Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.863
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Plant Cell ; 35(7): 2552-2569, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-36977631

RESUMO

Ralstonia solanacearum is a devastating soil-borne bacterial pathogen capable of infecting many plant species, including tomato (Solanum lycopersicum). However, the perception of Ralstonia by the tomato immune system and the pathogen's counter-defense strategy remain largely unknown. Here, we show that PehC, a specific exo-polygalacturonase secreted by Ralstonia, acts as an elicitor that triggers typical immune responses in tomato and other Solanaceous plants. The elicitor activity of PehC depends on its N-terminal epitope, and not on its polygalacturonase activity. The recognition of PehC specifically occurs in tomato roots and relies on unknown receptor-like kinase(s). Moreover, PehC hydrolyzes plant pectin-derived oligogalacturonic acids (OGs), a type of damage-associated molecular pattern (DAMP), which leads to the release of galacturonic acid (GalA), thereby dampening DAMP-triggered immunity (DTI). Ralstonia depends on PehC for its growth and early infection and can utilize GalA as a carbon source in the xylem. Our findings demonstrate the specialized and dual functions of Ralstonia PehC, which enhance virulence by degrading DAMPs to evade DTI and produce nutrients, a strategy used by pathogens to attenuate plant immunity. Solanaceous plants have evolved to recognize PehC and induce immune responses, which highlights the significance of PehC. Overall, this study provides insight into the arms race between plants and pathogens.


Assuntos
Ralstonia solanacearum , Solanum lycopersicum , Virulência , Poligalacturonase , Proteínas de Bactérias , Doenças das Plantas/microbiologia
2.
Plant Cell ; 35(8): 3073-3091, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37202370

RESUMO

Polygalacturonases (PGs) fine-tune pectins to modulate cell wall chemistry and mechanics, impacting plant development. The large number of PGs encoded in plant genomes leads to questions on the diversity and specificity of distinct isozymes. Herein, we report the crystal structures of 2 Arabidopsis thaliana PGs, POLYGALACTURONASE LATERAL ROOT (PGLR), and ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE2 (ADPG2), which are coexpressed during root development. We first determined the amino acid variations and steric clashes that explain the absence of inhibition of the plant PGs by endogenous PG-inhibiting proteins (PGIPs). Although their beta helix folds are highly similar, PGLR and ADPG2 subsites in the substrate binding groove are occupied by divergent amino acids. By combining molecular dynamic simulations, analysis of enzyme kinetics, and hydrolysis products, we showed that these structural differences translated into distinct enzyme-substrate dynamics and enzyme processivities: ADPG2 showed greater substrate fluctuations with hydrolysis products, oligogalacturonides (OGs), with a degree of polymerization (DP) of ≤4, while the DP of OGs generated by PGLR was between 5 and 9. Using the Arabidopsis root as a developmental model, exogenous application of purified enzymes showed that the highly processive ADPG2 had major effects on both root cell elongation and cell adhesion. This work highlights the importance of PG processivity on pectin degradation regulating plant development.


Assuntos
Arabidopsis , Poligalacturonase , Poligalacturonase/genética , Poligalacturonase/metabolismo , Arabidopsis/metabolismo , Pectinas/metabolismo , Proteínas/metabolismo , Parede Celular/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(40): e2205857119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161953

RESUMO

Horizontal gene transfer (HGT) provides an evolutionary shortcut for recipient organisms to gain novel functions. Although reports of HGT in higher eukaryotes are rapidly accumulating, in most cases the evolutionary trajectory, metabolic integration, and ecological relevance of acquired genes remain unclear. Plant cell wall degradation by HGT-derived enzymes is widespread in herbivorous insect lineages. Pectin is an abundant polysaccharide in the walls of growing parts of plants. We investigated the significance of horizontally acquired pectin-digesting polygalacturonases (PGs) of the leaf beetle Phaedon cochleariae. Using a CRISPR/Cas9-guided gene knockout approach, we generated a triple knockout and a quadruple PG-null mutant in order to investigate the enzymatic, biological, and ecological effects. We found that pectin-digestion 1) is exclusively linked to the horizontally acquired PGs from fungi, 2) became fixed in the host genome by gene duplication leading to functional redundancy, 3) compensates for nutrient-poor diet by making the nutritious cell contents more accessible, and 4) facilitates the beetles development and survival. Our analysis highlights the selective advantage PGs provide to herbivorous insects and demonstrate the impact of HGT on the evolutionary success of leaf-feeding beetles, major contributors to species diversity.


Assuntos
Besouros , Transferência Genética Horizontal , Poligalacturonase , Animais , Besouros/enzimologia , Besouros/genética , Técnicas de Inativação de Genes , Pectinas/metabolismo , Filogenia , Plantas/química , Poligalacturonase/genética
4.
Biopolymers ; 115(4): e23586, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38747448

RESUMO

Cellulose nanofibers, a sustainable and promising material with widespread applications, exhibit appreciable strength and excellent mechanical and physicochemical properties. The preparation of cellulosic nanofibers from food or agricultural residue is not sustainable. Therefore, this study was designed to use three halophytic plants (Cressa cretica, Phragmites karka, and Suaeda fruticosa) to extract cellulose for the subsequent conversion to cellulosic nanofibers composites. The other extracted biomass components including lignin, hemicellulose, and pectin were also utilized to obtain industrially valuable enzymes. The maximum pectinase (31.56 IU mL-1), xylanase (35.21 IU mL-1), and laccase (15.89 IU mL-1) were produced after the fermentation of extracted pectin, hemicellulose, and lignin from S. fruticosa, P. karka, and C. cretica, respectively. Cellulose was methylated (with a degree of substitution of 2.4) and subsequently converted into a composite using polyvinyl alcohol. Scanning electron microscopy and Fourier-transform infrared spectroscopy confirmed the successful synthesis of the composites. The composites made up of cellulose from C. cretica and S. fruticosa had a high tensile strength (21.5 and 15.2 MPa) and low biodegradability (47.58% and 44.56%, respectively) after dumping for 3 months in soil, as compared with the composite from P. karka (98.79% biodegradability and 4.9 MPa tensile strength). Moreover, all the composites exhibited antibacterial activity against gram-negative bacteria (Escherichia coli and Klebsiella pneumoniae) and gram-positive bacteria (Staphylococcus aureus). Hence, this study emphasizes the possibility for various industrial applications of biomass from halophytic plants.


Assuntos
Celulose , Celulose/química , Plantas Tolerantes a Sal/química , Plantas Tolerantes a Sal/metabolismo , Lignina/química , Resistência à Tração , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Poligalacturonase/metabolismo , Poligalacturonase/química , Espectroscopia de Infravermelho com Transformada de Fourier , Lacase/metabolismo , Lacase/química , Nanofibras/química , Pectinas/química , Pectinas/isolamento & purificação , Pectinas/metabolismo , Chenopodiaceae/química , Chenopodiaceae/metabolismo , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Endo-1,4-beta-Xilanases/metabolismo , Endo-1,4-beta-Xilanases/química
5.
Arch Microbiol ; 206(7): 291, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849576

RESUMO

Biomass-degrading enzymes produced by microorganisms have a great potential in the processing of agricultural wastes. In order to produce suitable biomass-degrading enzymes for releasing sugars and aroma compounds from tobacco scraps, the feasibility of directly using the scraps as a carbon source for enzyme production was investigated in this study. By comparative studies of ten fungal strains isolated from tobacco leaves, Aspergillus brunneoviolaceus Ab-10 was found to produce an efficient enzyme mixture for the saccharification of tobacco scraps. Proteomic analysis identified a set of plant biomass-degrading enzymes in the enzyme mixture, including amylases, hemicellulases, cellulases and pectinases. At a substrate concentration of 100 g/L and enzyme dosage of 4 mg/g, glucose of 17.6 g/L was produced from tobacco scraps using the crude enzyme produced by A. brunneoviolaceus Ab-10. In addition, the contents of 23 volatile molecules, including the aroma compounds 4-ketoisophorone and benzyl alcohol, were significantly increased after the enzymatic treatment. The results provide a strategy for valorization of tobacco waste by integrating the production of biomass-degrading enzymes into the tobacco scrap processing system.


Assuntos
Aspergillus , Biomassa , Nicotiana , Nicotiana/microbiologia , Nicotiana/metabolismo , Aspergillus/enzimologia , Aspergillus/metabolismo , Açúcares/metabolismo , Odorantes/análise , Proteínas Fúngicas/metabolismo , Glicosídeo Hidrolases/metabolismo , Amilases/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Folhas de Planta/microbiologia , Celulases/metabolismo , Poligalacturonase/metabolismo
6.
Biotechnol Appl Biochem ; 71(1): 38-44, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37786232

RESUMO

Bacterial isolates collected from the environment were screened for pectinolytic activity, and a strain with the highest activity was selected and identified as Bacillus subtilis Mz-12. The presence of pectin hydrolase, lyase, and esterase activities was confirmed. Pectinase was purified and characterized. Enzyme production was optimized with respect to temperature, pH, and growth medium. Enzyme stability and activity were characterized under different temperatures and pH values. The results showed that this strain was capable of producing high yields of pectinase in commercial medium (Pharmamedia) 24.6 U/mL compared to other media. The purified pectinase of 22.3 kDa produced was constitutive in nature. The isolated enzyme from this strain displayed a wide range of temperature and pH stability, with the optimal activity observed at pH 9.0 and 50°C. These results indicate that the B. subtilis Mz-12 strain is a favorable candidate for industrial enzyme production. The use of Pharmamedia is reported for first time for pectinase production.


Assuntos
Bacillus subtilis , Poligalacturonase , Poligalacturonase/química , Temperatura , Concentração de Íons de Hidrogênio
7.
Curr Microbiol ; 81(8): 255, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38955830

RESUMO

Turkey litter waste is lignocellulosic and keratinous, requiring prior enzymatic treatment to facilitate fiber hydrolysis and utilization by microorganisms in anaerobic digestion (AD) process. The understanding of the performance of microorganisms in AD can be facilitated through molecular biology and bioinformatics tools. This study aimed to determine the taxonomic profile and functional prediction of microbial communities in the AD of turkey litter waste subjected to enzymatic pretreatment and correlate it with operational parameters. The tests involved the use of turkey litter (T) at 25 g L-1 of volatile solids, a granular inoculum (S) (10% m/v), and the addition of cellulase (C), and pectinase (P) enzymes at four concentrations. The use of enzymes increased methane production by 19% (turkey litter, inoculum, and cellulase-TSC4) and 15% (turkey litter, inoculum, and enzymatic pectinase-TSP4) compared to the control (turkey litter and inoculum-TS), being more effective in TSC4 (667.52 mLCH4), where there was consumption of acetic, butyric, and propionic acids. The pectinase assay (TSP4) showed a methane production of 648 mLCH4 and there was the accumulation of metabolites. Cellulolytic microorganisms Bacteroides, Ruminofilibacter, Lachnospiraceae, Ruminococcaceae, and Methanosaeta were favored in TSC4. In TSP4, the predominant genus was Macellibacteroides and Methanosarcina, and genes involved in methylotrophic methanogenesis were also found (mtaB, mtmB, and mtbB). Enzymes involved in hydrogenotrophic methanogenesis were identified in both assays (TSC4 and TSP4). Molecular tools helped to understand the metabolic routes involved in AD with enzymatic treatment, allowing the elaboration of strategies to improve the sustainable degradation of turkey litter waste.


Assuntos
Bactérias , Celulase , Metano , Poligalacturonase , Perus , Anaerobiose , Animais , Metano/metabolismo , Celulase/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Bactérias/isolamento & purificação , Perus/microbiologia , Poligalacturonase/metabolismo , Hidrólise , Lignina/metabolismo , Agricultura , Metagenômica
8.
Bioprocess Biosyst Eng ; 47(2): 289-297, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38086976

RESUMO

In this study, the potential of ultrafiltered xylano-pectinolytic enzymatic bleaching approach was investigated, for manufacturing wheat straw-based paper. The enzymatic step was found to be most effective, with xylanase-pectinase dose of 4-1.7 IU/g pulp and time period of 180 min. The absorption spectra of the pulp free filtrate samples obtained after treatment of the pulp with ultrafiltered enzymes showed the removal of more impurities, in comparison to the treatment with crude enzymes. Microscopic analysis also showed the removal of lignin impurities in enzymatically bleached pulp samples. This bleaching approach using enzymes resulted in 27% reduction in ClO2 dose. Ultrafiltered enzymes treated pulp samples also showed improved quality-related parameters, and Gurley porosity, burst index, breaking length, double fold, tear index, and viscosity increased by 19.05, 13.70, 8.18, 29.27, 4.41, and 13.27%, respectively. The lignin content, TDS, TSS, BOD and COD values also decreased in the effluent samples obtained after enzymatic bleaching plus 73% chemical bleaching dose. The BOD and COD values of the effluent samples improved by 23.01 and 23.66%, respectively. Thus, indicating the potential of ultrafiltered xylano-pectinolytic enzymes in reducing pollution during bleaching of wheat straw. This is the first study, mentioning the efficacy of ultrafiltered enzymes in the bleaching of wheat straw-based paper with better optical-strength-related properties and effluent characteristics.


Assuntos
Lignina , Papel , Triticum/química , Endo-1,4-beta-Xilanases/química , Poligalacturonase
9.
J Basic Microbiol ; 64(2): e2300529, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38066405

RESUMO

Global production of sugarcane bagasse (SB) by sugar industries exceeds more than 100 tons per annum. SB is rich in lignin and polysaccharide and hence can serve as a low-cost energy and carbon source for the growth of industrially important microorganism. However, various other applications of SB have also been investigated. In this study, SB was used as an adsorbent to remove an azo dye, malachite green. Subsequently, the dye-adsorbed SB was fermented by Trametes pubescens MB 89 for the production of laccase enzyme. The fungal pretreated SB was further utilized as a substrate for the simultaneous production of multiple plant cell wall degrading enzymes including, cellulase, xylanase, pectinase, and amylase by thermophilic bacterial strains. Results showed that 0.1% SB removed 97.04% malachite green at 30°C after 30 min from a solution containing 66 ppm of the dye. Fermentation of the dye-adsorbed SB by T. pubescens MB 89 yielded 667.203 IU mL-1 laccase. Moreover, Brevibacillus borstelensis UE10 produced 38.41 and 18.6 IU mL-1 ß-glucosidase and pectinase, respectively, by using fungal-pretreated SB. Cultivation of B. borstelensis UE27 in the medium containing the same substrate yielded 32.14 IU mL-1 of endoglucanase and 27.23 IU mL-1 of ß-glucosidase. Likewise, Neobacillus sedimentimangrovi UE25 could produce a mix of ß-glucosidase (37.24 IU mL-1 ), xylanase (18.65 IU mL-1 ) and endoglucanase (26.65 IU mL-1 ). Hence, this study led to the development of a method through which dye-containing textile effluent can be treated by SB along with the production of industrially important enzymes.


Assuntos
Celulase , Corantes de Rosanilina , Saccharum , Celulose/metabolismo , Celulase/metabolismo , Poligalacturonase , Saccharum/metabolismo , Lacase , Trametes/metabolismo , Fermentação , beta-Glucosidase/metabolismo
10.
Molecules ; 29(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474547

RESUMO

Enzymatic hydrolysis using pectinase is critical for producing high-yield and quality sea buckthorn juice. This study determined the optimal temperature, time, and enzyme dosage combinations to guide manufacturers. A temperature of 60 °C, hydrolysis time of 3 h, and 0.3% enzyme dosage gave 64.1% juice yield-25% higher than without enzymes. Furthermore, monitoring physicochemical properties reveals enzyme impacts on composition. Higher dosages increase soluble solids up to 15% and soluble fiber content by 35% through cell wall breakdown. However, excessive amounts over 0.3% decrease yields. Pectin concentration also declines dose-dependently, falling by 91% at 0.4%, improving juice stability but needing modulation to retain viscosity. Electrochemical fingerprinting successfully differentiates process conditions, offering a rapid quality control tool. Its potential for commercial inline use during enzymatic treatment requires exploration. Overall, connecting optimized parameters to measured effects provides actionable insights for manufacturers to boost yields, determine enzyme impacts on nutrition/functionality, and introduce novel process analytical technology. Further investigations of health properties using these conditions could expand sea buckthorn juice functionality.


Assuntos
Hippophae , Poligalacturonase , Poligalacturonase/metabolismo , Hippophae/metabolismo , Temperatura , Frutas/química , Hidrólise
11.
J Sci Food Agric ; 104(5): 2718-2727, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37997286

RESUMO

BACKGROUND: Cherry tomatoes are nutritious and favored by consumers. Processing them into dried cherry tomatoes can prolong their storage life and improve their flavor. The pretreatment of tomato pericarp is crucial for the subsequent processing. However, the traditional physical and chemical treatments of tomato pericarp generally cause nutrient loss and environmental pollution. RESULTS: In this study, a novel enzymatic method for cherry tomatoes was performed using mixed enzymes containing cutinase, cellulase and pectinase. Results showed that the pericarp permeability of cherry tomatoes was effectively improved due to enzymatic treatment. Changes in the microscopic structure and composition of the cuticle were revealed. After treatment with different concentrations of enzymes, cherry tomatoes exhibited higher pericarp permeability and sensory quality to varying degrees. The lycopene content and total polyphenol content significantly increased 2.4- and 1.45-fold, respectively. In addition, the satisfactory effect of the six-time reuse of enzymes on cherry tomatoes could still reach the same level as the initial effect, which effectively reduced the cost of production. CONCLUSIONS: This study revealed for the first time that a mixed enzymatic treatment consisting of cutinase, pectinase and cellulase could effectively degrade the cuticle, enhance the pericarp permeability and improve the quality of cherry tomatoes, with the advantages of being mildly controllable and environmentally friendly, providing a new strategy for the processing of dried cherry tomatoes. © 2023 Society of Chemical Industry.


Assuntos
Celulases , Solanum lycopersicum , Poligalacturonase , Licopeno , Permeabilidade
12.
Mol Plant Microbe Interact ; 36(8): 502-515, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37147768

RESUMO

Lasiodiplodia theobromae attacks over 500 plant species and is an important pathogen of tropical and subtropical fruit. Due to global warming and climate change, the incidence of disease associated with L. theobromae is rising. Virulence tests performed on avocado and mango branches and fruit showed a large diversity of virulence of different L. theobromae isolates. Genome sequencing was performed for two L. theobromae isolates, representing more virulent (Avo62) and less-virulent (Man7) strains, to determine the cause of their variation. Comparative genomics, including orthologous and single-nucleotide polymorphism (SNP) analyses, identified SNPs in the less-virulent strain in genes related to secreted cell wall-degrading enzymes, stress, transporters, sucrose, and proline metabolism, genes in secondary metabolic clusters, effectors, genes involved in the cell cycle, and genes belonging to transcription factors that may contribute to the virulence of L. theobromae. Moreover, carbohydrate-active enzyme analysis revealed a minor increase in gene counts of cutinases and pectinases and the absence of a few glycoside hydrolases in the less-virulent isolate. Changes in gene-copy numbers might explain the morphological differences found in the in-vitro experiments. The more virulent Avo62 grew faster on glucose, sucrose, or starch as a single carbon source. It also grew faster under stress conditions, such as osmotic stress, alkaline pH, and relatively high temperature. Furthermore, the more virulent isolate secreted more ammonia than the less-virulent one both in vitro and in vivo. These study results describe genome-based variability related to L. theobromae virulence, which might prove useful for the mitigation of postharvest stem-end rot. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Ascomicetos , Virulência/genética , Poligalacturonase/metabolismo
13.
BMC Plant Biol ; 23(1): 320, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37316788

RESUMO

BACKGROUND: The fig (Ficus carica L.) tree has high economic value. However, its fruit have a short shelf life due to rapid softening. Polygalacturonases (PGs) are essential hydrolases, responsible for the pectin degradation that plays a key role in fruit softening. However, fig PG genes and their regulators have not yet been characterized. RESULTS: In this study, 43 FcPGs were identified in the fig genome. They were non-uniformly distributed on 13 chromosomes, and tandem repeat PG gene clusters were found on chromosomes 4 and 5. Ka/Ks calculation and collinear analysis indicated negative selection as the main driver of FcPG family expansion. Fourteen FcPGs were found expressed in fig fruit with FPKM values > 10, of which seven were positively correlated, and three, negatively correlated with fruit softening. Eleven FcPGs were upregulated and two downregulated in response to ethephon treatment. FcPG12, a member of the tandem repeat cluster on chromosome 4, was selected for further analyses due to its sharp increment in transcript abundance during fruit softening and its response to ethephon treatment. Transient overexpression of FcPG12 led to decreased fig fruit firmness and increased PG enzyme activity in the tissue. Two ethylene response factor (ERF)-binding GCC-box sites were found on the FcPG12 promoter. Yeast one-hybrid and dual luciferase assays showed that FcERF5 binds directly to the FcPG12 promoter and upregulates its expression. Transient overexpression of FcERF5 upregulated FcPG12 expression, thereby increasing PG activity and fruit softening. CONCLUSIONS: Our study identified FcPG12 as a key PG gene in fig fruit softening, and its direct positive regulation by FcERF5. The results provide new information on the molecular regulation of fig fruit softening.


Assuntos
Ficus , Poligalacturonase , Poligalacturonase/genética , Ficus/genética , Frutas/genética , Hidrolases
14.
BMC Plant Biol ; 23(1): 300, 2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37270475

RESUMO

BACKGROUND: Polygalacturonase (PG), a crucial enzyme involved in pectin degradation, is associated with various plants' developmental and physiological processes such as seed germination, fruit ripening, fruit softening and plant organ abscission. However, the members of PG gene family in sweetpotato (Ipomoea batatas) have not been extensively identified. RESULTS: In this study, there were 103 PG genes identified in sweetpotato genome, which were phylogenetically clustered into divergent six clades. The gene structure characteristics of each clade were basically conserved. Subsequently, we renamed these PGs according to their locations of the chromosomes. The investigation of collinearity between the PGs in sweetpotato and other four species, contained Arabidopsis thaliana, Solanum lycopersicum, Malus domestica and Ziziphus jujuba, revealed important clues about the potential evolution of the PG family in sweetpotato. Gene duplication analysis showed that IbPGs with collinearity relationships were all derived from segmental duplications, and these genes were under purifying selection. In addition, each promoter region of IbPG proteins contained cis-acting elements related to plant growth and development processes, environmental stress responses and hormone responses. Furthermore, the 103 IbPGs were differentially expressed in various tissues (leaf, stem, proximal end, distal end, root body, root stalk, initiative storage root and fibrous root) and under different abiotic stresses (salt, drought, cold, SA, MeJa and ABA treatment). IbPG038 and IbPG039 were down-regulated with salt, SA and MeJa treatment. According to the further investigation, we found that IbPG006, IbPG034 and IbPG099 had different patterns under the drought and salt stress in fibrous root of sweetpotato, which provided insights into functional differences among these genes. CONCLUSION: A total of 103 IbPGs were identified and classified into six clades from sweetpotato genome. The results of RNA-Seq and qRT-PCR suggested that IbPG006, IbPG034 and IbPG099 might play a significant role in tissue specificity as well as drought and salt stress responses, which showed valuable information for further functional characterization and application of the IbPGs.


Assuntos
Ipomoea batatas , Poligalacturonase , Poligalacturonase/genética , Ipomoea batatas/genética , Ipomoea batatas/metabolismo , Genoma de Planta/genética , Duplicação Gênica , Estresse Fisiológico , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Filogenia
15.
Theor Appl Genet ; 136(5): 107, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37037971

RESUMO

KEY MESSAGE: The pepper S locus, which controls the deciduous character of ripe fruit, was first fine mapped into an interval with a physical length of ~ 38.03 kb on chromosome P10. Capana10g002229, encoding a polygalacturonase, was proposed as a strong candidate gene based on sequence comparison, expression pattern analysis and virus-induced gene silencing (VIGS). The deciduous character of ripe fruit, which is controlled by the dominant S locus, is a domesticated trait with potential value in the pepper processing industry (Capsicum spp.). However, the gene associated with the S locus has not been identified. Here, one major QTL designated S10.1 was detected by using the F2 population (n = 155) derived from BA3 (Capsicum annuum) × YNXML (Capsicum frutescens) and was further verified in an intraspecific backcross population (n = 254) derived from the cross between BB3 (C. annuum) and its wild relative Chiltepin (C. annuum var. glabriusculum) with BB3 as the recurrent parent. Then, a large BC1F2 population derived from the self-pollination of BB3 × (BB3 × Chiltepin) individuals and comprising 4217 individuals was used to screen the recombinants, and the S locus was ultimately delimited into a 38.03-kb region on chromosome P10 harbouring four annotated genes. Capana10g002229, encoding a polygalacturonase (PG), was proposed as the best candidate gene for S based on sequence comparison and expression pattern analyses. Downregulation of Capana10g002229 in fruits through VIGS significantly delayed fruit softening and abscission from the fruit-receptacle junction. Taken together, the results show that Capana10g002229 could be regarded as a strong candidate gene associated with the S locus in pepper. These findings not only lay a foundation for deciphering the molecular mechanisms underlying pepper domestication but also provide a strategy for genetic improvement of the deciduous character of ripe fruit using a marker-assisted selection approach.


Assuntos
Capsicum , Humanos , Capsicum/genética , Frutas/genética , Mapeamento Cromossômico , Poligalacturonase/genética , Genes de Plantas , Verduras/genética
16.
Arch Microbiol ; 205(4): 130, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36947219

RESUMO

The demand for enzymes is increasing continuously due to their applications in various avenues. The pectin-hydrolyzing bacteria, Cellulomonas sp. and Bacillus sp., isolated from forest soil have the potential to produce industrially important enzymes (pectinase, PGase, Cellulase, and xylanase). However, these bacteria have different optimal cultural conditions for pectinase production. The optimal cultural conditions for Cellulomonas sp. were room temperature (25-26℃), pH 7, 1% inoculum volume, and 1.5% citrus pectin with 8.82 ± 0.92 U/mL pectinase activity. And Bacillus sp. illustrated the highest pectinase activity (12.35 ± 0.72 U/mL) at room temperature, pH 10, 1% inoculum volume, and 1.5% pectin concentration. Among the different agro-wastes, the orange peel was found to be the best substrate for pectinase, PGase, and cellulase activity whereas barley straw for xylanase activity. Further, Cellulomonas sp. and Bacillus sp. illustrated higher pectinase activity from commercial pectin compared to orange peel showing their preference for commercial citrus pectin. In addition, the optimization by the Box-Behnken design increased pectinase activity for Cellulomonas sp., while a noticeable increase in activity was not observed in Bacillus sp. Besides, all the agro-wastes exploited in this study can be used for pectinase, PGase, and xylanase production but not cellulase. The study revealed that each bacteria has its specific optimal conditions and there is a variation in the capacity of utilizing the various lignocellulosic biomass.


Assuntos
Bacillus , Cellulomonas , Poligalacturonase , Biomassa , Pectinas
17.
Microb Cell Fact ; 22(1): 252, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066588

RESUMO

Pectinase is a particular type of enzyme that can break down pectin compounds and is extensively utilised in the agricultural field. In this study, twenty yeast isolates were isolated and assayed for pectinase activity. Molecular identification by PCR amplification and sequencing of internal transcribed spacer (ITS) regions of isolate no. 18 had the highest pectinase activity of 46.35 U/mg, was identified as Rhodotorula mucilaginosa PY18, and was submitted under accession no. (OM275426) in NCBI. Rhodotorula mucilaginosa PY18 was further enhanced through sequential mutagenesis, resulting in a mutant designated as Rhodotorula mucilaginosa E54 with a specific activity of 114.2 U/mg. Using Response Surface Methodology (RSM), the best culture conditions for the pectinase-producing yeast mutant Rhodotorula mucilaginosa E54 were pH 5, 72-h incubation, 2.5% xylose, and 2.5% malt extract, with a pectinase-specific activity of 156.55 U/mg. Then, the obtained sequences of the endo-polygalacturonase PGI gene from Rhodotorula mucilaginosa PY18 and mutant Rhodotorula mucilaginosa E54 were isolated for the first time, sequenced, and submitted to NCBI accession numbers OQ283005 and OQ283006, respectively. The modelled 3D structure of the endo-PGI enzyme (485 residues) was validated using Ramachandran's plot, which showed 87.71, 85.56, and 91.57% in the most favourable region for template Rhodotorula mucilaginosa KR, strain Rhodotorula mucilaginosa PY18, and mutant Rhodotorula mucilaginosa E54, respectively. In molecular docking studies, the results of template Rhodotorula mucilaginosa KR endo-PG1 showed an interaction with an affinity score of - 6.0, - 5.9, and - 5.6 kcal/mol for active sites 1, 2, and 3, respectively. Rhodotorula mucilaginosa PY18 endo-PG1 showed an interaction affinity with a score of - 5.8, - 6.0, and - 5.0 kcal/mol for active sites 1, 2, and 3, respectively. Mutant Rhodotorula mucilaginosa E54 endo-PG1 showed an interaction affinity of - 5.6, - 5.5, - 5.5 and - 5.4 kcal/mol for active sites 1, 2, and 3, respectively. The endo-PGI genes of both the yeast strain Rhodotorula mucilaginosa PY18 and mutant Rhodotorula mucilaginosa E54 were successfully cloned and expressed in E. coli DH5α, showing significantly higher endo-PG1 activity, which recorded 94.57 and 153.10 U/mg for recombinant Rhodotorula mucilaginosa pGEM-PGI-PY18 and recombinant mutant Rhotorula pGEM-PGI-E54, respectively.


Assuntos
Poligalacturonase , Rhodotorula , Poligalacturonase/genética , Simulação de Acoplamento Molecular , Escherichia coli/metabolismo , Rhodotorula/genética , Leveduras/metabolismo , Mutagênese
18.
Physiol Plant ; 175(6): e14079, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148229

RESUMO

All land-plant cell walls possess hemicelluloses, cellulose and anionic pectin. The walls of their cousins, the charophytic algae, exhibit some similarities to land plants' but also major differences. Charophyte 'pectins' are extractable by conventional land-plant methods, although they differ significantly in composition. Here, we explore 'pectins' of an early-diverging charophyte, Chlorokybus atmophyticus, characterising the anionic polysaccharides that may be comparable to 'pectins' in other streptophytes. Chlorokybus 'pectin' was anionic and upon acid hydrolysis gave GlcA, GalA and sulphate, plus neutral sugars (Ara≈Glc>Gal>Xyl); Rha was undetectable. Most Gal was the l-enantiomer. A relatively acid-resistant disaccharide was characterised as ß-d-GlcA-(1→4)-l-Gal. Two Chlorokybus 'pectin' fractions, separable by anion-exchange chromatography, had similar sugar compositions but different sulphate-ester contents. No sugars were released from Chlorokybus 'pectin' by several endo-hydrolases [(1,5)-α-l-arabinanase, (1,4)-ß-d-galactanase, (1,4)-ß-d-xylanase, endo-polygalacturonase] and exo-hydrolases [α- and ß-d-galactosidases, α-(1,6)-d-xylosidase]. 'Driselase', which hydrolyses most land-plant cell wall polysaccharides to mono- and disaccharides, released no sugars except traces of starch-derived Glc. Thus, the Ara, Gal, Xyl and GalA of Chlorokybus 'pectin' were not non-reducing termini with configurations familiar from land-plant polysaccharides (α-l-Araf, α- and ß-d-Galp, α- and ß-d-Xylp and α-d-GalpA), nor mid-chain residues of α-(1→5)-l-arabinan, ß-(1→4)-d-galactan, ß-(1→4)-d-xylan or α-(1→4)-d-galacturonan. In conclusion, Chlorokybus possesses anionic 'pectic' polysaccharides, possibly fulfilling pectic roles but differing fundamentally from land-plant pectin. Thus, the evolution of land-plant pectin since the last common ancestor of Chlorokybus and land plants is a long and meandering path involving loss of sulphate, most l-Gal and most d-GlcA; re-configuration of Ara, Xyl and GalA; and gain of Rha.


Assuntos
Embriófitas , Polissacarídeos , Pectinas , Plantas , Poligalacturonase , Sulfatos
19.
Appl Microbiol Biotechnol ; 107(4): 1205-1216, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36680585

RESUMO

Agro-industrial by-products are a sustainable source of natural additives that can replace the synthetic ones in the food industry. Grape pomace is an abundant by-product that contains about 70% of the grape's polyphenols. Polyphenols are natural antioxidants with multiple health-promoting properties. They are secondary plant metabolites with a wide range of solubilities. Here, a novel extraction process of these compounds was developed using enzymes that specifically liberates target polyphenols in the appropriate hydroalcoholic mixture. Tannase, cellulase, and pectinase retained 22, 60, and 52% of their activity, respectively, in ethanol 30% v/v. Therefore, extractions were tested in ethanol concentrations between 0 and 30% v/v. Some of these enzymes presented synergistic effects in the extraction of specific polyphenols. Maximum yield of gallic acid was obtained using tannase and pectinase enzymes in ethanol 10% v/v (49.56 ± 0.01 mg L-1 h-1); in the case of p-coumaric acid, by cellulase and pectinase treatment in ethanol 30% v/v (7.72 ± 0.26 mg L-1 h-1), and in the case of trans-resveratrol, by pectinase treatment in ethanol 30% v/v (0.98 ± 0.04 mg L-1 h-1). Also, the effect of enzymes and solvent polarity was analysed for the extraction of malvidin-3-O-glucoside, syringic acid, and quercetin. Previous studies were mainly focused on the maximization of total polyphenols extraction yields, being the polyphenolic profile the consequence but not the driving force of the optimization. In the present study, the basis of a platform for a precise extraction of the desire polyphenols is provided. KEY POINTS: • Enzymes can be used up to ethanol 30% v/v. • The specific enzymes' action determines the polyphenolic profile of the extracts. • The yields obtained of target polyphenols are competitive.


Assuntos
Celulases , Polifenóis , Poligalacturonase , Solventes , Etanol , Extratos Vegetais , Antioxidantes
20.
Biotechnol Appl Biochem ; 70(5): 1663-1678, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36977651

RESUMO

Pectinases are a collection of multiple enzymes that have a common substrate, that is, pectin. They can act on different parts of pectin due to the structural heterogeneity of pectin. Therefore, they have been placed in different groups, such as protopectinases, polygalacturonases, polymethylesterases, pectin lyases, and pectate lyases. They are naturally present both in multicellular organisms such as higher plants and in unicellular organisms such as microbes. In past decade, it has been witnessed that chemical and mechanical methods employed in industrial processes have led to environmental hazards and serious health disorders, thus increasing the search for eco-friendly approaches with minimal health risks. Hence, microbial enzymes have been extensively used as safer alternative for these environmentally unsafe methods. Among these microbial enzymes, pectinases hold great significance and is one of the principal enzymes that have been used commercially. It is predominantly used as a green biocatalyst for fruit, fiber, oil, textile, beverage, pulp, and paper industry. Thus, this review focuses on the structure of pectin, microbial sources of pectin, and principle industrial applications of pectinases.


Assuntos
Liases , Poligalacturonase , Pectinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA