Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.151
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 617(7961): 629-636, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37138085

RESUMO

In natural photosynthesis, the light-driven splitting of water into electrons, protons and molecular oxygen forms the first step of the solar-to-chemical energy conversion process. The reaction takes place in photosystem II, where the Mn4CaO5 cluster first stores four oxidizing equivalents, the S0 to S4 intermediate states in the Kok cycle, sequentially generated by photochemical charge separations in the reaction center and then catalyzes the O-O bond formation chemistry1-3. Here, we report room temperature snapshots by serial femtosecond X-ray crystallography to provide structural insights into the final reaction step of Kok's photosynthetic water oxidation cycle, the S3→[S4]→S0 transition where O2 is formed and Kok's water oxidation clock is reset. Our data reveal a complex sequence of events, which occur over micro- to milliseconds, comprising changes at the Mn4CaO5 cluster, its ligands and water pathways as well as controlled proton release through the hydrogen-bonding network of the Cl1 channel. Importantly, the extra O atom Ox, which was introduced as a bridging ligand between Ca and Mn1 during the S2→S3 transition4-6, disappears or relocates in parallel with Yz reduction starting at approximately 700 µs after the third flash. The onset of O2 evolution, as indicated by the shortening of the Mn1-Mn4 distance, occurs at around 1,200 µs, signifying the presence of a reduced intermediate, possibly a bound peroxide.


Assuntos
Oxigênio , Fotossíntese , Complexo de Proteína do Fotossistema II , Oxirredução , Oxigênio/química , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/metabolismo , Prótons , Água/química , Água/metabolismo , Manganês/química , Manganês/metabolismo , Cálcio/química , Cálcio/metabolismo , Peróxidos/metabolismo
2.
Appl Environ Microbiol ; 90(10): e0146824, 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39264182

RESUMO

Oxidative stress caused by reactive oxygen species (ROS) is inevitable for all aerobic microorganisms as ROS are the byproducts of aerobic respiration. For gut pathogens, ROS are an integrated part of colonization resistance which protects the host against bacteria invasion. Alkyl hydroperoxide reductase (AhpR) and organic hydroperoxide resistance (Ohr) proteins are considered as the main enzymes responsible for the degradation of organic peroxides (OPs) in most bacteria. To elucidate how enteric pathogen Yersinia pseudotuberculosis YPIII deals with oxidative stress induced by OPs, we performed transcriptomic analysis and identified the OP scavenging system, which is composed of glutathione peroxidase (Gpx), thiol peroxidase (Tpx), and AhpR. Gpx serves as the main scavenger of OPs, and Tpx assists in the degradation of OPs. Transcriptional factor OxyR regulates Gpx expression, suggesting that OxyR is the regulator mediating the cellular response to OPs. Although AhpR has little influence on OP degradation, its deletion would greatly impair the scavenging ability of OPs in the absence of gpx or tpx. In addition, we found that catalase KatG and KatE are responsive to OPs but do not participate in the removal of OPs.IMPORTANCEIn bacteria, oxidative stress caused by ROS is a continuously occurring cellular response and requires multiple genes to participate in this process. The elimination of OPs is mainly dependent on AhpR and Ohr protein. Here, we carried out transcriptomic analysis to search for enzymes responsible for the removal of organic peroxides in Yersinia pseudotuberculosis. We found that Gpx was the primary OP scavenger in bacteria, which was positively regulated by the oxidative stress regulator OxyR. The OP scavenging system in Y. pseudotuberculosis was composedof Gpx, Tpx, and AhpR. OxyR is the critical global regulator mediating gene expression involved in OPs and H2O2 stress. These findings suggest that Y. pseudotuberculosis has a unique defense system in response to oxidative stress.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Peróxidos , Yersinia pseudotuberculosis , Yersinia pseudotuberculosis/genética , Yersinia pseudotuberculosis/metabolismo , Peróxidos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/metabolismo
3.
Chem Biodivers ; 21(10): e202400644, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38958342

RESUMO

Naturally occurring peroxides received great interest and attention from scientific research groups worldwide due to their structural diversity, versatile biological activities, and pharmaceutical properties. In the present review, we describe the historical discovery of natural peroxides from plants systematically and update the researchers with recently explored ones justifying their structural caterogrization and biological/pharmaceutical properties intensively. Till the end of 2023, 192 peroxy natural products from plants were documented herein for the first time implying most categories of natural scaffolds (e. g. terpenes, polyketides, phenolics and alkaloids). Numerically, the reported plants' peroxides have been classified into seventy-four hydro-peroxides, hundred seven endo-peroxides and eleven acyl-peroxides. Endo-peroxides (cyclic alkyl peroxides) are an important group due to their high variety of structural frameworks, and we have further divided them into "four-, five-, six and seven"-membered rings. Biosynthetically, a shedding light on the intricate mechanisms behind the formation of plant-derived peroxides are addressed as well.


Assuntos
Produtos Biológicos , Peróxidos , Plantas , Peróxidos/química , Peróxidos/farmacologia , Peróxidos/metabolismo , Plantas/química , Plantas/metabolismo , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Produtos Biológicos/metabolismo , Produtos Biológicos/isolamento & purificação , Humanos , Estrutura Molecular
4.
Chem Biodivers ; 21(10): e202400794, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38997231

RESUMO

Natural occurring peroxides are interesting bioprospecting targets due to their molecular structural diversity and the wide range of pharmacological activities. In this systematic review, a total of 123 peroxide compounds were analysed from 99 published papers with the compounds distributed in 31 plants, 18 animals and 41 microorganisms living in land and water ecosystems. The peroxide moiety exists as both cyclic and acyclic entities and can include 1,2-dioxolanes, 1,2-dioxane rings and common secondary metabolites with a peroxo group. These peroxides possessed diverse bioactivities including anticancer, antimalarial, antimicrobial, anti-inflammatory, neuroprotective, adipogenic suppressor, antituberculosis, anti-melanogenic and anti-coagulant agents. Biosynthetic pathways and mechanisms of most endoperoxides have not been well established. Method development in peroxide detection has been a challenging task requiring multidisciplinary investigation and exploration on peroxy-containing secondary metabolites are necessary.


Assuntos
Peróxidos , Animais , Humanos , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Produtos Biológicos/síntese química , Produtos Biológicos/metabolismo , Dioxanos/síntese química , Dioxanos/química , Dioxanos/farmacologia , Estrutura Molecular , Peróxidos/química , Peróxidos/farmacologia , Peróxidos/metabolismo , Dioxolanos/síntese química , Dioxolanos/química
5.
Angew Chem Int Ed Engl ; 63(33): e202406542, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38820076

RESUMO

Cytochrome P450 (P450, CYP) 19A1 is the steroid aromatase, the enzyme responsible for the 3-step conversion of androgens (androstenedione or testosterone) to estrogens. The final step is C-C bond scission (removing the 19-oxo group as formic acid) that proceeds via a historically controversial reaction mechanism. The two competing mechanistic possibilities involve a ferric peroxide anion (Fe3+O2 -, Compound 0) and a perferryl oxy species (FeO3+, Compound I). One approach to discern the role of each species in the reaction is with the use of oxygen-18 labeling, i.e., from 18O2 and H2 18O of the reaction product formic acid. We applied this approach, using several technical improvements, to study the deformylation of 19-oxo-androstenedione by human P450 19A1 and of a model secosteroid, 3-oxodecaline-4-ene-10-carboxaldehyde (ODEC), by rabbit P450 2B4. Both aldehyde substrates were sensitive to non-enzymatic acid-catalyzed deformylation, yielding 19-norsteroids, and conditions were established to avoid issues with artifactual generation of formic acid. The Compound 0 reaction pathway predominated (i.e., Fe3+O2 -) in both P450 19A1 oxidation of 19-oxo-androstenedione and P450 2B4 oxidation of ODEC. The P450 19A1 results contrast with our prior conclusions (J. Am. Chem. Soc. 2014, 136, 15016-16025), attributed to several technical modifications.


Assuntos
Aromatase , Oxirredução , Aromatase/metabolismo , Aromatase/química , Humanos , Peróxidos/química , Peróxidos/metabolismo , Animais , Ânions/química , Ânions/metabolismo , Compostos Férricos/química , Compostos Férricos/metabolismo , Família 2 do Citocromo P450/metabolismo , Família 2 do Citocromo P450/química , Coelhos , Esteroides/química , Esteroides/metabolismo , Androstenodiona/química , Androstenodiona/metabolismo
6.
BMC Plant Biol ; 23(1): 577, 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37978345

RESUMO

The present study explored the potential role of cold-regulated plasma membrane protein COR413PM1 isolated from Saussurea involucrata (Matsum. & Koidz)(SikCOR413PM1), in enhancing cotton (Gossypium hirsutum) tolerance to cold and drought stresses through transgenic methods. Under cold and drought stresses, the survival rate and the fresh and dry weights of the SikCOR413PM1-overexpressing lines were higher than those of the wild-type plants, and the degree of leaf withering was much lower. Besides, overexpressing SikCOR413PM1 overexpression increased the relative water content, reduced malondialdehyde content and relative conductivity, and elevated proline and soluble sugar levels in cotton seedlings. These findings suggest that SikCOR413PM1 minimizes cell membrane damage and boosts plant stability under challenging conditions. Additionally, overexpression of this gene upregulated antioxidant enzyme-related genes in cotton seedlings, resulting in enhanced antioxidant enzyme activity, lowered peroxide content, and reduced oxidative stress. SikCOR413PM1 overexpression also modulated the expression of stress-related genes (GhDREB1A, GhDREB1B, GhDREB1C, GhERF2, GhNAC3, and GhRD22). In field trials, the transgenic cotton plants overexpressing SikCOR413PM1 displayed high yields and increased environmental tolerance. Our study thus demonstrates the role of SikCOR413PM1 in regulating stress-related genes, osmotic adjustment factors, and peroxide content while preserving cell membrane stability and improving cold and drought tolerance in cotton.


Assuntos
Resistência à Seca , Gossypium , Gossypium/metabolismo , Proteínas de Plantas/metabolismo , Antioxidantes/metabolismo , Plantas Geneticamente Modificadas/genética , Secas , Peróxidos/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
7.
J Appl Microbiol ; 134(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37863832

RESUMO

AIM: The purpose of the present study was to understand the possible events involved in the toxicity of hydrogen peroxide (H2O2) to wild and sporulene-deficient spores of Bacillus subtilis, as H2O2 was previously shown to have deleterious effects. METHODS AND RESULTS: The investigation utilized two strains of B. subtilis, namely the wild-type PY79 (WT) and the sporulene-deficient TB10 (ΔsqhC mutant). Following treatment with 0.05% H2O2 (v/v), spore viability was assessed using a plate count assay, which revealed a significant decrease in cultivability of 80% for the ΔsqhC mutant spores. Possible reasons for the loss of spore viability were investigated with microscopic analysis, dipicholinic acid (DPA) quantification and propidium iodide (PI) staining. Microscopic examinations revealed the presence of withered and deflated morphologies in spores of ΔsqhC mutants treated with H2O2, indicating a compromised membrane permeability. This was further substantiated by the absence of DPA and a high frequency (50%-75%) of PI infiltration. The results of fatty acid methyl ester analysis and protein profiling indicated that the potentiation of H2O2-induced cellular responses was manifested in the form of altered spore composition in ΔsqhC B. subtilis. The slowed growth rates of the ΔsqhC mutant and the heightened sporulene biosynthesis pathways in the WT strain, both upon exposure to H2O2, suggested a protective function for sporulenes in vegetative cells. CONCLUSIONS: Sporulenes serve as a protective layer for the inner membrane of spores, thus assuming a significant role in mitigating the adverse effects of H2O2 in WT B. subtilis. The toxic effects of H2O2 were even more pronounced in the spores of the ΔsqhC mutant, which lacks this protective barrier of sporulenes.


Assuntos
Bacillus subtilis , Peróxido de Hidrogênio , Peróxido de Hidrogênio/farmacologia , Esporos Bacterianos , Peróxidos/metabolismo , Peróxidos/farmacologia , Permeabilidade da Membrana Celular
8.
Proc Natl Acad Sci U S A ; 117(22): 11916-11922, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32414932

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) have been proposed to react with both [Formula: see text] and [Formula: see text] as cosubstrates. In this study, the [Formula: see text] reaction with reduced Hypocrea jecorina LPMO9A (CuI-HjLPMO9A) is demonstrated to be 1,000-fold faster than the [Formula: see text] reaction while producing the same oxidized oligosaccharide products. Analysis of the reactivity in the absence of polysaccharide substrate by stopped-flow absorption and rapid freeze-quench (RFQ) electron paramagnetic resonance (EPR) and magnetic circular dichroism (MCD) yields two intermediates corresponding to neutral tyrosyl and tryptophanyl radicals that are formed along minor reaction pathways. The dominant reaction pathway is characterized by RFQ EPR and kinetic modeling to directly produce CuII-HjLPMO9A and indicates homolytic O-O cleavage. Both optical intermediates exhibit magnetic exchange coupling with the CuII sites reflecting facile electron transfer (ET) pathways, which may be protective against uncoupled turnover or provide an ET pathway to the active site with substrate bound. The reactivities of nonnative organic peroxide cosubstrates effectively exclude the possibility of a ping-pong mechanism.


Assuntos
Aminoácidos/metabolismo , Peróxido de Hidrogênio/metabolismo , Oxigenases de Função Mista/química , Polissacarídeos/metabolismo , Sítios de Ligação , Biocombustíveis , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Hypocrea/metabolismo , Cinética , Espectroscopia de Ressonância Magnética/métodos , Oxigenases de Função Mista/metabolismo , Oxirredução , Peróxidos/metabolismo , Triptofano/metabolismo , Tirosina/metabolismo
9.
PLoS Genet ; 16(6): e1008838, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32544191

RESUMO

Reactive oxygen species (ROS) are signalling molecules whose study in intact organisms has been hampered by their potential toxicity. This has prevented a full understanding of their role in organismal processes such as development, aging and disease. In Caenorhabditis elegans, the development of the vulva is regulated by a signalling cascade that includes LET-60ras (homologue of mammalian Ras), MPK-1 (ERK1/2) and LIN-1 (an ETS transcription factor). We show that both mitochondrial and cytoplasmic ROS act on a gain-of-function (gf) mutant of the LET-60ras protein through a redox-sensitive cysteine (C118) previously identified in mammals. We show that the prooxidant paraquat as well as isp-1, nuo-6 and sod-2 mutants, which increase mitochondrial ROS, inhibit the activity of LET-60rasgf on vulval development. In contrast, the antioxidant NAC and loss of sod-1, both of which decrease cytoplasmic H202, enhance the activity of LET-60rasgf. CRISPR replacement of C118 with a non-oxidizable serine (C118S) stimulates LET-60rasgf activity, whereas replacement of C118 with aspartate (C118D), which mimics a strongly oxidised cysteine, inhibits LET-60rasgf. These data strongly suggest that C118 is oxidized by cytoplasmic H202 generated from dismutation of mitochondrial and/or cytoplasmic superoxide, and that this oxidation inhibits LET-60ras. This contrasts with results in cultured mammalian cells where it is mostly nitric oxide, which is not found in worms, that oxidizes C118 and activates Ras. Interestingly, PQ, NAC and the C118S mutation do not act on the phosphorylation of MPK-1, suggesting that oxidation of LET-60ras acts on an as yet uncharacterized MPK-1-independent pathway. We also show that elevated cytoplasmic superoxide promotes vulva formation independently of C118 of LET-60ras and downstream of LIN-1. Finally, we uncover a role for the NADPH oxidases (BLI-3 and DUOX-2) and their redox-sensitive activator CED-10rac in stimulating vulva development. Thus, there are at least three genetically separable pathways by which ROS regulates vulval development.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Peróxidos/metabolismo , Vulva/crescimento & desenvolvimento , Proteínas ras/genética , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Feminino , Mutação com Ganho de Função , Genes de Helmintos/genética , Oxirredução , Oxirredutases/metabolismo , Peróxidos/análise , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas ras/metabolismo
10.
Int J Mol Sci ; 24(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37298190

RESUMO

Ananas comosus var. bracteatus (Ac. bracteatus) is a typical leaf-chimeric ornamental plant. The chimeric leaves are composed of central green photosynthetic tissue (GT) and marginal albino tissue (AT). The mosaic existence of GT and AT makes the chimeric leaves an ideal material for the study of the synergistic mechanism of photosynthesis and antioxidant metabolism. The daily changes in net photosynthetic rate (NPR) and stomatal conductance (SCT) of the leaves indicated the typical crassulacean acid metabolism (CAM) characteristic of Ac. bracteatus. Both the GT and AT of chimeric leaves fixed CO2 during the night and released CO2 from malic acid for photosynthesis during the daytime. The malic acid content and NADPH-ME activity of the AT during the night was significantly higher than that of GT, which suggests that the AT may work as a CO2 pool to store CO2 during the night and supply CO2 for photosynthesis in the GT during the daytime. Furthermore, the soluble sugar content (SSC) in the AT was significantly lower than that of GT, while the starch content (SC) of the AT was apparently higher than that of GT, indicating that AT was inefficient in photosynthesis but may function as a photosynthate sink to help the GT maintain high photosynthesis activity. Additionally, the AT maintained peroxide balance by enhancing the non-enzymatic antioxidant system and antioxidant enzyme system to avoid antioxidant damage. The enzyme activities of reductive ascorbic acid (AsA) and the glutathione (GSH) cycle (except DHAR) and superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) were enhanced, apparently to make the AT grow normally. This study indicates that, although the AT of the chimeric leaves was inefficient at photosynthesis because of the lack of chlorophyll, it can cooperate with the GT by working as a CO2 supplier and photosynthate store to enhance the photosynthetic ability of GT to help chimeric plants grow well. Additionally, the AT can avoid peroxide damage caused by the lack of chlorophyll by enhancing the activity of the antioxidant system. The AT plays an active role in the normal growth of the chimeric leaves.


Assuntos
Ananas , Antioxidantes , Antioxidantes/metabolismo , Ananas/metabolismo , Dióxido de Carbono/metabolismo , Fotossíntese , Clorofila/metabolismo , Glutationa/metabolismo , Peróxidos/metabolismo , Folhas de Planta/metabolismo
11.
Infect Immun ; 90(10): e0021122, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36102657

RESUMO

Listeria monocytogenes is a Gram-positive facultative anaerobe and an excellent model pathogen for investigating regulatory changes that occur during infection of a mammalian host. SpxA1 is a widely conserved transcriptional regulator that induces expression of peroxide-detoxifying genes in L. monocytogenes and is thus required for aerobic growth. SpxA1 is also required for L. monocytogenes virulence, although the SpxA1-dependent genes important in this context remain to be identified. Here, we sought to investigate the role of SpxA1 in a tissue culture model of infection and made the surprising discovery that ΔspxA1 cells are dramatically elongated during growth in the host cytosol. Quantitative microscopy revealed that ΔspxA1 cells also form elongated filaments extracellularly during early exponential phase in rich medium. Scanning and transmission electron microscopy analysis found that the likely cause of this morphological phenotype is aberrantly placed division septa localized outside cell midpoints. Quantitative mass spectrometry of whole-cell lysates identified SpxA1-dependent changes in protein abundance, including a significant number of motility and flagellar proteins that were depleted in the ΔspxA1 mutant. Accordingly, we found that both the filamentation and the lack of motility contributed to decreased phagocytosis of ΔspxA1 cells by macrophages. Overall, we identify a novel role for SpxA1 in regulating cell elongation and motility, both of which impact L. monocytogenes virulence.


Assuntos
Listeria monocytogenes , Listeriose , Animais , Virulência/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Peróxidos/metabolismo , Mamíferos
12.
PLoS Pathog ; 16(10): e1008904, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33021995

RESUMO

Pathogenic Leptospira spp. are the causative agents of the waterborne zoonotic disease leptospirosis. Leptospira are challenged by numerous adverse conditions, including deadly reactive oxygen species (ROS), when infecting their hosts. Withstanding ROS produced by the host innate immunity is an important strategy evolved by pathogenic Leptospira for persisting in and colonizing hosts. In L. interrogans, genes encoding defenses against ROS are repressed by the peroxide stress regulator, PerR. In this study, RNA sequencing was performed to characterize both the L. interrogans response to low and high concentrations of hydrogen peroxide and the PerR regulon. We showed that Leptospira solicit three main peroxidase machineries (catalase, cytochrome C peroxidase and peroxiredoxin) and heme to detoxify oxidants produced during peroxide stress. In addition, canonical molecular chaperones of the heat shock response and DNA repair proteins from the SOS response were required for Leptospira recovering from oxidative damage. Identification of the PerR regulon upon exposure to H2O2 allowed to define the contribution of this regulator in the oxidative stress response. This study has revealed a PerR-independent regulatory network involving other transcriptional regulators, two-component systems and sigma factors as well as non-coding RNAs that putatively orchestrate, in concert with PerR, the oxidative stress response. We have shown that PerR-regulated genes encoding a TonB-dependent transporter and a two-component system (VicKR) are involved in Leptospira tolerance to superoxide. This could represent the first defense mechanism against superoxide in L. interrogans, a bacterium lacking canonical superoxide dismutase. Our findings provide an insight into the mechanisms required by pathogenic Leptospira to overcome oxidative damage during infection-related conditions. This will participate in framing future hypothesis-driven studies to identify and decipher novel virulence mechanisms in this life-threatening pathogen.


Assuntos
Peróxido de Hidrogênio/farmacologia , Leptospira/patogenicidade , Estresse Oxidativo/efeitos dos fármacos , Peróxidos/metabolismo , Proteínas de Bactérias/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/genética , Ferro/metabolismo , Leptospira/efeitos dos fármacos , Leptospira interrogans/efeitos dos fármacos , Leptospira interrogans/genética , Leptospirose/genética , Chaperonas Moleculares/metabolismo , Estresse Oxidativo/fisiologia , Virulência/efeitos dos fármacos , Virulência/fisiologia
13.
BMC Cardiovasc Disord ; 22(1): 350, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35918636

RESUMO

BACKGROUND: Hyperglycaemia is known to result in oxidative stress tissue injury and dysfunction. Interestingly, studies have reported hepatic and renal oxidative stress injury during prediabetes; however, any injury to the myocardium during prediabetes has not been investigated. Hence this study aims to assess changes in the myocardial tissue in an HFHC diet-induced model of prediabetes. METHODS: Male Sprague Dawley rats were randomly grouped into non-prediabetes and prediabetes (n = 6 in each group) and consumed a standard rat chow or fed a high-fat-high-carbohydrate diet respectively for a 20-week prediabetes induction period. Post induction, prediabetes was confirmed using the ADA criteria. Aldose reductase, NADH oxidase 1, superoxide dismutase, glutathione peroxide, cardiac troponins were analysed in cardiac tissue homogenate using specific ELISA kits. Lipid peroxidation was estimated by determining the concentration of malondialdehyde in the heart tissue homogenate according to the previously described protocol. Myocardial tissue sections were stained with H&E stain and analysed using Leica microsystem. All data were expressed as means ± SEM. Statistical comparisons were performed with Graph Pad instat Software using the Student's two-sided t-test. Pearson correlation coefficient was calculated to assess the association. Value of p < 0.05 was considered statistically significant. RESULTS: The prediabetes group showed a markedly high oxidative stress as indicated by significantly increased NADH oxidase 1 and malondialdehyde while superoxide dismutase and glutathione peroxide were decreased compared to non-prediabetes group. There was no statistical difference between cardiac troponin I and T in the non-prediabetes and prediabetes groups. Cardiac troponins had a weak positive association with glycated haemoglobin. CONCLUSION: The findings of this study demonstrate that prediabetes is associated with myocardial injury through oxidative stress. Future studies are to investigate cardiac contractile function and include more cardiac biomarkers.


Assuntos
Infarto do Miocárdio , Estado Pré-Diabético , Animais , Dieta Hiperlipídica/efeitos adversos , Glutationa/efeitos adversos , Glutationa/metabolismo , Humanos , Masculino , Malondialdeído/metabolismo , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Estresse Oxidativo , Peróxidos/efeitos adversos , Peróxidos/metabolismo , Estado Pré-Diabético/diagnóstico , Estado Pré-Diabético/etiologia , Ratos , Ratos Sprague-Dawley , Fatores de Risco , Superóxido Dismutase/metabolismo , Troponina
14.
J Nanobiotechnology ; 20(1): 323, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35836178

RESUMO

In hypoxic dendritic cells (DCs), a low level of Zn2+ can induce the activation of immunogenic DCs (igDCs), thereby triggering an active T-cell response to propel the immune progression of rheumatoid arthritis (RA). This finding indicates the crucial roles of zinc and oxygen homeostasis in DCs during the pathogenesis of RA. However, very few studies have focused on the modulation of zinc and oxygen homeostasis in DCs during RA treatment. Proposed herein is a DC-targeting immune-regulating strategy to induce igDCs into tolerogenic DCs (tDCs) and inhibit subsequent T-cell activation, referred to as ZnO2/Catalase@liposome-Mannose nanoparticles (ZnCM NPs). ZnCM NPs displayed targeted intracellular delivery of Zn2+ and O2 towards igDCs in a pH-responsive manner. After inactivating OTUB1 deubiquitination, the ZnCM NPs promoted CCL5 degradation via NF-κB signalling, thereby inducing the igDC-tDC transition to further inhibit CD4+ T-cell homeostasis. In collagen-induced arthritis (CIA) mice, this nanoimmunoplatform showed significant accumulation in the spleen, where immature DCs (imDCs) differentiated into igDCs. Splenic tDCs were induced to alleviate ankle swelling, improve walking posture and safely inhibit ankle/spleen inflammation. Our work pioneers the combination of DC-targeting nanoplatforms with RA treatments and highlights the significance of zinc and oxygen homeostasis for the immunoregulation of RA by inducing tDCs with modified ZnO2 NPs, which provides novel insight into ion homeostasis regulation for the treatment of immune diseases with a larger variety of distinct metal or nonmetal ions.


Assuntos
Artrite Reumatoide , Nanopartículas , Óxido de Zinco , Animais , Artrite Reumatoide/metabolismo , Células Dendríticas , Camundongos , Oxigênio , Peróxidos/metabolismo , Zinco
15.
Infect Immun ; 89(6)2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33753413

RESUMO

Brucella ovis is an ovine intracellular pathogen with tropism for the male genital tract. To establish and maintain infection, B. ovis must survive stressful conditions inside host cells, including low pH, nutrient limitation, and reactive oxygen species. The same conditions are often encountered in axenic cultures during stationary phase. Studies of stationary phase may thus inform our understanding of Brucella infection biology, yet the genes and pathways that are important in Brucella stationary-phase physiology remain poorly defined. We measured fitness of a barcoded pool of B. ovis Tn-himar mutants as a function of growth phase and identified cysE as a determinant of fitness in stationary phase. CysE catalyzes the first step in cysteine biosynthesis from serine, and we provide genetic evidence that two related enzymes, CysK1 and CysK2, function redundantly to catalyze cysteine synthesis at steps downstream of CysE. Deleting cysE (ΔcysE) or both cysK1 and cysK2 (ΔcysK1 ΔcysK2) results in premature entry into stationary phase, reduced culture yield, and sensitivity to exogenous hydrogen peroxide. These phenotypes can be chemically complemented by cysteine or glutathione. ΔcysE and ΔcysK1 ΔcysK2 strains have no defect in host cell entry in vitro but have significantly diminished intracellular fitness between 2 and 24 h postinfection. Our study has uncovered unexpected redundancy at the CysK step of cysteine biosynthesis in B. ovis and demonstrates that cysteine anabolism is a determinant of peroxide stress survival and fitness in the intracellular niche.


Assuntos
Brucella ovis/fisiologia , Cisteína/biossíntese , Interações Hospedeiro-Patógeno , Estresse Oxidativo , Peróxidos/metabolismo , Doenças dos Ovinos/metabolismo , Doenças dos Ovinos/microbiologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Brucella ovis/classificação , Interações Hospedeiro-Patógeno/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Mutação , Ovinos , Enxofre/metabolismo
16.
FASEB J ; 34(10): 13396-13408, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32799394

RESUMO

NADPH oxidase 4 (NOX4) is the most abundant NOX isoform in the kidney; however, its importance for renal function has only recently emerged. The NOX4-dependent pathway regulates many factors essential for proper sodium handling in the distal nephron. However, the functional significance of this pathway in the control of sodium reabsorption during the initiation of chronic kidney disease is not established. The goal of this study was to test Nox4-dependent ENaC regulation in two models: SS hypertension and STZ-induced type 1 diabetes. First, we showed that genetic ablation of Nox4 in Dahl salt-sensitive (SS) rat attenuated a high-salt (HS)-induced increase in epithelial Na+ channel (ENaC) activity in the cortical collecting duct. We also found that H2 O2 upregulated ENaC activity, and H2 O2 production was reduced in both the renal cortex and medulla in SSNox4-/- rats fed an HS diet. Second, in the streptozotocin model of hyperglycemia-induced renal injury ENaC activity in hyperglycemic animals was elevated in SS but not SSNox4-/- rats. NaCl cotransporter (NCC) expression was increased compared to healthy controls, while expression values between SS and SSNox4-/- groups were similar. These data emphasize a critical contribution of the NOX4-mediated pathway in maladaptive upregulation of ENaC-mediated sodium reabsorption in the distal nephron in the conditions of HS- and hyperglycemia-induced kidney injury.


Assuntos
Diabetes Mellitus Tipo 1/metabolismo , Nefropatias Diabéticas/metabolismo , Canais Epiteliais de Sódio/metabolismo , Hipertensão/metabolismo , NADPH Oxidase 4/metabolismo , Néfrons/metabolismo , Animais , Transporte Biológico Ativo , Nefropatias Diabéticas/induzido quimicamente , Técnicas de Inativação de Genes , Masculino , Peróxidos/metabolismo , Ratos , Ratos Endogâmicos Dahl , Sódio/metabolismo , Estreptozocina
17.
Med Mycol ; 59(8): 773-783, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-33550419

RESUMO

We aimed to investigate the effects of ethanol and its metabolites (ß-hydroxybutyrate and sodium acetate) in the effector functions of macrophages in response to Paracoccidioides brasiliensis yeast cells and to determine their influence in the development of the adaptive response. Purified peripheral blood monocytes were differentiated into macrophages and were treated with ethanol, ß-hydroxybutyrate, and sodium acetate, and stimulated with P. brasiliensis yeast cells and evaluated for their phenotypic characteristics, functional activity, and capability to induce T cells activation/differentiation. We found that the ethanol treatment diminished the expression of HLA-AB, HLA-DR, CD80, and CD86, modulating the expression of dectin-1, as well as Syk phosphorylation. The ethanol treatment increased the phagocytic activity, expression of CD206, and IL-10 production; however, reduced ROS production, fungicidal activity, caspase-1 cleavage, and IL-1ß and IL-6 production. Our data also showed that the presence of ethanol reduced the differentiation of Th1 and Th17 cells and increased the frequency of Th2 cells. Our results indicated that ethanol exposure could suppress effector function of macrophages, possibly leading to the polarization of M2 macrophages. The ethanol modulates the expression of costimulatory and antigen-presentation molecules and interferes with the NLRP3 inflammasome. Altogether, these alterations affect the development of the adaptive response, decreasing the frequency of IL-17, IL-22, and IFN- γ producing cells, and increasing the frequency of IL-4 producing cells. Therefore, exposure to ethanol can impair the capability of macrophages to exert their effector functions and activate the acquired response related to resistance to P. brasiliensis infection.


Assuntos
Etanol/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Paracoccidioides/fisiologia , Paracoccidioidomicose/imunologia , Imunidade Adaptativa/efeitos dos fármacos , Antifúngicos/farmacologia , Complexo CD3/análise , Caspase 1/análise , Citocinas/análise , Citocinas/efeitos dos fármacos , Citocinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Inflamassomos/efeitos dos fármacos , Inflamassomos/metabolismo , Receptores de Lipopolissacarídeos/análise , Macrófagos/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Peróxidos/metabolismo , Fagocitose/efeitos dos fármacos
18.
Chem Rev ; 119(19): 10829-10855, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31498605

RESUMO

Life on Earth evolved in the presence of hydrogen peroxide, and other peroxides also emerged before and with the rise of aerobic metabolism. They were considered only as toxic byproducts for many years. Nowadays, peroxides are also regarded as metabolic products that play essential physiological cellular roles. Organisms have developed efficient mechanisms to metabolize peroxides, mostly based on two kinds of redox chemistry, catalases/peroxidases that depend on the heme prosthetic group to afford peroxide reduction and thiol-based peroxidases that support their redox activities on specialized fast reacting cysteine/selenocysteine (Cys/Sec) residues. Among the last group, glutathione peroxidases (GPxs) and peroxiredoxins (Prxs) are the most widespread and abundant families, and they are the leitmotif of this review. After presenting the properties and roles of different peroxides in biology, we discuss the chemical mechanisms of peroxide reduction by low molecular weight thiols, Prxs, GPxs, and other thiol-based peroxidases. Special attention is paid to the catalytic properties of Prxs and also to the importance and comparative outlook of the properties of Sec and its role in GPxs. To finish, we describe and discuss the current views on the activities of thiol-based peroxidases in peroxide-mediated redox signaling processes.


Assuntos
Peróxidos/química , Peroxirredoxinas/química , Animais , Catálise , Domínio Catalítico , Humanos , Peróxido de Hidrogênio/química , Cinética , Modelos Moleculares , Oxirredução , Peróxidos/metabolismo , Peroxirredoxinas/metabolismo , Estrutura Secundária de Proteína , Compostos de Sulfidrila/química , Compostos de Sulfidrila/metabolismo
19.
Int J Mol Sci ; 22(12)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208348

RESUMO

Antioxidants play a critical role in the treatment of degenerative diseases and delaying the aging of dermal tissue. Caffeic acid (CA) is a representative example of the antioxidants found in plants. However, CA is unsuitable for long-term storage because of its poor stability under ambient conditions. Caffeoyl-Pro-His-NH2 (CA-Pro-His-NH2, CA-PH) exhibits the highest antioxidant activity, free radical scavenging and lipid peroxidation inhibition activity among the histidine-containing CA-conjugated dipeptides reported to date. The addition of short peptides to CA, such as Pro-His, is assumed to synergistically enhance its antioxidative activity. In this study, several caffeoyl-prolyl-histidyl-Xaa-NH2 derivatives were synthesized and their antioxidative activities evaluated. CA-Pro-His-Asn-NH2 showed enhanced antioxidative activity and higher structural stability than CA-PH, even after long-term storage. CA-Pro-His-Asn-NH2 was stable for 3 months, its stability being evaluated by observing the changes in its NMR spectra. Moreover, the solid-phase synthetic strategy used to prepare these CA-Pro-His-Xaa-NH2 derivatives was optimized for large-scale production. We envision that CA-Pro-His-Xaa-NH2 derivatives can be used as potent dermal therapeutic agents and useful cosmetic ingredients.


Assuntos
Ácidos Cafeicos/síntese química , Ácidos Cafeicos/farmacologia , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Compostos de Bifenilo/química , Ácidos Cafeicos/química , Morte Celular/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Camundongos , Células NIH 3T3 , Peróxidos/metabolismo , Picratos/química , Espectroscopia de Prótons por Ressonância Magnética , Técnicas de Síntese em Fase Sólida , Espectrometria de Massas por Ionização por Electrospray
20.
Int J Mol Sci ; 23(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35008538

RESUMO

Mercury is a severe environmental pollutant with neurotoxic effects, especially when exposed for long periods. Although there are several evidences regarding mercury toxicity, little is known about inorganic mercury (IHg) species and cerebellum, one of the main targets of mercury associated with the neurological symptomatology of mercurial poisoning. Besides that, the global proteomic profile assessment is a valuable tool to screen possible biomarkers and elucidate molecular targets of mercury neurotoxicity; however, the literature is still scarce. Thus, this study aimed to investigate the effects of long-term exposure to IHg in adult rats' cerebellum and explore the modulation of the cerebellar proteome associated with biochemical and functional outcomes, providing evidence, in a translational perspective, of new mercury toxicity targets and possible biomarkers. Fifty-four adult rats were exposed to 0.375 mg/kg of HgCl2 or distilled water for 45 days using intragastric gavage. Then, the motor functions were evaluated by rotarod and inclined plane. The cerebellum was collected to quantify mercury levels, to assess the antioxidant activity against peroxyl radicals (ACAPs), the lipid peroxidation (LPO), the proteomic profile, the cell death nature by cytotoxicity and apoptosis, and the Purkinje cells density. The IHg exposure increased mercury levels in the cerebellum, reducing ACAP and increasing LPO. The proteomic approach revealed a total 419 proteins with different statuses of regulation, associated with different biological processes, such as synaptic signaling, energy metabolism and nervous system development, e.g., all these molecular changes are associated with increased cytotoxicity and apoptosis, with a neurodegenerative pattern on Purkinje cells layer and poor motor coordination and balance. In conclusion, all these findings feature a neurodegenerative process triggered by IHg in the cerebellum that culminated into motor functions deficits, which are associated with several molecular features and may be related to the clinical outcomes of people exposed to the toxicant.


Assuntos
Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Intoxicação do Sistema Nervoso por Mercúrio/metabolismo , Mercúrio/toxicidade , Doenças Neurodegenerativas/metabolismo , Proteoma/metabolismo , Animais , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Biomarcadores/metabolismo , Metabolismo Energético/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Compostos de Metilmercúrio/toxicidade , Córtex Motor/efeitos dos fármacos , Córtex Motor/metabolismo , Peróxidos/metabolismo , Proteômica/métodos , Células de Purkinje/efeitos dos fármacos , Células de Purkinje/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA