Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.620
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 24(9): 1434-1442, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37500886

RESUMO

Cytotoxic T lymphocytes (CTLs) fight intracellular pathogens and cancer by identifying and destroying infected or transformed target cells1. To kill, CTLs form a specialized cytotoxic immune synapse (IS) with a target of interest and then release toxic perforin and granzymes into the interface to elicit programmed cell death2-5. The IS then dissolves, enabling CTLs to search for additional prey and professional phagocytes to clear the corpse6. While the mechanisms governing IS assembly have been studied extensively, far less is known about target cell release. Here, we applied time-lapse imaging to explore the basis for IS dissolution and found that it occurred concomitantly with the cytoskeletal contraction of apoptotic targets. Genetic and pharmacological perturbation of this contraction response indicated that it was both necessary and sufficient for CTL dissociation. We also found that mechanical amplification of apoptotic contractility promoted faster CTL detachment and serial killing. Collectively, these results establish a biophysical basis for IS dissolution and highlight the importance of mechanosensory feedback in the regulation of cell-cell interactions.


Assuntos
Apoptose , Linfócitos T Citotóxicos , Apoptose/genética , Perforina , Granzimas
2.
Immunity ; 55(8): 1340-1342, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35947978

RESUMO

During infection, pore-forming proteins rapidly initiate cell lysis, but specialized processes like epithelial extrusion need additional time to occur in parallel. In a recent issue of Nature, Nozaki et al. (2022) report that caspase-7 promotes acid shingomyelinase (ASM)-mediated membrane repair of gasdermin and perforin pores to delay cell death.


Assuntos
Caspase 7 , Membrana Celular/metabolismo , Perforina/metabolismo , Proteínas Citotóxicas Formadoras de Poros
3.
Cell ; 165(1): 100-110, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-26924577

RESUMO

The immunological synapse formed between a cytotoxic T lymphocyte (CTL) and an infected or transformed target cell is a physically active structure capable of exerting mechanical force. Here, we investigated whether synaptic forces promote the destruction of target cells. CTLs kill by secreting toxic proteases and the pore forming protein perforin into the synapse. Biophysical experiments revealed a striking correlation between the magnitude of force exertion across the synapse and the speed of perforin pore formation on the target cell, implying that force potentiates cytotoxicity by enhancing perforin activity. Consistent with this interpretation, we found that increasing target cell tension augmented pore formation by perforin and killing by CTLs. Our data also indicate that CTLs coordinate perforin release and force exertion in space and time. These results reveal an unappreciated physical dimension to lymphocyte function and demonstrate that cells use mechanical forces to control the activity of outgoing chemical signals.


Assuntos
Sinapses Imunológicas , Linfócitos T Citotóxicos/fisiologia , Animais , Fenômenos Biomecânicos , Degranulação Celular , Linhagem Celular Tumoral , Camundongos , Perforina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Linfócitos T Citotóxicos/citologia , Linfócitos T Citotóxicos/imunologia
4.
Nature ; 632(8023): 174-181, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38987594

RESUMO

Changes in the gut microbiome have pivotal roles in the pathogenesis of acute graft-versus-host disease (aGVHD) after allogenic haematopoietic cell transplantation (allo-HCT)1-6. However, effective methods for safely resolving gut dysbiosis have not yet been established. An expansion of the pathogen Enterococcus faecalis in the intestine, associated with dysbiosis, has been shown to be a risk factor for aGVHD7-10. Here we analyse the intestinal microbiome of patients with allo-HCT, and find that E. faecalis escapes elimination and proliferates in the intestine by forming biofilms, rather than by acquiring drug-resistance genes. We isolated cytolysin-positive highly pathogenic E. faecalis from faecal samples and identified an anti-E. faecalis enzyme derived from E. faecalis-specific bacteriophages by analysing bacterial whole-genome sequencing data. The antibacterial enzyme had lytic activity against the biofilm of E. faecalis in vitro and in vivo. Furthermore, in aGVHD-induced gnotobiotic mice that were colonized with E. faecalis or with patient faecal samples characterized by the domination of Enterococcus, levels of intestinal cytolysin-positive E. faecalis were decreased and survival was significantly increased in the group that was treated with the E. faecalis-specific enzyme, compared with controls. Thus, administration of a phage-derived antibacterial enzyme that is specific to biofilm-forming pathogenic E. faecalis-which is difficult to eliminate with existing antibiotics-might provide an approach to protect against aGVHD.


Assuntos
Bacteriófagos , Enterococcus faecalis , Microbioma Gastrointestinal , Doença Enxerto-Hospedeiro , Adulto , Idoso , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Adulto Jovem , Bacteriófagos/enzimologia , Bacteriófagos/genética , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Disbiose/complicações , Disbiose/microbiologia , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/genética , Enterococcus faecalis/crescimento & desenvolvimento , Enterococcus faecalis/metabolismo , Enterococcus faecalis/virologia , Fezes/microbiologia , Vida Livre de Germes , Doença Enxerto-Hospedeiro/complicações , Doença Enxerto-Hospedeiro/microbiologia , Doença Enxerto-Hospedeiro/prevenção & controle , Doença Enxerto-Hospedeiro/terapia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Técnicas In Vitro , Intestinos/efeitos dos fármacos , Intestinos/microbiologia , Perforina/metabolismo , Fatores de Risco , Transplante Homólogo/efeitos adversos , Sequenciamento Completo do Genoma , Farmacorresistência Bacteriana/efeitos dos fármacos , Antibacterianos/farmacologia
5.
Cell ; 157(6): 1309-1323, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24906149

RESUMO

When killer lymphocytes recognize infected cells, perforin delivers cytotoxic proteases (granzymes) into the target cell to trigger apoptosis. What happens to intracellular bacteria during this process is unclear. Human, but not rodent, cytotoxic granules also contain granulysin, an antimicrobial peptide. Here, we show that granulysin delivers granzymes into bacteria to kill diverse bacterial strains. In Escherichia coli, granzymes cleave electron transport chain complex I and oxidative stress defense proteins, generating reactive oxygen species (ROS) that rapidly kill bacteria. ROS scavengers and bacterial antioxidant protein overexpression inhibit bacterial death. Bacteria overexpressing a GzmB-uncleavable mutant of the complex I subunit nuoF or strains that lack complex I still die, but more slowly, suggesting that granzymes disrupt multiple vital bacterial pathways. Mice expressing transgenic granulysin are better able to clear Listeria monocytogenes. Thus killer cells play an unexpected role in bacterial defense.


Assuntos
Antígenos de Diferenciação de Linfócitos T/metabolismo , Infecções Bacterianas/imunologia , Escherichia coli , Leucócitos Mononucleares/imunologia , Listeria monocytogenes , Staphylococcus aureus , Animais , Granzimas/metabolismo , Células HeLa , Humanos , Leucócitos Mononucleares/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Perforina/genética , Perforina/metabolismo , Espécies Reativas de Oxigênio/metabolismo
6.
Mol Cell ; 81(7): 1469-1483.e8, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33609448

RESUMO

We demonstrate that DNA hypomethylating agent (HMA) treatment can directly modulate the anti-tumor response and effector function of CD8+ T cells. In vivo HMA treatment promotes CD8+ T cell tumor infiltration and suppresses tumor growth via CD8+ T cell-dependent activity. Ex vivo, HMAs enhance primary human CD8+ T cell activation markers, effector cytokine production, and anti-tumor cytolytic activity. Epigenomic and transcriptomic profiling shows that HMAs vastly regulate T cell activation-related transcriptional networks, culminating with over-activation of NFATc1 short isoforms. Mechanistically, demethylation of an intragenic CpG island immediately downstream to the 3' UTR of the short isoform was associated with antisense transcription and alternative polyadenylation of NFATc1 short isoforms. High-dimensional single-cell mass cytometry analyses reveal a selective effect of HMAs on a subset of human CD8+ T cell subpopulations, increasing both the number and abundance of a granzyme Bhigh, perforinhigh effector subpopulation. Overall, our findings support the use of HMAs as a therapeutic strategy to boost anti-tumor immune response.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Ilhas de CpG/imunologia , Metilação de DNA/efeitos dos fármacos , Decitabina/farmacologia , Granzimas/imunologia , Ativação Linfocitária/efeitos dos fármacos , Metilação de DNA/imunologia , Humanos , Fatores de Transcrição NFATC/imunologia , Perforina/imunologia
7.
Nature ; 606(7916): 960-967, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35705808

RESUMO

Among the caspases that cause regulated cell death, a unique function for caspase-7 has remained elusive. Caspase-3 performs apoptosis, whereas caspase-7 is typically considered an inefficient back-up. Caspase-1 activates gasdermin D pores to lyse the cell; however, caspase-1 also activates caspase-7 for unknown reasons1. Caspases can also trigger cell-type-specific death responses; for example, caspase-1 causes the extrusion of intestinal epithelial cell (IECs) in response to infection with Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium)2,3. Here we show in both organoids and mice that caspase-7-deficient IECs do not complete extrusion. Mechanistically, caspase-7 counteracts gasdermin D pores and preserves cell integrity by cleaving and activating acid sphingomyelinase (ASM), which thereby generates copious amounts of ceramide to enable enhanced membrane repair. This provides time to complete the process of IEC extrusion. In parallel, we also show that caspase-7 and ASM cleavage are required to clear Chromobacterium violaceum and Listeria monocytogenes after perforin-pore-mediated attack by natural killer cells or cytotoxic T lymphocytes, which normally causes apoptosis in infected hepatocytes. Therefore, caspase-7 is not a conventional executioner but instead is a death facilitator that delays pore-driven lysis so that more-specialized processes, such as extrusion or apoptosis, can be completed before cell death. Cells must put their affairs in order before they die.


Assuntos
Caspase 7 , Perforina , Proteínas de Ligação a Fosfato , Proteínas Citotóxicas Formadoras de Poros , Esfingomielina Fosfodiesterase , Animais , Apoptose , Caspase 7/metabolismo , Chromobacterium/imunologia , Células Epiteliais/citologia , Intestinos/citologia , Células Matadoras Naturais/imunologia , Listeria monocytogenes/imunologia , Camundongos , Organoides , Perforina/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Linfócitos T Citotóxicos/imunologia
8.
Proc Natl Acad Sci U S A ; 121(29): e2401420121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38995966

RESUMO

Cerebral (Aß) plaque and (pTau) tangle deposition are hallmarks of Alzheimer's disease (AD), yet are insufficient to confer complete AD-like neurodegeneration experimentally. Factors acting upstream of Aß/pTau in AD remain unknown, but their identification could enable earlier diagnosis and more effective treatments. T cell abnormalities are emerging AD hallmarks, and CD8 T cells were recently found to mediate neurodegeneration downstream of tangle deposition in hereditary neurodegeneration models. The precise impact of T cells downstream of Aß/pTau, however, appears to vary depending on the animal model. Our prior work suggested that antigen-specific memory CD8 T ("hiT") cells act upstream of Aß/pTau after brain injury. Here, we examine whether hiT cells influence sporadic AD-like pathophysiology upstream of Aß/pTau. Examining neuropathology, gene expression, and behavior in our hiT mouse model we show that CD8 T cells induce plaque and tangle-like deposition, modulate AD-related genes, and ultimately result in progressive neurodegeneration with both gross and fine features of sporadic human AD. T cells required Perforin to initiate this pathophysiology, and IFNγ for most gene expression changes and progression to more widespread neurodegenerative disease. Analogous antigen-specific memory CD8 T cells were significantly elevated in the brains of human AD patients, and their loss from blood corresponded to sporadic AD and related cognitive decline better than plasma pTau-217, a promising AD biomarker candidate. We identify an age-related factor acting upstream of Aß/pTau to initiate AD-like pathophysiology, the mechanisms promoting its pathogenicity, and its relevance to human sporadic AD.


Assuntos
Doença de Alzheimer , Linfócitos T CD8-Positivos , Modelos Animais de Doenças , Doença de Alzheimer/imunologia , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Animais , Linfócitos T CD8-Positivos/imunologia , Camundongos , Humanos , Placa Amiloide/patologia , Placa Amiloide/imunologia , Peptídeos beta-Amiloides/metabolismo , Camundongos Transgênicos , Encéfalo/patologia , Encéfalo/imunologia , Masculino , Interferon gama/metabolismo , Interferon gama/imunologia , Envelhecimento/imunologia , Memória Imunológica , Células T de Memória/imunologia , Perforina/metabolismo , Perforina/genética , Feminino
9.
EMBO J ; 41(23): e111857, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36245269

RESUMO

Perforin-2 (PFN2, MPEG1) is a key pore-forming protein in mammalian innate immunity restricting intracellular bacteria proliferation. It forms a membrane-bound pre-pore complex that converts to a pore-forming structure upon acidification; but its mechanism of conformational transition has been debated. Here we used cryo-electron microscopy, tomography and subtomogram averaging to determine structures of PFN2 in pre-pore and pore conformations in isolation and bound to liposomes. In isolation and upon acidification, the pre-assembled complete pre-pore rings convert to pores in both flat ring and twisted conformations. On membranes, in situ assembled PFN2 pre-pores display various degrees of completeness; whereas PFN2 pores are mainly incomplete arc structures that follow the same subunit packing arrangements as found in isolation. Both assemblies on membranes use their P2 ß-hairpin for binding to the lipid membrane surface. Overall, these structural snapshots suggest a molecular mechanism for PFN2 pre-pore to pore transition on a targeted membrane, potentially using the twisted pore as an intermediate or alternative state to the flat conformation, with the capacity to cause bilayer distortion during membrane insertion.


Assuntos
Lipossomos , Mamíferos , Animais , Microscopia Crioeletrônica , Perforina/análise , Perforina/química , Perforina/metabolismo , Membrana Celular/metabolismo , Lipossomos/metabolismo , Membranas
10.
J Immunol ; 212(11): 1722-1732, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38607279

RESUMO

An imbalance between proinflammatory and regulatory processes underlies autoimmune disease pathogenesis. We have shown that acute relapses of multiple sclerosis are characterized by a deficit in the immune suppressive ability of CD8+ T cells. These cells play an important immune regulatory role, mediated in part through cytotoxicity (perforin [PRF]/granzyme [GZM]) and IFNγ secretion. In this study, we further investigated the importance of IFNγ-, GZMB-, PRF1-, and LYST-associated pathways in CD8+ T cell-mediated suppression. Using the CRISPR-Cas9 ribonucleoprotein transfection system, we first optimized efficient gene knockout while maintaining high viability in primary bulk human CD8+ T cells. Knockout was confirmed through quantitative real-time PCR assays in all cases, combined with flow cytometry where appropriate, as well as confirmation of insertions and/or deletions at genomic target sites. We observed that the knockout of IFNγ, GZMB, PRF1, or LYST, but not the knockout of IL4 or IL5, resulted in significantly diminished in vitro suppressive ability in these cells. Collectively, these results reveal a pivotal role for these pathways in CD8+ T cell-mediated immune suppression and provide important insights into the biology of human CD8+ T cell-mediated suppression that could be targeted for immunotherapeutic intervention.


Assuntos
Linfócitos T CD8-Positivos , Granzimas , Interferon gama , Perforina , Humanos , Linfócitos T CD8-Positivos/imunologia , Interferon gama/imunologia , Interferon gama/metabolismo , Perforina/genética , Perforina/metabolismo , Granzimas/metabolismo , Granzimas/genética , Sistemas CRISPR-Cas , Esclerose Múltipla/imunologia , Esclerose Múltipla/genética , Técnicas de Inativação de Genes , Células Cultivadas
11.
J Immunol ; 212(7): 1105-1112, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38345346

RESUMO

Genetic defects in the ability to deliver effective perforin have been reported in patients with hemophagocytic lymphohistiocytosis. We tested the hypothesis that a primary perforin deficiency might also be causal in severe SARS-CoV-2 infection. We recruited 54 volunteers confirmed as being SARS-CoV-2-infected by RT-PCR and admitted to intensive care units or non-intensive care units and age- and sex-matched healthy controls. Compared with healthy controls, the percentage of perforin-expressing CD3-CD56+ NK cells quantified by flow cytometry was low in COVID-19 patients (69.9 ± 17.7 versus 78.6 ± 14.6%, p = 0.026). There was no correlation between the proportions of perforin-positive NK cells and T8 lymphocytes. Moreover, the frequency of NK cells producing perforin was neither linked to disease severity nor predictive of death. Although IL-6 is known to downregulate perforin production in NK cells, we did not find any link between perforin expression and IL-6 plasma level. However, we unveiled a negative correlation between the degranulation marker CD107a and perforin expression in NK cells (r = -0.488, p = 10-4). PRF1 gene expression and the frequency of NK cells harboring perforin were normal in patients 1 y after acute SARS-CoV-2 infection. A primary perforin defect does not seem to be a driver of COVID-19 because NK perforin expression is 1) linked neither to T8 perforin expression nor to disease severity, 2) inversely correlated with NK degranulation, and 3) normalized at distance from acute infection. Thus, the cause of low frequency of perforin-positive NK cells appears, rather, to be consumption.


Assuntos
COVID-19 , Interleucina-6 , Humanos , Perforina/metabolismo , Interleucina-6/metabolismo , COVID-19/metabolismo , SARS-CoV-2/metabolismo , Células Matadoras Naturais/metabolismo
12.
Nature ; 587(7833): 309-312, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32650338

RESUMO

The Plasmodium species that cause malaria are obligate intracellular parasites, and disease symptoms occur when these parasites replicate in human blood. Despite the risk of immune detection, the parasite delivers proteins that bind to host receptors on the cell surfaces of infected erythrocytes. In the causative parasite of the most deadly form of malaria in humans, Plasmodium falciparum, RIFINs form the largest family of surface proteins displayed by erythrocytes1. Some RIFINs can bind to inhibitory immune receptors, and these RIFINs act as targets for unusual antibodies that contain a LAIR1 ectodomain2-4 or as ligands for LILRB15. RIFINs stimulate the activation of and signalling by LILRB15, which could potentially lead to the dampening of human immune responses. Here, to understand how RIFINs activate LILRB1-mediated signalling, we determine the structure of a RIFIN bound to LILRB1. We show that this RIFIN mimics the natural activating ligand of LILRB1, MHC class I, in its LILRB1-binding mode. A single mutation in the RIFIN disrupts the complex, blocks LILRB1 binding of all tested RIFINs and abolishes signalling in a reporter assay. In a supported lipid bilayer system, which mimics the activation of natural killer (NK) cells by antibody-dependent cell-mediated cytotoxicity, both RIFIN and MHC are recruited to the immunological synapse of NK cells and reduce the activation of NK cells, as measured by the mobilization of perforin. Therefore, LILRB1-binding RIFINs mimic the binding mode of the natural ligand of LILRB1 and suppress the function of NK cells.


Assuntos
Receptor B1 de Leucócitos Semelhante a Imunoglobulina/química , Receptor B1 de Leucócitos Semelhante a Imunoglobulina/imunologia , Malária Falciparum/imunologia , Proteínas de Membrana/química , Proteínas de Membrana/imunologia , Proteínas de Protozoários/química , Proteínas de Protozoários/imunologia , Sequência de Aminoácidos , Animais , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Sítios de Ligação/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Células Matadoras Naturais/citologia , Células Matadoras Naturais/imunologia , Receptor B1 de Leucócitos Semelhante a Imunoglobulina/metabolismo , Ligantes , Bicamadas Lipídicas , Ativação Linfocitária , Malária Falciparum/parasitologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Moleculares , Mimetismo Molecular/imunologia , Mutação , Perforina/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Transdução de Sinais
13.
Mol Biol Evol ; 41(5)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38676945

RESUMO

Gene duplication is a major force driving evolutionary innovation. A classic example is generating new animal toxins via duplication of physiological protein-encoding genes and recruitment into venom. While this process drives the innovation of many animal venoms, reverse recruitment of toxins into nonvenomous cells remains unresolved. Using comparative genomics, we find members of the Membrane Attack Complex and Perforin Family (MAC) have been recruited into venom-injecting cells (cnidocytes), in soft and stony corals and sea anemones, suggesting that the ancestral MAC was a cnidocyte expressed toxin. Further investigation into the model sea anemone Nematostella vectensis reveals that three members have undergone Nematostella-specific duplications leading to their reverse recruitment into endomesodermal cells. Furthermore, simultaneous knockdown of all three endomesodermally expressed MACs leads to mis-development, supporting that these paralogs have nonvenomous function. By resolving the evolutionary history and function of MACs in Nematostella, we provide the first proof for reverse recruitment from venom to organismal development.


Assuntos
Evolução Molecular , Perforina , Anêmonas-do-Mar , Animais , Anêmonas-do-Mar/genética , Perforina/metabolismo , Perforina/genética , Duplicação Gênica , Venenos de Cnidários/genética , Venenos de Cnidários/metabolismo , Filogenia , Família Multigênica
14.
RNA ; 29(5): 663-674, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36754577

RESUMO

In translation initiation in prokaryotes, IF3 recognizes the interaction between the initiator codon of mRNA and the anticodon of fMet-tRNAini and then relocates the fMet-tRNAini to an active position. Here, we have surveyed 328 codon-anticodon combinations for the preference of IF3. At the first and second base of the codon, only Watson-Crick base pairs are tolerated. At the third base, stronger base pairs, for example, Watson-Crick, are more preferred, but other types of base pairs, for example, G/U wobble, are also tolerated; weaker base pairs are excluded by IF3. When the codon-anticodon combinations are unfavorable for IF3 or the concentration of IF3 is too low to recognize any codon-anticodon combinations, IF3 fails to set the P-site fMet-tRNAini at the active position and causes its drop-off from the ribosome. Thereby, translation reinitiation occurs from the second aminoacyl-tRNA at the A site to yield a truncated peptide lacking the amino-terminal fMet. We refer to this event as the amino-terminal drop-off-reinitiation. We also showed that EF-G and RRF are involved in disassembling such an aberrant ribosome complex bearing inactive fMet-tRNAini Thereby EF-G and RRF are able to exclude unfavorable codon-anticodon combinations with weaker base pairs and alleviate the amino-terminal drop-off-reinitiation.


Assuntos
Iniciação Traducional da Cadeia Peptídica , Fator G para Elongação de Peptídeos , Anticódon/genética , Códon/genética , Escherichia coli/genética , Fator G para Elongação de Peptídeos/genética , Peptídeos , RNA de Transferência/genética , Perforina/metabolismo
15.
PLoS Pathog ; 19(7): e1011159, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37486946

RESUMO

NK cells are important mediators of innate immunity and play an essential role for host protection against infection, although their responses to bacteria are poorly understood. Recently NK cells were shown to display memory properties, as characterized by an epigenetic signature leading to a stronger secondary response. Although NK cell memory could be a promising mechanism to fight against infection, it has not been described upon bacterial infection. Using a mouse model, we reveal that NK cells develop specific and long-term memory following sub-lethal infection with the extracellular pathogen Streptococcus pneumoniae. Memory NK cells display intrinsic sensing and response to bacteria in vitro, in a manner that is enhanced post-bacterial infection. In addition, their transfer into naïve mice confers protection from lethal infection for at least 12 weeks. Interestingly, NK cells display enhanced cytotoxic molecule production upon secondary stimulation and their protective role is dependent on Perforin and independent of IFNγ. Thus, our study identifies a new role for NK cells during bacterial infection, opening the possibility to harness innate immune memory for therapeutic purposes.


Assuntos
Células Matadoras Naturais , Streptococcus pneumoniae , Imunidade Inata , Perforina
16.
PLoS Pathog ; 19(6): e1011449, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37352369

RESUMO

Malaria parasite release (egress) from host red blood cells involves parasite-mediated membrane poration and rupture, thought to involve membrane-lytic effector molecules such as perforin-like proteins and/or phospholipases. With the aim of identifying these effectors, we disrupted the expression of two Plasmodium falciparum perforin-like proteins simultaneously and showed that they have no essential roles during blood stage egress. Proteomic profiling of parasite proteins discharged into the parasitophorous vacuole (PV) just prior to egress detected the presence in the PV of a lecithin:cholesterol acyltransferase (LCAT; PF3D7_0629300). Conditional ablation of LCAT resulted in abnormal egress and a reduced replication rate. Lipidomic profiles of LCAT-null parasites showed drastic changes in several phosphatidylserine and acylphosphatidylglycerol species during egress. We thus show that, in addition to its previously demonstrated role in liver stage merozoite egress, LCAT is required to facilitate efficient egress in asexual blood stage malaria parasites.


Assuntos
Malária Falciparum , Malária , Parasitos , Animais , Parasitos/metabolismo , Fosfolipases , Perforina , Proteômica , Eritrócitos/parasitologia , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Malária Falciparum/parasitologia
17.
Nat Immunol ; 14(3): 221-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23334791

RESUMO

Innate lymphoid cells (ILCs) are effectors of innate immunity and regulators of tissue modeling. Recently identified ILC populations have a cytokine expression pattern that resembles that of the helper T cell subsets T(H)2, T(H)17 and T(H)22. Here we describe a distinct ILC subset similar to T(H)1 cells, which we call 'ILC1'. ILC1 cells expressed the transcription factor T-bet and responded to interleukin 12 (IL-12) by producing interferon-γ (IFN-γ). ILC1 cells were distinct from natural killer (NK) cells as they lacked perforin, granzyme B and the NK cell markers CD56, CD16 and CD94, and could develop from RORγt(+) ILC3 under the influence of IL-12. The frequency of the ILC1 subset was much higher in inflamed intestine of people with Crohn's disease, which indicated a role for these IFN-γ-producing ILC1 cells in the pathogenesis of gut mucosal inflammation.


Assuntos
Doença de Crohn/imunologia , Interleucina-12/metabolismo , Mucosa Intestinal/imunologia , Subpopulações de Linfócitos/imunologia , Linfócitos/imunologia , Proteínas com Domínio T/biossíntese , Animais , Antígeno CD56/análise , Diferenciação Celular , Células Cultivadas , Colite/imunologia , Citocinas/imunologia , Citocinas/metabolismo , Granzimas/análise , Humanos , Inflamação , Interferon gama/biossíntese , Mucosa Intestinal/metabolismo , Intestinos/imunologia , Células Matadoras Naturais/imunologia , Subpopulações de Linfócitos/metabolismo , Linfócitos/metabolismo , Camundongos , Subfamília D de Receptores Semelhantes a Lectina de Células NK/análise , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Perforina/análise , Receptores de IgG/análise , Células Th1/imunologia , Células Th1/metabolismo
18.
Blood ; 141(19): 2330-2342, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-36706356

RESUMO

Familial forms of the severe immunoregulatory disease hemophagocytic lymphohistiocytosis (HLH) arise from biallelic mutations in the PRF1, UNC13D, STXBP2, and STX11 genes. Early and accurate diagnosis of the disease is important to determine the most appropriate treatment option, including potentially curative stem cell transplantation. The diagnosis of familial HLH (FHL) is traditionally based on finding biallelic mutations in patients with HLH symptoms and reduced natural killer (NK)-cell cytotoxicity. However, patients often have a low NK-cell count or receive immunosuppressive therapies that may render the NK-cell cytotoxicity assay unreliable. Furthermore, to fully understand the nature of a disease it is critical to directly assess the effect of mutations on cellular function; this will help to avoid instances in which carriers of innocuous mutations may be recommended for invasive procedures including transplantation. To overcome this diagnostic problem, we have developed a rapid and robust method that takes advantage of the functional equivalence of the human and mouse orthologues of PRF1, UNC13D, STX11, and STXBP2 proteins. By knocking out endogenous mouse genes in CD8+ T cells and simultaneously replacing them with their mutated human orthologues, we can accurately assess the effect of mutations on cell function. The wide dynamic range of this novel system allowed us to understand the basis of, otherwise cryptic, cases of FHL or HLH and, in some instances, to demonstrate that previously reported mutations are unlikely to cause FHL. This novel approach provides valuable new information to enable more accurate diagnosis and treatment of patients with HLH or FHL who inherit mutations of undetermined pathogenicity.


Assuntos
Linfo-Histiocitose Hemofagocítica , Humanos , Animais , Camundongos , Linfo-Histiocitose Hemofagocítica/diagnóstico , Linfo-Histiocitose Hemofagocítica/genética , Proteínas Citotóxicas Formadoras de Poros , Perforina/genética , Genótipo , Mutação , Fenótipo , Proteínas de Membrana/genética , Proteínas Munc18/genética
19.
Immunity ; 44(2): 233-45, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26872694

RESUMO

According to in vitro assays, T cells are thought to kill rapidly and efficiently, but the efficacy and dynamics of cytotoxic T lymphocyte (CTL)-mediated killing of virus-infected cells in vivo remains elusive. We used two-photon microscopy to quantify CTL-mediated killing in mice infected with herpesviruses or poxviruses. On average, one CTL killed 2-16 virus-infected cells per day as determined by real-time imaging and by mathematical modeling. In contrast, upon virus-induced MHC class I downmodulation, CTLs failed to destroy their targets. During killing, CTLs remained migratory and formed motile kinapses rather than static synapses with targets. Viruses encoding the calcium sensor GCaMP6s revealed strong heterogeneity in individual CTL functional capacity. Furthermore, the probability of death of infected cells increased for those contacted by more than two CTLs, indicative of CTL cooperation. Thus, direct visualization of CTLs during killing of virus-infected cells reveals crucial parameters of CD8(+) T cell immunity.


Assuntos
Infecções por Herpesviridae/imunologia , Muromegalovirus/imunologia , Perforina/metabolismo , Subpopulações de Linfócitos T/imunologia , Linfócitos T Citotóxicos/imunologia , Vaccinia virus/imunologia , Vacínia/imunologia , Animais , Sinalização do Cálcio , Comunicação Celular , Células Cultivadas , Citotoxicidade Imunológica , Humanos , Evasão da Resposta Imune , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia de Fluorescência por Excitação Multifotônica , Perforina/genética , Subpopulações de Linfócitos T/virologia , Linfócitos T Citotóxicos/virologia
20.
Immunity ; 44(2): 207-8, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26885849

RESUMO

Cytotoxic CD8+ T lymphocytes (CTLs) have long been believed to be extremely efficient killers. Forster and colleagues (Halle et al., 2016) used in vivo imaging to tell a different story, in which each CTL killed only 2-16 targets a day, and several CTLs per target were needed to get the job done.


Assuntos
Infecções por Herpesviridae/imunologia , Muromegalovirus/imunologia , Perforina/metabolismo , Subpopulações de Linfócitos T/imunologia , Linfócitos T Citotóxicos/imunologia , Vaccinia virus/imunologia , Vacínia/imunologia , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA