 12(4): e1243, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39016695

RESUMO

Obesity, a global health challenge, necessitates innovative approaches for effective management. Targeting gut peptides in the development of anti-obesity pharmaceuticals has already demonstrated significant efficacy. Ghrelin, peptide YY (PYY), cholecystokinin (CCK), and amylin are crucial in appetite regulation offering promising targets for pharmacological interventions in obesity treatment using both peptide-based and small molecule-based pharmaceuticals. Ghrelin, a sole orexigenic gut peptide, has a potential for anti-obesity therapies through various approaches, including endogenous ghrelin neutralization, ghrelin receptor antagonists, ghrelin O-acyltransferase, and functional inhibitors. Anorexigenic gut peptides, peptide YY, cholecystokinin, and amylin, have exhibited appetite-reducing effects in animal models and humans. Overcoming substantial obstacles is imperative for translating these findings into clinically effective pharmaceuticals. Peptide YY and cholecystokinin analogues, characterized by prolonged half-life and resistance to proteolytic enzymes, present viable options. Positive allosteric modulators emerge as a novel approach for modulating the cholecystokinin pathway. Amylin is currently the most promising, with both amylin analogues and dual amylin and calcitonin receptor agonists (DACRAs) progressing to advanced stages of clinical trials. Despite persistent challenges, innovative pharmaceutical strategies provide a glimpse into the future of anti-obesity therapies.


Assuntos
Fármacos Antiobesidade , Regulação do Apetite , Colecistocinina , Obesidade , Humanos , Animais , Obesidade/tratamento farmacológico , Fármacos Antiobesidade/farmacologia , Fármacos Antiobesidade/uso terapêutico , Colecistocinina/metabolismo , Colecistocinina/farmacologia , Regulação do Apetite/efeitos dos fármacos , Grelina/farmacologia , Grelina/uso terapêutico , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/farmacologia , Peptídeo YY/farmacologia , Peptídeo YY/uso terapêutico , Depressores do Apetite/farmacologia , Depressores do Apetite/uso terapêutico
9.
Peptides ; 179: 171256, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38825012

RESUMO

The approval of the glucagon-like peptide 1 (GLP-1) mimetics semaglutide and liraglutide for management of obesity, independent of type 2 diabetes (T2DM), has initiated a resurgence of interest in gut-hormone derived peptide therapies for the management of metabolic diseases, but side-effect profile is a concern for these medicines. However, the recent approval of tirzepatide for obesity and T2DM, a glucose-dependent insulinotropic polypeptide (GIP), GLP-1 receptor co-agonist peptide therapy, may provide a somewhat more tolerable option. Despite this, an increasing number of non-incretin alternative peptides are in development for obesity, and it stands to reason that other hormones will take to the limelight in the coming years, such as peptides from the neuropeptide Y family. This narrative review outlines the therapeutic promise of the neuropeptide Y family of peptides, comprising of the 36 amino acid polypeptides neuropeptide Y (NPY), peptide tyrosine-tyrosine (PYY) and pancreatic polypeptide (PP), as well as their derivatives. This family of peptides exerts a number of metabolically relevant effects such as appetite regulation and can influence pancreatic beta-cell survival. Although some of these actions still require full translation to the human setting, potential therapeutic application in obesity and type 2 diabetes is conceivable. However, like GLP-1 and GIP, the endogenous NPY, PYY and PP peptide forms are subject to rapid in vivo degradation and inactivation by the serine peptidase, dipeptidyl-peptidase 4 (DPP-4), and hence require structural modification to prolong circulating half-life. Numerous protective modification strategies are discussed in this regard herein, alongside related impact on biological activity profile and therapeutic promise.


Assuntos
Diabetes Mellitus Tipo 2 , Neuropeptídeo Y , Obesidade , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Neuropeptídeo Y/metabolismo , Animais , Peptídeos Semelhantes ao Glucagon/uso terapêutico , Liraglutida/uso terapêutico , Liraglutida/farmacologia , Polipeptídeo Pancreático/metabolismo , Peptídeo YY/metabolismo , Peptídeo YY/uso terapêutico , Polipeptídeo Inibidor Gástrico/uso terapêutico , Polipeptídeo Inibidor Gástrico/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 2
10.
Zhonghua Wei Chang Wai Ke Za Zhi ; 25(10): 892-898, 2022 Oct 25.
Artigo em Zh | MEDLINE | ID: mdl-36245114

RESUMO

Type 2 diabetes is a high-profile global public health problem, particularly in Asia. The young age of onset, low body mass index, and early appearance of pancreatic islet dysfunction are characteristics of Asian patients with T2DM. Metabolic surgery has become the standard treatment for T2DM patients and can significantly improve T2DM through a variety of mechanisms including modulation of energy homeostasis and reduction of body fat mass. Indeed, restoration of islet function also plays an integral role in the remission of T2DM. After metabolic surgery, islet function in Asian T2DM patients has improved significantly, with proven short-term and long-term effects. In addition, islet function is an important criterion and reference for patient selection prior to metabolic surgery. The mechanism of islet function improvement after metabolic surgery is not clear, but postoperative anatomical changes in the gastrointestinal tract leading to a number of hormonal changes seem to be the potential cause, including glucagon-like peptide-1, gastric inhibitory polypeptide, peptide YY, ghrelin, and cholecystokinin. The authors analyzed the current retrospective and prospective studies on the effect of metabolic surgery on the islet function of Asian T2DM patients with a low BMI and its mechanism, summarized the clinical evidence that metabolic surgery improved islet function in Asian T2DM patients with a low BMI, and discussed its underlying mechanism. It is of great significance for realizing personalized and precise treatment of metabolic surgery and further improving its clinical benefits.


Assuntos
Cirurgia Bariátrica , Diabetes Mellitus Tipo 2 , Índice de Massa Corporal , Colecistocinina/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/cirurgia , Polipeptídeo Inibidor Gástrico/uso terapêutico , Grelina/uso terapêutico , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Humanos , Peptídeo YY/metabolismo , Peptídeo YY/uso terapêutico , Estudos Prospectivos , Estudos Retrospectivos , Resultado do Tratamento
11.
J Pept Sci ; 16(11): 664-73, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20853314

RESUMO

The prevalence of obesity is increasing with an alarming rate worldwide and there is a need for efficacious satiety drugs. PYY3-36 has been shown to play a role in hypothalamic appetite regulation and novel analogs targeting the Y2 receptor have potential as drugs for the treatment of obesity. We have designed a series of novel PYY3-36 isoforms, by first adding the dipeptide Ile-Lys N-terminal to the N(α) of Ser-13 in PYY13-36 and then anchoring the N-terminal segment, e.g. PYY3-12, to the new Lys N(ε)-amine. We hypothesized that such modifications would alter the folding of PYY, due to changes in the turn motif, which could change the binding mode to the Y receptor sub-types and possibly also alter metabolic stability. In structure-affinity/activity relationship experiments, one series of PYY isoforms displayed equipotency towards the Y receptors. However, an increased Y2 receptor potency for the second series of PYY isoforms resulted in enhanced Y receptor selectivity compared to PYY3-36. Additionally, acute as well as chronic mice studies showed body-weight-lowering effects for one of the PYY isoforms, which was also reflected in a reduction of circulating leptin levels. Interestingly, while the stability and pharmacokinetic profile of PYY3-36 and the N-terminally modified PYY3-36 analogue were identical, only mice treated with the branched analogue showed marked increases in adiponectin levels as well as reductions in non-esterified free fatty acids and triglycerides.


Assuntos
Obesidade/tratamento farmacológico , Peptídeo YY/uso terapêutico , Isoformas de Proteínas/uso terapêutico , Sequência de Aminoácidos , Animais , Regulação do Apetite/fisiologia , Humanos , Camundongos , Camundongos Obesos , Hormônios Peptídicos/uso terapêutico , Peptídeo YY/sangue , Peptídeo YY/farmacocinética , Isoformas de Proteínas/metabolismo , Receptores de Neuropeptídeo Y/metabolismo , Relação Estrutura-Atividade
12.
Crit Care ; 14(5): 228, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20887636

RESUMO

In health, hormones secreted from the gastrointestinal tract have an important role in regulating gastrointestinal motility, glucose metabolism and immune function. Recent studies in the critically ill have established that the secretion of a number of these hormones is abnormal, which probably contributes to disordered gastrointestinal and metabolic function. Furthermore, manipulation of endogenous secretion, physiological replacement and supra-physiological treatment (pharmacological dosing) of these hormones are likely to be novel therapeutic targets in this group. Fasting ghrelin concentrations are reduced in the early phase of critical illness, and exogenous ghrelin is a potential therapy that could be used to accelerate gastric emptying and/or stimulate appetite. Motilin agonists, such as erythromycin, are effective gastrokinetic drugs in the critically ill. Cholecystokinin and peptide YY concentrations are elevated in both the fasting and postprandial states, and are likely to contribute to slow gastric emptying. Accordingly, there is a rationale for the therapeutic use of their antagonists. So-called incretin therapies (glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide) warrant evaluation in the management of hyperglycaemia in the critically ill. Exogenous glucagon-like peptide-2 (or its analogues) may be a potential therapy because of its intestinotropic properties.


Assuntos
Glicemia/metabolismo , Trato Gastrointestinal/metabolismo , Sistemas Automatizados de Assistência Junto ao Leito/tendências , Animais , Colecistocinina/metabolismo , Colecistocinina/farmacologia , Colecistocinina/uso terapêutico , Estado Terminal , Sistema Endócrino/efeitos dos fármacos , Sistema Endócrino/metabolismo , Trato Gastrointestinal/efeitos dos fármacos , Humanos , Absorção Intestinal/efeitos dos fármacos , Absorção Intestinal/fisiologia , Peptídeo YY/metabolismo , Peptídeo YY/uso terapêutico
13.
Nature ; 430(6996): 1 p following 165; discussion 2 p following 165, 2004 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-15243972

RESUMO

Batterham et al. report that the gut peptide hormone PYY3-36 decreases food intake and body-weight gain in rodents, a discovery that has been heralded as potentially offering a new therapy for obesity. However, we have been unable to replicate their results. Although the reasons for this discrepancy remain undetermined, an effective anti-obesity drug ultimately must produce its effects across a range of situations. The fact that the findings of Batterham et al. cannot easily be replicated calls into question the potential value of an anti-obesity approach that is based on administration of PYY3-36.


Assuntos
Depressores do Apetite/farmacologia , Regulação do Apetite/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Peptídeo YY/farmacologia , Animais , Animais Endogâmicos , Apetite/efeitos dos fármacos , Apetite/fisiologia , Depressores do Apetite/uso terapêutico , Comportamento Animal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Meio Ambiente , Humanos , Metanálise como Assunto , Camundongos , Obesidade/tratamento farmacológico , Fragmentos de Peptídeos , Peptídeo YY/administração & dosagem , Peptídeo YY/sangue , Peptídeo YY/uso terapêutico , Ratos , Reprodutibilidade dos Testes , Estresse Fisiológico/complicações , Estresse Fisiológico/fisiopatologia
14.
Int J Obes (Lond) ; 33 Suppl 1: S24-7, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19363503

RESUMO

Amylin is a pancreatic B-cell hormone that plays an important role in the control of nutrient fluxes because it reduces food intake, slows gastric emptying, and reduces postprandial glucagon secretion. These actions seem to depend on a direct effect on the area postrema (AP). Subsequent to area AP activation, the amylin signal is conveyed to the forebrain via distinct relay stations. Within the lateral hypothalamic area, amylin diminishes the expression of orexigenic neuropeptides. Recent studies suggest that amylin may also play a role as a long term, adiposity signal. Similar to leptin or insulin, an infusion of amylin into the brain resulted in lower body weight gain than in controls, irrespective of the starting body weight. Interestingly, preliminary data also suggest that rats fed an energy-dense diet develop resistance to central amylin. In addition to amylin's action to control meal termination and to act as a potential adiposity signal, amylin and its agonist salmon calcitonin have recently been shown to increase energy expenditure under certain conditions. In summary, amylin may be an interesting target as a body weight lowering drug. In fact, recent studies provide evidence that amylin, especially when combined with other anorectic hormones (for example, peptide YY and leptin) has beneficial long-term effects on body weight.


Assuntos
Amiloide/farmacologia , Depressores do Apetite/farmacologia , Regulação do Apetite/efeitos dos fármacos , Área Postrema/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Adiposidade/efeitos dos fármacos , Adiposidade/fisiologia , Amiloide/fisiologia , Animais , Regulação do Apetite/fisiologia , Área Postrema/metabolismo , Relação Dose-Resposta a Droga , Metabolismo Energético/fisiologia , Comportamento Alimentar/efeitos dos fármacos , Comportamento Alimentar/fisiologia , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Leptina/uso terapêutico , Obesidade/tratamento farmacológico , Peptídeo YY/uso terapêutico , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Resposta de Saciedade/efeitos dos fármacos , Aumento de Peso/efeitos dos fármacos
15.
Br J Clin Pharmacol ; 68(6): 830-43, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20002077

RESUMO

Our knowledge of the complex mechanisms underlying energy homeostasis has expanded enormously in recent years. Food intake and body weight are tightly regulated by the hypothalamus, brainstem and reward circuits, on the basis both of cognitive inputs and of diverse humoral and neuronal signals of nutritional status. Several gut hormones, including cholecystokinin, glucagon-like peptide-1, peptide YY, oxyntomodulin, amylin, pancreatic polypeptide and ghrelin, have been shown to play an important role in regulating short-term food intake. These hormones therefore represent potential targets in the development of novel anti-obesity drugs. This review focuses on the role of gut hormones in short- and long-term regulation of food intake, and on the current state of development of gut hormone-based obesity therapies.


Assuntos
Fármacos Antiobesidade/uso terapêutico , Depressores do Apetite/uso terapêutico , Regulação do Apetite/efeitos dos fármacos , Fármacos Gastrointestinais/uso terapêutico , Obesidade/tratamento farmacológico , Amiloide/uso terapêutico , Colecistocinina/uso terapêutico , Ingestão de Alimentos/fisiologia , Metabolismo Energético/fisiologia , Grelina/uso terapêutico , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Oxintomodulina/uso terapêutico , Polipeptídeo Pancreático/uso terapêutico , Peptídeo YY/uso terapêutico
16.
J Neurosci ; 27(43): 11522-32, 2007 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-17959795

RESUMO

A major problem in treating obesity is high rates of relapse to maladaptive food-taking habits during dieting. This relapse is often provoked by acute re-exposure to palatable food, food-associated cues, or stress. We used a reinstatement model, commonly used to study relapse to abused drugs, to explore the effect of peptide YY3-36 (PYY3-36) on reinstatement of high-fat (35%, 45 mg pellets) food seeking induced by acute exposure to the pellets (pellet priming), a cue previously associated with pellet delivery (pellet cue), or yohimbine (2 mg/kg, a pharmacological stressor). Rats were placed on a restricted diet (16 g of chow per day) and lever-pressed for the pellets for 9-12 sessions (6 h/d, every 48 h); pellet delivery was paired with a tone-light cue. They were then given 10-20 extinction sessions wherein lever presses were not reinforced with the pellets and subsequently tested for reinstatement of food seeking. Systemic PYY3-36 injections (100-200 microg/kg) decreased pellet priming- and pellet cue-induced reinstatement of food seeking but not yohimbine-induced reinstatement. Arcuate nucleus (Arc) injections of PYY3-36 (0.4 microg per side) decreased pellet priming-induced reinstatement. The attenuation of pellet priming-induced reinstatement by systemic PYY3-36 was reversed by systemic (2 mg/kg) but not Arc (0.5 microg per side) injections of the Y2 receptor antagonist BIIE0246. Arc PYY3-36 injections did not decrease pellet cue-induced reinstatement. Finally, systemic PYY3-36 injections had minimal effects on ongoing food self-administration or heroin priming- or heroin cue-induced reinstatement of heroin seeking. These data identify an effect of systemic PYY3-36 on relapse to food seeking that is independent of Y2 receptor activation in Arc and suggest that PYY3-36 should be considered for the treatment of relapse to maladaptive food-taking habits during dieting.


Assuntos
Gorduras na Dieta/administração & dosagem , Modelos Animais de Doenças , Comportamento Alimentar/efeitos dos fármacos , Peptídeo YY/farmacologia , Animais , Comportamento Alimentar/fisiologia , Masculino , Obesidade/fisiopatologia , Obesidade/prevenção & controle , Obesidade/psicologia , Fragmentos de Peptídeos , Peptídeo YY/fisiologia , Peptídeo YY/uso terapêutico , Ratos , Ratos Long-Evans , Prevenção Secundária
17.
Front Horm Res ; 36: 229-259, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18230906

RESUMO

The relentless rise in the prevalence of obesity predicts an exponential increase in the incidence of obesity-related complications. Medical and surgical treatments are necessary to prevent and treat obese co-morbidities, thereby avoiding disability and premature death. Interventions for obesity should be evaluated not by weight loss alone but against the new incidence in obesity-related co-morbidities, their remission or improvement. In combination with lifestyle measures, currently available pharmacological therapies -- rimonabant, orlistat and sibutramine -- achieve 5-10% weight loss, although a return to baseline is the norm after cessation of medication. All these agents demonstrate approximately 0.5% reduction in HbA1c in diabetic subjects; orlistat also reduces the new incidence of type 2 diabetes. Modest improvement in lipid profiles and reduced calculated cardiovascular risk is observed, but data on improvement of other co-morbidities are sparse. In contrast, surgical procedures that restrict food ingestion and/or curtail the absorptive surface area of the gut consistently achieve substantial weight loss, typically 20-35%, effect resolution of co-morbid conditions and improve quality of life. Although mortality is low, complications and hospitalisation are not uncommon after bariatric surgery. Intriguingly, surgical patients experience a reduction in appetite and report changes in food preference. Accentuation of the normal gastrointestinal hormonal response to food intake and possible changes in vagal afferent signalling are proposed to induce satiety. Increased understanding of body weight homeostasis and appetite regulation has provided an impressive list of potential targets for drug development, with the promise that single or combination therapy may ultimately challenge the supremacy of bariatric surgery.


Assuntos
Obesidade/cirurgia , Obesidade/terapia , Tecido Adiposo/patologia , Amiloide/uso terapêutico , Anticonvulsivantes/uso terapêutico , Antidepressivos/uso terapêutico , Ansiedade/complicações , Regulação do Apetite/fisiologia , Cirurgia Bariátrica/efeitos adversos , Cirurgia Bariátrica/métodos , Índice de Massa Corporal , Bupropiona/uso terapêutico , Colecistocinina/uso terapêutico , Fator Neurotrófico Ciliar/uso terapêutico , Ensaios Clínicos como Assunto , Ciclobutanos/uso terapêutico , Depressão/complicações , Diabetes Mellitus Tipo 2/terapia , Feminino , Fluoxetina/uso terapêutico , Frutose/análogos & derivados , Frutose/uso terapêutico , Grelina/uso terapêutico , Humanos , Gordura Intra-Abdominal/patologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Isoxazóis/uso terapêutico , Lactonas/uso terapêutico , Leptina/uso terapêutico , Síndrome Metabólica/tratamento farmacológico , Metformina/uso terapêutico , Obesidade/classificação , Obesidade/epidemiologia , Obesidade/prevenção & controle , Obesidade Mórbida/complicações , Obesidade Mórbida/terapia , Orlistate , Oxintomodulina/uso terapêutico , Peptídeo YY/uso terapêutico , Piperidinas/uso terapêutico , Síndrome do Ovário Policístico/terapia , Pirazóis/uso terapêutico , Rimonabanto , Sertralina/uso terapêutico , Apneia Obstrutiva do Sono/terapia , Procedimentos Cirúrgicos Operatórios , Topiramato , Zonisamida
18.
Peptides ; 100: 269-274, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29412828

RESUMO

The vast majority of research to date on the gut hormone Peptide YY (PYY) has focused on appetite suppression and body weight regulation effects. These biological actions are believed to occur through interaction of PYY with hypothalamic Y2 receptors. However, more recent studies have added additional knowledge to understanding of the physiological, and potential therapeutic, roles of PYY beyond obesity alone. Thus, PYY has now been shown to impart improvements in pancreatic beta-cell survival and function, with obvious benefits for diabetes. This effect has been linked mainly to binding and activation of Y1 receptors by PYY, but more evidence is still required in this regard. Given the potential therapeutic promise of PYY-derived compounds, and complexity of receptor interactions, it is important to fully understand the complete biological action profile of PYY. Therefore, the current review aims to compile, evaluate and summarise current knowledge on PYY, with particular emphasis on obesity and diabetes treatment, and the importance of specific Y receptor interactions for this.


Assuntos
Diabetes Mellitus/tratamento farmacológico , Obesidade/tratamento farmacológico , Peptídeo YY/uso terapêutico , Receptores de Neuropeptídeo Y/genética , Regulação do Apetite/efeitos dos fármacos , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Humanos , Hipotálamo/metabolismo , Obesidade/metabolismo , Obesidade/patologia , Fragmentos de Peptídeos/uso terapêutico , Peptídeo YY/metabolismo , Receptores de Neuropeptídeo Y/metabolismo
19.
Endocrinology ; 148(12): 6054-61, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17761760

RESUMO

Circulating levels of the pancreatic beta-cell peptide hormone amylin and the gut peptide PYY[3-36] increase after nutrient ingestion. Both have been implicated as short-term signals of meal termination with anorexigenic and weight-reducing effects. However, their combined effects are unknown. We report that the combination of amylin and PYY[3-36] elicited greater anorexigenic and weight-reducing effects than either peptide alone. In high-fat-fed rats, a single ip injection of amylin (10 microg/kg) plus PYY[3-36] (1000 microg/kg) reduced food intake for 24 h (P < 0.05 vs. vehicle), whereas the anorexigenic effects of either PYY[3-36] or amylin alone began to diminish 6 h after injection. These anorexigenic effects were dissociable from changes in locomotor activity. Subcutaneous infusion of amylin plus PYY[3-36] for 14 d suppressed food intake and body weight to a greater extent than either agent alone in both rat and mouse diet-induced obesity (DIO) models (P < 0.05). In DIO-prone rats, 24-h metabolic rate was maintained despite weight loss, and amylin plus PYY[3-36] (but not monotherapy) increased 24-h fat oxidation (P < 0.05 vs. vehicle). Finally, a 4 x 3 factorial design was used to formally describe the interaction between amylin and PYY[3-36]. DIO-prone rats were treated with amylin (0, 4, 20, and 100 microg/kg.d) and PYY[3-36] (0, 200, 400 microg/kg.d) alone and in combination for 14 d. Statistical analyses revealed that food intake suppression with amylin plus PYY[3-36] treatment was synergistic, whereas body weight reduction was additive. Collectively, these observations highlight the importance of studying peptide hormones in combination and suggest that integrated neurohormonal approaches may hold promise as treatments for obesity.


Assuntos
Amiloide/farmacologia , Obesidade/tratamento farmacológico , Peptídeo YY/farmacologia , Redução de Peso/efeitos dos fármacos , Amiloide/administração & dosagem , Amiloide/uso terapêutico , Animais , Fármacos Antiobesidade/administração & dosagem , Fármacos Antiobesidade/farmacologia , Fármacos Antiobesidade/uso terapêutico , Gorduras na Dieta , Sinergismo Farmacológico , Quimioterapia Combinada , Ingestão de Alimentos/efeitos dos fármacos , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Masculino , Camundongos , Obesidade/induzido quimicamente , Fragmentos de Peptídeos , Peptídeo YY/administração & dosagem , Peptídeo YY/uso terapêutico , Ratos
20.
J Clin Endocrinol Metab ; 92(5): 1754-7, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17341568

RESUMO

CONTEXT: The gastrointestinal peptide hormone, peptide YY(3-36) (PYY(3-36)), is implicated to be a postprandial satiety factor. OBJECTIVE: The aim of this study is to assess the safety, tolerability, and efficacy of intranasal PYY(3-36) to induce weight loss in obese patients. DESIGN: The study was designed as a randomized, 2-wk, single-blind placebo run-in followed by a 12-wk double-blind, placebo-controlled treatment period. SETTING: The study was set within a private and institutional practice. PATIENTS: A total of 133 obese patients (body mass index, 30-43 kg/m(2); age, 18-65 yr) participated in the study. INTERVENTION: Placebo or 200- or 600-microg PYY(3-36) was administered as an intranasal spray 20 min before breakfast, lunch, and dinner in conjunction with a hypocaloric diet and exercise. MAIN OUTCOME MEASURE: Body weight was the main outcome measure. RESULTS: The number of patients completing 12 wk on the drug was 38 of 43 (88%), 31 of 44 (70%), and 12 of 46 (26%) for placebo, 200 microg three times a day (t.i.d.) and 600 microg t.i.d., respectively. In the 600 microg t.i.d. group, 27 of 46 (59%) patients discontinued due to nausea and vomiting. Among all randomized patients who took at least one drug dose and had a postbaseline measurement, the mean body weight change from baseline was -2.8, -3.7, and -1.4 kg for placebo, 200 and 600 microg, respectively. The least squares mean difference (95% confidence interval) between placebo and 200 microg was -0.9 (-2.6, 0.7) kg (P = 0.251). A difference of 2.11 kg was sought. No meaningful inference can be drawn from the few patients who completed the study on 600 microg. CONCLUSIONS: Intranasal PYY(3-36) as administered at these intervention doses and preprandial timing is not efficacious in inducing weight loss in obese patients after 12 wk of treatment.


Assuntos
Obesidade/tratamento farmacológico , Peptídeo YY/uso terapêutico , Administração Intranasal , Adolescente , Adulto , Idoso , Índice de Massa Corporal , Peso Corporal/efeitos dos fármacos , Dieta Redutora , Relação Dose-Resposta a Droga , Método Duplo-Cego , Terapia por Exercício , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fragmentos de Peptídeos , Peptídeo YY/administração & dosagem , Peptídeo YY/efeitos adversos , Resultado do Tratamento , Redução de Peso/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA