Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Nucleic Acids Res ; 52(5): 2686-2697, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38281138

RESUMO

We present here the high-resolution structure of an antiparallel DNA triplex in which a monomer of para-twisted intercalating nucleic acid (para-TINA: (R)-1-O-[4-(1-pyrenylethynyl)phenylmethyl]glycerol) is covalently inserted as a bulge in the third strand of the triplex. TINA is a potent modulator of the hybridization properties of DNA sequences with extremely useful properties when conjugated in G-rich oligonucleotides. The insertion of para-TINA between two guanines of the triplex imparts a high thermal stabilization (ΔTM = 9ºC) to the structure and enhances the quality of NMR spectra by increasing the chemical shift dispersion of proton signals near the TINA location. The structural determination reveals that TINA intercalates between two consecutive triads, causing only local distortions in the structure. The two aromatic moieties of TINA are nearly coplanar, with the phenyl ring intercalating between the flanking guanine bases in the sequence, and the pyrene moiety situated between the Watson-Crick base pair of the two first strands. The precise position of TINA within the triplex structure reveals key TINA-DNA interactions, which explains the high stabilization observed and will aid in the design of new and more efficient binders to DNA.


Assuntos
DNA , Glicerol , Conformação de Ácido Nucleico , Pirenos , DNA/química , Guanina , Hibridização de Ácido Nucleico , Oligonucleotídeos/química , Pirenos/química , Glicerol/análogos & derivados , Glicerol/química
2.
Anal Chem ; 96(25): 10365-10372, 2024 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-38869249

RESUMO

Biomimetic cytochrome P450 for chemical activation of environmental carcinogens is an efficient in vitro model for evaluating their mutagenicity and ultimately acquiring the metabolites that cannot be easily accessed by conventional routes of organic synthesis. Different kinds of mutagen derived from polyaromatic hydrocarbons (PAHs) by metalloporphyrin/oxidant model systems have been reported, but the underlying molecular mechanisms are poorly understood. Herein, we have for the first time demonstrated an effective surface-enhanced Raman scattering (SERS) protocol to study the dynamics and biomimetic metabolic behaviors of pyrene (Pyr) in the presence of various oxygen donors. Quantitative information on the relative concentration of Pyr and its metabolites in the biomimetic system can be extracted from the SERS spectra. On the basis of our results, we conclude that the oxidative metabolism of Pyr is highly influenced by the types and concentrations of oxygen donors, leading to the formation of 1-hydroxypyrene and dioxygenated products. Besides, the addition of an appropriate amount of an organic solvent can promote the formation of secondary oxidation products. These results offer valuable insights into the dynamics of PAHs metabolism and the regulation of their metabolic pathways in biomimetic activation. In comparison to traditional liquid chromatography-mass spectrometry, the present SERS approach is more suitable for high-throughput evaluation of the metabolic process and kinetics of PAHs. We anticipate that this approach will enable a more general and comprehensive tracking of metabolic dynamics and molecular mechanisms involved in the biomimetic activation of other xenobiotics, such as procarcinogens, promutagens, and drugs.


Assuntos
Pirenos , Análise Espectral Raman , Análise Espectral Raman/métodos , Cinética , Pirenos/química , Pirenos/metabolismo , Biomimética , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/química , Materiais Biomiméticos/química , Materiais Biomiméticos/metabolismo , Propriedades de Superfície , Ativação Metabólica , Sistema Enzimático do Citocromo P-450/metabolismo , Oxirredução
3.
Bioconjug Chem ; 35(8): 1233-1250, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39088564

RESUMO

7-Deaza-2'-deoxyisoguanosine forms stable inverse Watson-Crick base pairs with 5-methyl-2'-deoxyisocytidine and purine-purine base pairs with 2'-deoxyguanosine or 5-aza-7-deaza-2'-deoxyguanosine. Both base pairs expand the genetic coding system. The manuscript reports on the functionalization of these base pairs with halogen atoms and clickable side chains introduced at 7-position of the 7-deazapurine base. Oligonucleotides containing the functionalized base pairs were prepared by solid-phase synthesis. To this end, a series of phosphoramidites were synthesized and clickable side chains with short and long linkers were incorporated in oligonucleotides. Fluorescent pyrene conjugates were obtained by postmodification. Functionalization of DNA with a single inverse Watson-Crick base pair by halogens or clickable residues has only a minor impact on duplex stability. Pyrene click adducts increase (long linker) or decrease (short linker) the double helix stability. Stable hybrid duplexes were constructed containing three consecutive purine-purine pairs of 7-functionalized 7-deaza-2'-deoxyisoguanine with guanine or 5-aza-7-deazaguanine in the center and Watson-Crick pairs at both ends. The incorporation of a hybrid base pair tract of 7-deaza-2'-deoxyisoguanosine/5-aza-7-deaza-2'-deoxyguanosine pairs stabilizes the double helix strongly. Fluorescence intensity of pyrene short linker adducts increased when the 7-deazapurine base was positioned opposite to 5-methylisocytosine (inverse base pair) compared to purine-purine base pairs with guanine or 5-aza-7-deazaguanine in opposite positions. For long liker adducts, the situation is more complex. Circular dichroism (CD) spectra of purine DNA differ to those of Watson-Crick double helices and are indicative for the new DNA constructs. The impact of 7-deaza-2'-deoxyisoguanine base pair functionalization is studied for the first time and all experimental details are reported to prepare DNA functionalized at the 7-deazaisoguanine site. The influence of single and multiple incorporations on DNA structure and stability is shown. Clickable residues introduced at the 7-position of the 7-deazaisoguanine base provide handles for Huisgen-Sharpless-Meldal click cycloadditions without harming the stability of purine-pyrimidine and purine-purine base pairs. Other chemistries might be used for bioconjugation. Our investigation paves the way for the functionalization of a new DNA related recognition system expanding the common Watson-Crick regime.


Assuntos
Pareamento de Bases , DNA , Purinas , Purinas/química , DNA/química , Guanosina/química , Guanosina/análogos & derivados , Pirenos/química , Oligonucleotídeos/química , Desoxiguanosina/química , Desoxiguanosina/análogos & derivados
4.
Chemistry ; 30(34): e202400322, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629212

RESUMO

This study presents the synthesis and characterization of two fluorescent norbornadiene (NBD) photoswitches, each incorporating two conjugated pyrene units. Expanding on the limited repertoire of reported photoswitchable fluorescent NBDs, we explore their properties with a focus on applications in bioimaging of amyloid beta (Aß) plaques. While the fluorescence emission of the NBD decreases upon photoisomerization, aligning with what has been previously reported, for the first time we observed luminescence after irradiation of the quadricyclane (QC) isomer. We deduce how the observed emission is induced by photoisomerization to the excited state of the parent isomer (NBD) which is then the emitting species. Thorough characterizations including NMR, UV-Vis, fluorescence, X-ray structural analysis and density functional theory (DFT) calculations provide a comprehensive understanding of these systems. Notably, one NBD-QC system exhibits exceptional durability. Additionally, these molecules serve as effective fluorescent stains targeting Aß plaques in situ, with observed NBD/QC switching within the plaques. Molecular docking simulations explore NBD interactions with amyloid, unveiling novel binding modes. These insights mark a crucial advancement in the comprehension and design of future photochromic NBDs for bioimaging applications and beyond, emphasizing their potential in studying and addressing protein aggregates.


Assuntos
Peptídeos beta-Amiloides , Corantes Fluorescentes , Pirenos , Corantes Fluorescentes/química , Pirenos/química , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Humanos , Simulação de Acoplamento Molecular , Norbornanos/química , Placa Amiloide/química , Placa Amiloide/diagnóstico por imagem , Teoria da Densidade Funcional , Isomerismo , Espectrometria de Fluorescência
5.
Langmuir ; 40(31): 16530-16537, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39046847

RESUMO

Lipid membranes that are separated from the surface of graphene by DNA tethers were prepared by surface functionalization with pyrene coupled to single-stranded DNA (ssDNA), followed by self-assembly of the mixture of ssDNA-functionalized phospholipid and the matrix phospholipids. The formation of uniform membranes was confirmed by fluorescence microscopy, and the structures of the systems before and after hybridization in the direction perpendicular to the global plane of the membranes were investigated using high-energy X-ray reflectivity. The thickness values of the DNA spacers (15 and 37 bp) calculated from the best-fit results were less than the expected thicknesses of the double-stranded DNA (dsDNA) chains taking the upright conformation, indicating that the DNA spacers are tilted with respect to the direction normal to the surface. The Young's moduli of the DNA-tethered membranes obtained by AFM nanoindentation showed higher values than the membranes with no DNA tethers, which suggests that the DNA layer resists against the compression, lifting up the membrane. Intriguingly, the presence of DNA tethers caused no increase in the yield depth. The smaller thickness values as well as the unchanged yield depth suggest that the dsDNA chains can tilt and rotate, which can be attributed to the flexible pyrene-DNA junction.


Assuntos
Grafite , Grafite/química , DNA de Cadeia Simples/química , Propriedades de Superfície , Pirenos/química , DNA/química , Microscopia de Força Atômica , Membranas Artificiais
6.
J Chem Inf Model ; 64(8): 3192-3204, 2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38500402

RESUMO

This work presents new experimental viscosity and density data for aromatic and polyaromatic compounds in binary and ternary pyrene, 1-methylnaphthalene, and dodecane mixtures. The lack of experimental viscosity data for these mixtures requires the development of a new database, which is vital for understanding the behavior of mixtures in more complex systems, such as asphaltenes and fuels. The mixtures proposed in this work have been measured over a temperature range of (293.15 to 343.15) K at atmospheric pressure. Several mixture compositions have been studied at these conditions: 1.0, 2.5, 5.0, 7.5, 10.0, 12.5, and 15.0% pyrene mass fraction. The concentration of pyrene correlates with an increase in the viscosity and density values. At the lowest temperature in binary mixtures, the corresponding values reach 4.4217 mPa·s for viscosity and 1.0447 × 103 kg·m-3 for density, respectively. In ternary mixtures, the introduction of dodecane leads to the lowest maximum values of 3.5555 mPa·s for viscosity and 1.0112 × 103 kg·m-3 for density at the same temperature. The experimental data have been employed for the specific modification of viscosity models. These modifications could facilitate the prediction of the viscosity of mixtures that are more complex than those presented in this work. Various viscosity models have been employed, such as Linear, Ratcliff and Khan, modified UNIFAC-Visco, and Krieger-Dougherty. The settings in the models used reliably reproduce the experiment reliably. However, the Ratcliff model agrees excellently with the experiment, having a low standard deviation (2.0%) compared to other models. Furthermore, a model based on the equation of state of Guo is proposed to predict the viscosity values by modifying the specific parameters and adjusting them to the mixtures proposed in this work. The results from this study are compared to previous work, where pyrene, toluene, and heptane mixtures were analyzed. In this case, we find that the decrease of aggregation grade in the present systems is predicted by the model fixed in this work.


Assuntos
Alcanos , Naftalenos , Pirenos , Temperatura , Pirenos/química , Viscosidade , Naftalenos/química , Alcanos/química , Modelos Químicos , Hidrocarbonetos Policíclicos Aromáticos/química
7.
Macromol Rapid Commun ; 45(11): e2400029, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38477018

RESUMO

Organic and polymer fluorescent nanomaterials are a frontier research focus. Here in this work, a series of fluorinated zwitterionic random copolymers end-attached with a quasi-chromophoric group of pyrene or tetraphenylethylene (TPE) are well synthesized via atom transfer radical polymerization with activators regenerated by electron transfer (ARGET ATRP). Those random copolymers with total degree of polymerization 100 or 200 are able to produce fluorescent single-chain nanoparticles (SCNPs) through intra-chain self-folding assembly with quite uniform diameters in the range of 10-20 nm as characterized by dynamic light scattering and transmission electron microscopy. By virtue of the segregation or confinement effect, both SCNPs functionalized with pyrene or TPE group are capable of emitting fluorescence, with pyrene tethered SCNPs exhibiting stronger fluorescence emission reaching the highest quantum yield ≈20%. Moreover, such kind of fluorescent SCNPs manifest low cytotoxicity and good cell imaging performance for Hela cells. The creation of fluorescent SCNPs through covalently attached one quasi-chromophore to the end of one fluorinated zwitterionic random copolymer provides an alternative strategy for preparing polymeric luminescence nanomaterials, promisingly serving as a new type of fluorescent nanoprobes for biological imaging applications.


Assuntos
Corantes Fluorescentes , Nanopartículas , Imagem Óptica , Polímeros , Humanos , Células HeLa , Nanopartículas/química , Polímeros/química , Corantes Fluorescentes/química , Estilbenos/química , Estrutura Molecular , Fluorescência , Halogenação , Pirenos/química , Tamanho da Partícula , Sobrevivência Celular/efeitos dos fármacos , Polimerização
8.
Environ Res ; 251(Pt 2): 118350, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38341072

RESUMO

The present work describes the fabrication of the quaternary Zn-Cd-Sn-S nanostructure and its use in photocatalytic remediation of the biological contaminant pyrene from water resources. Nanostructures fabricated were characterized by XRD, UV-DRS, FTIR, DLS, EDX, and SEM. In addition, an agar well diffusion test was conducted to determine the antimicrobial activity. Zn-Cd-Sn-S (ZCSS) nanostructures were evaluated for their photocatalytic degrading potential by using pyrene as a model pollutant and evaluating the effects of parameters like initial pyrene concentration, nanocatalyst dosage, solution pH, and light sources during batch adsorption. Nanostructures had a size of 16.74 nm according to the XRD analysis. With a 300 min time interval, ZCSS nanostructures achieved the highest removal rate of 86.3%. Pyrene degradation metabolites were identified using GC-MS analysis of the degraded samples. A Freundlich isothermal (R2 0.9) and pseudo-first-order (R2 0.952) reaction kinetic path best fit the adsorption results for pyrene by the fabricated ZCSS nanostructure, based on the adsorption and kinetic studies. Zn-Cd-Sn-S exhibited the highest antibacterial activity against Staphylococcusaureus (22.4 mM). Due to the combined synergistic actions of the constituent metals, this quaternary nanostructure exhibited exceptional photocatalytic activity. To our est knowledge, the ZCSS nanostructure was made and used to remove pyrene by photocatalysis and fight microbes. Ultimately, the ZCSS nanostructure was found to be an effective photocatalyst for eradicating pathogenic microbes from water.


Assuntos
Nanoestruturas , Pirenos , Pirenos/química , Nanoestruturas/química , Poluentes Químicos da Água/química , Zinco/química , Cádmio/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antibacterianos/farmacologia , Antibacterianos/química
9.
Chemosphere ; 352: 141470, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367877

RESUMO

A novel fluorometric chemical sensor (PY-2TH) based on 2-thiohydantoin (2TH) in conjugation with pyrene (PY) was designed by facile one-pot Knoevenagel condensation reaction and explored for the sensitive and selective detection of Hg2+ ion in solution and solid state methods. Different analytical techniques like NMR and LC-MS concomitantly confirmed the structure of PY-2TH. Absorption and emission studies demonstrate positive solvatochromic effects indicating intramolecular charge transfer in polar solvents. PY-2TH exhibits unprecedented selectivity for detecting Hg2+ ions in tetrahydrofuran (THF) through turn-OFF fluorescence with 90% decrease in the emission intensity with a limit of detection (LOD) of ∼4.4 ppb. The mechanistic investigation through NMR and optical studies confirm the formation of a 2:1 complex between PY-2TH and Hg2+. Thin films of PY-2TH exhibits the J-aggregate formation in the solid state leading to a shift in the emission towards the near-infrared region. Further, we have demonstrated the applicability of PY-2TH for detection of Hg2+ ions and fluorescence imaging in live Zebrafish larvae and the toxicological effects are explored. Cytotoxic evaluation on Zebrafish larval cells revealed that PY-2TH is found to be non-toxic. Detailed analysis demonstrate the potential of PY-2TH for ultra-sensitive Hg2+ ion detection and removal in aqueous environments, highlighting its applicability for identification of metal contamination in live organisms and environmental toxicity.


Assuntos
Mercúrio , Peixe-Zebra , Animais , Mercúrio/análise , Metais/química , Íons/química , Pirenos/química
10.
Environ Sci Pollut Res Int ; 31(17): 25659-25670, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38483714

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) were typical environmental contaminants that accumulated continuously in sediment. Microbial degradation is the main way of PAH degradation in the natural environment. Therefore, expanding the available pool of microbial resources and investigating the molecular degrading mechanisms of PAHs are critical to the efficient control of PAH-polluted sites. Here, a strain (identified as Xanthobacteraceae bacterium) with the ability to degrade pyrene was screened from the rhizosphere sediment of Vallisneria natans. Response surface analysis showed that the strain could degrade pyrene at pH 5-7, NaCl addition 0-1.5%, and temperature 25-40 °C, and the maximum pyrene degradation (~ 95.4%) was obtained under the optimum conditions (pH 7.0, temperature 28.5 °C, and NaCl-free addition) after 72 h. Also, it was observed that the effect of temperature on the degradation ratio was the most significant. Furthermore, eighteen metabolites were identified by mass spectrometry, among which (2Z)-2-hydroxy-3-(4-oxo-4H-phenalen-3-yl) prop-2-enoic acid, 7-(carboxymethyl)-8-formyl-1-naphthyl acetic acid, phthalic acid, naphthalene-1,2-diol, and phenol were the main metabolites. And the degradation pathway of pyrene was proposed, suggesting that pyrene undergoes initial ortho-cleavage under the catalysis of metapyrocatechase to form (2Z)-2-hydroxy-3-(4-oxo-4H-phenalen-3-yl) prop-2-enoic acid. Subsequently, this intermediate was progressively oxidized and degraded to phthalic acid or phenol, which could enter the tricarboxylic acid cycle. Furthermore, the pyrene biodegradation by the strain followed the first-order kinetic model and the degradation rate changed from fast to slow, with the rate remaining mostly slow in the later stages. The slow biodegradation rate was probably caused by a significant amount of phenol accumulation in the initial stage of degradation, which resulted in a decrease in bacterial activity or death.


Assuntos
Alphaproteobacteria , Ácidos Ftálicos , Hidrocarbonetos Policíclicos Aromáticos , Rizosfera , Pirenos/química , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental , Alphaproteobacteria/metabolismo , Fenóis
11.
Talanta ; 274: 125940, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38537354

RESUMO

Dopamine, the main catecholamine neurotransmitter plays an important role in renal, cardiovascular, central nervous systems, and pathophysiological processes. The abnormal dopamine levels can result in neurological disorders such as Parkinson's, Alzheimer's, schizophrenia, acute anxiety, neuroblastoma and also contribute to cognitive dysfunctions. Given the widespread importance of dopamine concentration levels, it is imperative to develop sensors that are able to monitor dopamine. Herein, we have developed pre-anodized disposable paper electrode modified with 1-pyrenebutyric acid, for the selective and sensitive determination of dopamine. The sensor was characterized with Fourier transform infrared spectroscopy, Energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and electrochemical techniques for addressing the robust formation and electrochemical activity. The modified electrode exhibited excellent electrocatalytic activity towards dopamine without the common interference from ascorbic acid. The calibration plot for the dopamine sensor resulted linear range from 0.003 µM to 0.5 µM with a detection limit of 0.11 nM. The sensor's potential utility was tested by monitoring dopamine concentration changes in rat brain homogenates when subjected to neurotoxicity. The developed sensor was validated with gold-standard UV-Vis spectroscopy studies and computational studies were performed to understand the interaction between 1-pyrenebutyric acid and dopamine.


Assuntos
Encéfalo , Dopamina , Eletrodos , Animais , Dopamina/análise , Dopamina/metabolismo , Ratos , Encéfalo/metabolismo , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Pirenos/química , Limite de Detecção
12.
Carbohydr Polym ; 338: 122090, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38763704

RESUMO

Size exclusion chromatography (SEC) and pyrene excimer formation (PEF) experiments were conducted to characterize the local density profile inside a glycogen sample before (Glycogen) and after (Gly-ß-LD) treatment with ß-amylase. These experiments were conducted to assess whether the density at the periphery of the glycogen particles was very high to limit access to proteins involved in the metabolism of glycogen as predicted by the Tier model or low as suggested by the Gilbert model. SEC analysis indicated that the density inside the Glycogen and Gly-ß-LD samples remained constant with particle size and was not affected by ß-amylolysis. Analysis of the PEF experiments conducted on the Glycogen and Gly-ß-LD samples labeled with 1-pyrenebutyric acid showed that the particles have a dense interior and loose corona. The conclusions reached by the SEC and PEF experiments agree with the Gilbert model and have implications for the association of glycogen ß-particles into larger α-particles.


Assuntos
Cromatografia em Gel , Glicogênio , Tamanho da Partícula , Pirenos , Pirenos/química , Glicogênio/química , Cromatografia em Gel/métodos , beta-Amilase/metabolismo , beta-Amilase/química , Fluorescência
13.
Int J Biol Macromol ; 274(Pt 2): 133377, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38925180

RESUMO

Indoor formaldehyde pollution can cause inestimable harm to human health and even cancers, thus studies on the removal of formaldehyde attract extensive attentions. In this paper, an environmentally friendly and low-cost biomass material, sodium alginate (SA) was utilized to prepare pyrene functionalized amido-amine-alginic acid (AmAA-Py) by acidification and two-step amidation, which is subsequently self-assembled on reduced graphene oxide (rGO) by π-π stacking interaction, and the final composites were acidified to afford a highly porous composite material for chemical removal of formaldehyde. The formaldehyde chemical removal performance of composite is evaluated at different conditions and find that 1.0 g of acidified alginate derivatives and graphene composites (HCl·AmAA-Py-rGO) can adsorb 69.2 mg of HCHO. Simultaneously, amino groups in amido-amine derivative of acidified sodium alginate (AmAA) can react with acidic pollutants such as H2S and HCl via forming ionic bonding without generating any other by-products, which enables efficient and environment-friendly removal of acidic pollutants. The subtle design of the highly porous composite material utilizing low-cost SA and rGO with large specific surface area opens up a new methodology for fabricating highly porous materials for efficient removal of formaldehyde and other indoor hazardous pollutants.


Assuntos
Alginatos , Aminas , Formaldeído , Grafite , Pirenos , Grafite/química , Formaldeído/química , Alginatos/química , Pirenos/química , Aminas/química , Adsorção
14.
Adv Healthc Mater ; 13(17): e2303782, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38430208

RESUMO

Exosomes are small extracellular vesicles that play a crucial role in intercellular communication and offer significant potential for a wide range of biomedical applications. However, conventional methods for exosome isolation have limitations in terms of purity, scalability, and preservation of exosome structural integrity. To address these challenges, an exosome isolation platform using chitosan oligosaccharide lactate conjugated 1-pyrenecarboxylic acid (COL-Py) based self-assembled magnetic nanoclusters (CMNCs), is presented. CMNCs are characterized to optimize their size, stability, and interaction dynamics with exosomes. The efficiency of CMNCs in isolating exosomes is systematically evaluated using various analytical methods to demonstrate their ability to capture exosomes based on amphiphilic lipid bilayers. CMNC-based exosome isolation consistently yields exosomes with structural integrity and purity similar to those obtained using traditional methods. The reusability of CMNCs over multiple exosome isolation cycles underscores their scalability and offers an efficient solution for biomedical applications. These results are supported by western blot analysis, which demonstrated the superiority of CMNC-based isolation in terms of purity compared to conventional methods. By providing a scalable and efficient exosome isolation process that preserves both structural integrity and purity, CMNCs can constitute a new platform that can contribute to the field of exosome studies.


Assuntos
Quitosana , Exossomos , Quitosana/química , Exossomos/química , Exossomos/metabolismo , Humanos , Oligossacarídeos/química , Pirenos/química , Nanopartículas de Magnetita/química , Ácido Láctico/química , Ácidos Carboxílicos/química
15.
Chemosphere ; 356: 141875, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583532

RESUMO

While passive sampling of ultra-low aqueous concentrations of hydrophobic organic compounds in environmental aqueous media has emerged as a promising analytical technique, there is a lack of good understanding of the fundamental diffusive processes. In this research, we used a fluorophore, pyrene, as a model compound to track diffusion in polymers through absorption and environmental media exchange processes. We directly tracked the penetration of pyrene into polyethylene (PE) and polyoxymethylene (POM) rods during absorption from water by sectioning the rod after different stages of absorption and observing the fluorescence signal through a microscope. Diffusion profiles of pyrene in polymers were simulated by numerical integration of Fickian diffusion. The results indicated that the uptake process in PE is governed by Fick's law and the absorption and desorption kinetics are similar in this polymer. However, the observed uptake profiles of pyrene in POM were non-Fickian and the release kinetics out of POM was slower compared to uptake into the polymer. We show that slower desorption from POM makes corrections for nonequilibrium using performance reference compounds (PRCs) problematic for deployments in water or sediment where there is significant advection. However, for static sediment deployments, the overall kinetics of exchange is controlled by slow transport through sediment and the hysteretic behavior of POM may not preclude the use of PRCs to interpret equilibrium status.


Assuntos
Monitoramento Ambiental , Polietileno , Pirenos , Resinas Sintéticas , Poluentes Químicos da Água , Pirenos/química , Polietileno/química , Difusão , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Monitoramento Ambiental/métodos , Cinética , Polímeros/química
16.
Chemosphere ; 360: 142384, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38797205

RESUMO

Interactions between polycyclic aromatic hydrocarbons (PAHs) and titanium dioxide (TiO2) nanoparticles (NPs) can produce unforeseen photoproducts in the aqueous phase. Both PAHs and TiO2-NPs are well-studied and highly persistent environmental pollutants, but the consequences of PAH-TiO2-NP interactions are rarely explored. We investigated PAH photoproduct formation over time for benzo[a]pyrene (BaP), fluoranthene (FLT), and pyrene (PYR) in the presence of ultraviolet A (UVA) using a combination of analytical and computational methods including, identification of PAH photoproducts, assessment of expression profiles for gene indicators of PAH metabolism, and computational evaluation of the reaction mechanisms through which certain photoproducts might be formed. Chemical analyses identified diverse photoproducts, but all PAHs shared a primary photoproduct, 9,10-phenanthraquinone (9,10-PQ), regardless of TiO2-NP presence. The computed reaction mechanisms revealed the roles photodissociation and singlet oxygen chemistry likely play in PAH mediated photochemical processes that result in the congruent production of 9,10-PQ within this study. Our investigation of PAH photoproduct formation has provided substantial evidence of the many, diverse and congruent, photoproducts formed from physicochemically distinct PAHs and how TiO2-NPs influence bioavailability and time-related formation of PAH photoproducts.


Assuntos
Nanopartículas , Processos Fotoquímicos , Hidrocarbonetos Policíclicos Aromáticos , Titânio , Raios Ultravioleta , Titânio/química , Hidrocarbonetos Policíclicos Aromáticos/química , Nanopartículas/química , Fluorenos/química , Pirenos/química , Benzo(a)pireno/química , Poluentes Ambientais/química , Disponibilidade Biológica
17.
ACS Appl Mater Interfaces ; 16(24): 31610-31623, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38853366

RESUMO

Affinity-based electrochemical (AEC) biosensors have gained more attention in the field of point-of-care management. However, AEC sensing is hampered by biofouling of the electrode surface and degradation of the antifouling material. Therefore, a breakthrough in antifouling nanomaterials is crucial for the fabrication of reliable AEC biosensors. Herein, for the first time, we propose 1-pyrenebutyric acid-functionalized MXene to develop an antifouling nanocomposite to resist biofouling in the immunosensors. The nanocomposite consisted of a 3D porous network of bovine serum albumin cross-linked with glutaraldehyde with functionalized MXene as conductive nanofillers, where the inherited oxidation resistance property of functionalized MXene improved the electrochemical lifetime of the nanocomposite. On the other hand, the size-extruded porous structure of the nanocomposite inhibited the biofouling activity on the electrode surface for up to 90 days in real samples. As a proof of concept, the antifouling nanocomposite was utilized to fabricate a multiplexed immunosensor for the detection of C-reactive protein (CRP) and ferritin biomarkers. The fabricated sensor showed good selectivity over time and an excellent limit of detection for CRP and ferritin of 6.2 and 4.2 pg/mL, respectively. This research successfully demonstrated that functionalized MXene-based antifouling nanocomposites have great potential to develop high-performance and low-cost immunosensors.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Nanocompostos , Soroalbumina Bovina , Nanocompostos/química , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Porosidade , Soroalbumina Bovina/química , Incrustação Biológica/prevenção & controle , Proteína C-Reativa/análise , Imunoensaio/métodos , Humanos , Pirenos/química , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/química , Animais , Limite de Detecção , Eletrodos , Bovinos
18.
J Colloid Interface Sci ; 674: 745-752, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38955006

RESUMO

The exploration of novel electrochemiluminescence (ECL) luminophores with excellent ECL properties is a current research hotspot in the ECL field. Herein, a novel high-efficiency Ru-complex-free ECL emitter PyTS-Zr-BTB-MOL has been prepared by using porous ultrathin Zr-BTB metal-organic layer (MOL) as carrier to coordinatively graft the cheap and easily available polycyclic aromatic hydrocarbon (PAH) derivative luminophore PyTS whose ECL performance has never been investigated. Gratifyingly, the ECL intensity and efficiency of PyTS-Zr-BTB-MOL were markedly enhanced compared to both PyTS monomers and PyTS aggregates. The main reason was that the distance between pyrene rings was greatly expanded after the PyTS grafting on the Zr6 clusters of Zr-BTB-MOL, which overcame the aggregation-caused quenching (ACQ) effect of PyTS and thus enhanced the ECL emission. Meanwhile, the porous nanosheet structure of PyTS-Zr-BTB-MOL could distinctly increase the exposure of PyTS luminophores and shorten the diffusion paths of coreactants and electrons/ions, which effectively promoted the electrochemical excitation of more PyTS luminophores and thus achieved a further ECL enhancement. In light of the remarkable ECL property of PyTS-Zr-BTB-MOL, it was employed as an ECL indicator to build a novel high-sensitivity ECL biosensor for microRNA-21 determination, possessing a satisfactory response range (100 aM to 100 pM) and an ultralow detection limit (10.4 aM). Overall, this work demonstrated that using MOLs to coordinatively graft the PAH derivative luminophores to eliminate the ACQ effect and increase the utilization rate of the luminophores is a promising and efficient strategy to develop high-performance Ru-complex-free ECL materials for assembling ultrasensitive ECL biosensing platforms.


Assuntos
Técnicas Eletroquímicas , Medições Luminescentes , MicroRNAs , Pirenos , Zircônio , MicroRNAs/análise , Técnicas Eletroquímicas/métodos , Medições Luminescentes/métodos , Zircônio/química , Pirenos/química , Humanos , Técnicas Biossensoriais/métodos , Estruturas Metalorgânicas/química , Limite de Detecção , Tamanho da Partícula , Propriedades de Superfície , Substâncias Luminescentes/química , Porosidade
19.
Braz. j. microbiol ; 49(4): 749-756, Oct.-Dec. 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-974295

RESUMO

ABSTRACT Pyrene and benzo[a]pyrene (BaP) are high molecular weight polycyclic aromatic hydrocarbons (PAHs) recalcitrant to microbial attack. Although studies related to the microbial degradation of PAHs have been carried out in the last decades, little is known about degradation of these environmental pollutants by fungi from marine origin. Therefore, this study aimed to select one PAHs degrader among three marine-derived basidiomycete fungi and to study its pyrene detoxification/degradation. Marasmiellus sp. CBMAI 1062 showed higher levels of pyrene and BaP degradation and was subjected to studies related to pyrene degradation optimization using experimental design, acute toxicity, organic carbon removal (TOC), and metabolite evaluation. The experimental design resulted in an efficient pyrene degradation, reducing the experiment time while the PAH concentration applied in the assays was increased. The selected fungus was able to degrade almost 100% of pyrene (0.08 mg mL-1) after 48 h of incubation under saline condition, without generating toxic compounds and with a TOC reduction of 17%. Intermediate metabolites of pyrene degradation were identified, suggesting that the fungus degraded the compound via the cytochrome P450 system and epoxide hydrolases. These results highlight the relevance of marine-derived fungi in the field of PAH bioremediation, adding value to the blue biotechnology.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Água do Mar/microbiologia , Basidiomycota/metabolismo , Filogenia , Hidrocarbonetos Policíclicos Aromáticos/química , Pirenos/metabolismo , Pirenos/química , Basidiomycota/isolamento & purificação , Basidiomycota/classificação , Basidiomycota/genética , Benzo(a)pireno/metabolismo , Benzo(a)pireno/química , Biodegradação Ambiental , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA