Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Appl Environ Microbiol ; 85(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30658979

RESUMO

Dichloromethane (DCM) is susceptible to microbial degradation under anoxic conditions and is metabolized via the Wood-Ljungdahl pathway; however, mechanistic understanding of carbon-chlorine bond cleavage is lacking. The microbial consortium RM contains the DCM degrader "Candidatus Dichloromethanomonas elyunquensis" strain RM, which strictly requires DCM as a growth substrate. Proteomic workflows applied to DCM-grown consortium RM biomass revealed a total of 1,705 nonredundant proteins, 521 of which could be assigned to strain RM. In the presence of DCM, strain RM expressed a complete set of Wood-Ljungdahl pathway enzymes, as well as proteins implicated in chemotaxis, motility, sporulation, and vitamin/cofactor synthesis. Four corrinoid-dependent methyltransferases were among the most abundant proteins. Notably, two of three putative reductive dehalogenases (RDases) encoded within strain RM's genome were also detected in high abundance. Expressed RDase 1 and RDase 2 shared 30% amino acid identity, and RDase 1 was most similar to an RDase of Dehalococcoides mccartyi strain WBC-2 (AOV99960, 52% amino acid identity), while RDase 2 was most similar to an RDase of Dehalobacter sp. strain UNSWDHB (EQB22800, 72% amino acid identity). Although the involvement of RDases in anaerobic DCM metabolism has yet to be experimentally verified, the proteome characterization results implicated the possible participation of one or more reductive dechlorination steps and methyl group transfer reactions, leading to a revised proposal for an anaerobic DCM degradation pathway.IMPORTANCE Naturally produced and anthropogenically released DCM can reside in anoxic environments, yet little is known about the diversity of organisms, enzymes, and mechanisms involved in carbon-chlorine bond cleavage in the absence of oxygen. A proteogenomic approach identified two RDases and four corrinoid-dependent methyltransferases expressed by the DCM degrader "Candidatus Dichloromethanomonas elyunquensis" strain RM, suggesting that reductive dechlorination and methyl group transfer play roles in anaerobic DCM degradation. These findings suggest that the characterized DCM-degrading bacterium Dehalobacterium formicoaceticum and "Candidatus Dichloromethanomonas elyunquensis" strain RM utilize distinct strategies for carbon-chlorine bond cleavage, indicating that multiple pathways evolved for anaerobic DCM metabolism. The specific proteins (e.g., RDases and methyltransferases) identified in strain RM may have value as biomarkers for monitoring anaerobic DCM degradation in natural and contaminated environments.


Assuntos
Proteínas de Bactérias/metabolismo , Cloreto de Metileno/metabolismo , Metiltransferases/metabolismo , Peptococcaceae/enzimologia , Sequência de Aminoácidos , Anaerobiose , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biodegradação Ambiental , Metiltransferases/química , Metiltransferases/genética , Peptococcaceae/química , Peptococcaceae/genética , Proteogenômica , Alinhamento de Sequência
2.
Appl Environ Microbiol ; 79(1): 105-12, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23064332

RESUMO

Degradation of terephthalate (TA) through microbial syntrophy under moderately thermophilic (46 to 50°C) methanogenic conditions was characterized by using a metagenomic approach (A. Lykidis et al., ISME J. 5:122-130, 2011). To further study the activities of key microorganisms responsible for the TA degradation, community analysis and shotgun proteomics were used. The results of hierarchical oligonucleotide primer extension analysis of PCR-amplified 16S rRNA genes indicated that Pelotomaculum, Methanosaeta, and Methanolinea were predominant in the TA-degrading biofilms. Metaproteomic analysis identified a total of 482 proteins and revealed a distinctive distribution pattern of microbial functions expressed in situ. The results confirmed that TA was degraded by Pelotomaculum spp. via the proposed decarboxylation and benzoyl-coenzyme A-dependent pathway. The intermediate by-products, including acetate, H(2)/CO(2), and butyrate, were produced to support the growth of methanogens, as well as other microbial populations that could further degrade butyrate. Proteins related to energy production and conservation, and signal transduction mechanisms (that is, chemotaxis, PAS/GGDEF regulators, and stress proteins) were highly expressed, and these mechanisms were important for growth in energy-limited syntrophic ecosystems.


Assuntos
Methanomicrobiales/isolamento & purificação , Methanosarcinales/isolamento & purificação , Consórcios Microbianos/genética , Peptococcaceae/isolamento & purificação , Ácidos Ftálicos/metabolismo , Proteoma/análise , Genômica , Redes e Vias Metabólicas/genética , Metagenoma , Metano/metabolismo , Methanomicrobiales/química , Methanomicrobiales/classificação , Methanomicrobiales/genética , Methanosarcinales/química , Methanosarcinales/classificação , Methanosarcinales/genética , Peptococcaceae/química , Peptococcaceae/classificação , Peptococcaceae/genética , Proteômica , RNA Arqueal/genética , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Temperatura
3.
J Biol Inorg Chem ; 17(2): 167-73, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21904889

RESUMO

Carbon monoxide dehydrogenases (CODHs) catalyze the reversible oxidation of carbon monoxide by reaction with water to yield carbon dioxide, two protons, and two electrons. Two principal types of CODHs can be distinguished. Ni,Fe-containing CODHs contain a [NiFe(4)S(4)OH(x)] cluster within their active site, to which the direct binding of the substrates water and carbon dioxide has been revealed by protein X-ray crystallography. n-Butyl isocyanide is a slow-turnover substrate of CODHs, whose oxidation at the active site shows several parallels to the oxidation of carbon monoxide. Here, we report the crystal structure of CODH-II from Carboxydothermus hydrogenoformans resulting from the enzymatic oxidation of n-butyl isocyanide to n-butyl isocyanate at its active site cluster. The high resolution of the structure (d(min) = 1.28 Å) revealed n-butyl isocyanate bound to the active site cluster and identified a novel type of Ni-C bond in CODHs. The structure suggests the occurrence of tetrahedral in addition to square-planar nickel complexes in product-bound states of this enzyme. Furthermore, we discovered a molecule of n-butyl isocyanide in a hydrophobic channel leading to the active site, revealing a unique architecture for the substrate channel of CODH-II compared with the bifunctional CODHs.


Assuntos
Aldeído Oxirredutases/química , Aldeído Oxirredutases/metabolismo , Isocianatos/metabolismo , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , Peptococcaceae/enzimologia , Domínio Catalítico , Cristalografia por Raios X , Ferro/metabolismo , Modelos Moleculares , Níquel/metabolismo , Oxirredução , Peptococcaceae/química
4.
J Mol Biol ; 367(3): 864-71, 2007 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-17292914

RESUMO

CooA is a CO-dependent transcriptional activator and transmits a CO-sensing signal to a DNA promoter that controls the expression of the genes responsible for CO metabolism. CooA contains a b-type heme as the active site for sensing CO. CO binding to the heme induces a conformational change that switches CooA from an inactive to an active DNA-binding form. Here, we report the crystal structure of an imidazole-bound form of CooA from Carboxydothermus hydrogenoformans (Ch-CooA). In the resting form, Ch-CooA has a six-coordinate ferrous heme with two endogenous axial ligands, the alpha-amino group of the N-terminal amino acid and a histidine residue. The N-terminal amino group of CooA that is coordinated to the heme iron is replaced by CO. This substitution presumably triggers a structural change leading to the active form. The crystal structure of Ch-CooA reveals that imidazole binds to the heme, which replaces the N terminus, as does CO. The dissociated N terminus is positioned approximately 16 A from the heme iron in the imidazole-bound form. In addition, the heme plane is rotated by 30 degrees about the normal of the porphyrin ring compared to that found in the inactive form of Rhodospirillum rubrum CooA. Even though the ligand exchange, imidazole-bound Ch-CooA remains in the inactive form for DNA binding. These results indicate that the release of the N terminus resulting from imidazole binding is not sufficient to activate CooA. The structure provides new insights into the structural changes required to achieve activation.


Assuntos
Proteínas de Bactérias/química , Transativadores/química , Proteínas de Bactérias/metabolismo , Monóxido de Carbono/metabolismo , Cristalografia por Raios X , Heme/química , Imidazóis/metabolismo , Ligantes , Modelos Moleculares , Peptococcaceae/química , Peptococcaceae/metabolismo , Conformação Proteica , Estrutura Quaternária de Proteína , Transativadores/metabolismo
5.
J Microbiol Methods ; 70(2): 319-27, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17573136

RESUMO

A high-performance liquid chromatographic method with indirect fluorescence detection has been developed for quantification of dipicolinic acid, a major constituent of bacterial endospores. After separation on a reversed-phase column, a post-column reagent of sodium acetate at 1 mol l(-1) with 50 micromol l(-1) terbium chloride was added for complexation of dipicolinic acid. Terbium monodipicolinate complexes formed were quantified by measuring the fluorescence emission maximum at 548 nm after excitation with UV light at 270 nm wavelength. Parameters of post-column complexation were optimized to achieve a detection limit of 0.5 nmol DPA l(-1), corresponding to about 10(3) Desulfosporosinus orientis endospores per ml. The method was applied to the analysis of spore contamination in tuna and for estimating the endospore numbers in marine sediments.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Ácidos Picolínicos/análise , Esporos Bacterianos/química , Animais , Sedimentos Geológicos/microbiologia , Peptococcaceae/química , Sensibilidade e Especificidade , Acetato de Sódio/metabolismo , Térbio/metabolismo , Atum/microbiologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-16682779

RESUMO

CooA, a homodimeric haem-containing protein, is responsible for transcriptional regulation in response to carbon monoxide (CO). It has a b-type haem as a CO sensor. Upon binding CO to the haem, CooA binds promoter DNA and activates expression of genes for CO metabolism. CooA from Carboxydothermus hydrogenoformans has been overexpressed in Escherichia coli, purified and crystallized by the vapour-diffusion method. The crystal belongs to space group P2(1), with unit-cell parameters a = 61.8, b = 94.7, c = 92.8 angstroms, beta = 104.8 degrees. The native and anomalous difference Patterson maps indicated that two CooA dimers are contained in the asymmetric unit and are related by a translational symmetry almost parallel to the c axis.


Assuntos
Proteínas de Bactérias/química , Hemeproteínas/química , Peptococcaceae/química , Transativadores/química , Monóxido de Carbono/metabolismo , Cristalização , Cristalografia por Raios X
7.
Proc Natl Acad Sci U S A ; 103(39): 14331-6, 2006 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-16983091

RESUMO

The cobalt- and iron-containing corrinoid iron-sulfur protein (CoFeSP) is functional in the acetyl-CoA (Ljungdahl-Wood) pathway of autotrophic carbon fixation in various bacteria and archaea, where it is essential for the biosynthesis of acetyl-CoA. CoFeSP acts in two methylation reactions: the transfer of a methyl group from methyltransferase (MeTr)-bound methyltetrahydrofolate to the cob(I)amide of CoFeSP and the transfer of the methyl group of methyl-cob(III)amide to the reduced Ni-Ni-[4Fe-4S] active site cluster A of acetyl-CoA synthase (ACS). We have solved the crystal structure of as-isolated CoFeSP(Ch) from the CO-oxidizing hydrogenogenic bacterium Carboxydothermus hydrogenoformans at 1.9-A resolution. The heterodimeric protein consists of two tightly interacting subunits with pseudo-twofold symmetry. The large CfsA subunit comprises three domains, of which the N-terminal domain binds the [4Fe-4S] cluster, the middle domain is a (betaalpha)(8)-barrel, and the C-terminal domain shows an open fold and binds Cobeta-aqua-(5,6-dimethylbenzimidazolylcobamide) in a "base-off" state without a protein ligand at the cobalt ion. The small CfsB subunit also displays a (betaalpha)(8)-barrel fold and interacts with the upper side of the corrin macrocycle. Structure-based alignments show that both (betaalpha)(8)-barrel domains are related to the MeTr in the acetyl-CoA pathway and to the folate domain of methionine synthase. We suggest that the C-terminal domain of the large subunit is the mobile element that allows the necessary interaction of CoFeSP(Ch) with the active site of ACS(Ch) and the methyltetrahydrofolate carrying MeTr. The conformation in the crystal structure shields the two open coordinations of cobalt and likely represents a resting state.


Assuntos
Acetilcoenzima A/biossíntese , Corrinoides/química , Proteínas Ferro-Enxofre/química , Metiltransferases/química , Peptococcaceae/química , Coenzimas/metabolismo , Cristalografia por Raios X , Modelos Biológicos , Estrutura Secundária de Proteína , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA