RESUMO
1988, the World Health Assembly committed to eradicate poliomyelitis, a viral disease that can cause permanent paralysis. Today, only type 1 of the three wild poliovirus types remains circulating in limited geographic areas following widespread use of different poliovirus vaccines. While we are close to zero new cases of wild polio, it is a fragile situation, and there are many remaining and new hurdles to overcome. Here, experts discuss how to address them.
Assuntos
Poliomielite , Vacinas contra Poliovirus , Poliovirus , Humanos , Poliomielite/epidemiologia , Poliomielite/prevenção & controle , Saúde Global , Erradicação de DoençasRESUMO
Understanding how viruses adapt to new environments and acquire new phenotypes is critical for developing comprehensive responses to outbreaks. By studying the emergence of vaccine-derived poliovirus outbreaks, Stern et al. describe how a combination of sequence analysis and experimental evolution can be used to reveal adaptive pathways.
Assuntos
Poliomielite/epidemiologia , Vacina Antipólio Oral , Evolução Biológica , Surtos de Doenças , Poliovirus/genéticaRESUMO
Paralytic polio once afflicted almost half a million children each year. The attenuated oral polio vaccine (OPV) has enabled world-wide vaccination efforts, which resulted in nearly complete control of the disease. However, poliovirus eradication is hampered globally by epidemics of vaccine-derived polio. Here, we describe a combined theoretical and experimental strategy that describes the molecular events leading from OPV to virulent strains. We discover that similar evolutionary events occur in most epidemics. The mutations and the evolutionary trajectories driving these epidemics are replicated using a simple cell-based experimental setup where the rate of evolution is intentionally accelerated. Furthermore, mutations accumulating during epidemics increase the replication fitness of the virus in cell culture and increase virulence in an animal model. Our study uncovers the evolutionary strategies by which vaccine strains become pathogenic and provides a powerful framework for rational design of safer vaccine strains and for forecasting virulence of viruses. VIDEO ABSTRACT.
Assuntos
Poliomielite/virologia , Vacina Antipólio Oral/efeitos adversos , Vacina Antipólio Oral/genética , Poliovirus/patogenicidade , Animais , Evolução Biológica , Camundongos , Filogenia , Poliomielite/prevenção & controle , Poliovirus/genética , Vacina Antipólio Oral/classificação , Vacina Antipólio Oral/imunologiaRESUMO
Vaccination with Sabin, a live attenuated oral polio vaccine (OPV), results in robust intestinal and humoral immunity and has been key to controlling poliomyelitis. As with any RNA virus, OPV evolves rapidly to lose attenuating determinants critical to the reacquisition of virulence1-3 resulting in vaccine-derived, virulent poliovirus variants. Circulation of these variants within underimmunized populations leads to further evolution of circulating, vaccine-derived poliovirus with higher transmission capacity, representing a significant risk of polio re-emergence. A new type 2 OPV (nOPV2), with promising clinical data on genetic stability and immunogenicity, recently received authorization from the World Health Organization for use in response to circulating, vaccine-derived poliovirus outbreaks. Here we report the development of two additional live attenuated vaccine candidates against type 1 and 3 polioviruses. The candidates were generated by replacing the capsid coding region of nOPV2 with that from Sabin 1 or 3. These chimeric viruses show growth phenotypes similar to nOPV2 and immunogenicity comparable to their parental Sabin strains, but are more attenuated. Our experiments in mice and deep sequencing analysis confirmed that the candidates remain attenuated and preserve all the documented nOPV2 characteristics concerning genetic stability following accelerated virus evolution. Importantly, these vaccine candidates are highly immunogenic in mice as monovalent and multivalent formulations and may contribute to poliovirus eradication.
Assuntos
Poliomielite , Vacina Antipólio Oral , Poliovirus , Vacinas Atenuadas , Animais , Camundongos , Modelos Animais de Doenças , Poliomielite/imunologia , Poliomielite/prevenção & controle , Poliomielite/virologia , Poliovirus/classificação , Poliovirus/genética , Poliovirus/imunologia , Vacina Antipólio Oral/química , Vacina Antipólio Oral/genética , Vacina Antipólio Oral/imunologia , Vacinas Atenuadas/química , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Erradicação de DoençasRESUMO
BACKGROUND: Novel oral poliovirus vaccine type 2 (nOPV2) has been engineered to improve the genetic stability of Sabin oral poliovirus vaccine (OPV) and reduce the emergence of circulating vaccine-derived polioviruses. This trial aimed to provide key safety and immunogenicity data required for nOPV2 licensure and WHO prequalification. METHODS: This phase 3 trial recruited infants aged 18 to <52 weeks and young children aged 1 to <5 years in The Gambia. Infants randomly assigned to receive one or two doses of one of three lots of nOPV2 or one lot of bivalent OPV (bOPV). Young children were randomised to receive two doses of nOPV2 lot 1 or bOPV. The primary immunogenicity objective was to assess lot-to-lot equivalence of the three nOPV2 lots based on one-dose type 2 poliovirus neutralising antibody seroconversion rates in infants. Equivalence was declared if the 95% CI for the three pairwise rate differences was within the -10% to 10% equivalence margin. Tolerability and safety were assessed based on the rates of solicited adverse events to 7 days, unsolicited adverse events to 28 days, and serious adverse events to 3 months post-dose. Stool poliovirus excretion was examined. The trial was registered as PACTR202010705577776 and is completed. FINDINGS: Between February and October, 2021, 2345 infants and 600 young children were vaccinated. 2272 (96·9%) were eligible for inclusion in the post-dose one per-protocol population. Seroconversion rates ranged from 48·9% to 49·2% across the three lots. The minimum lower bound of the 95% CIs for the pairwise differences in seroconversion rates between lots was -5·8%. The maximum upper bound was 5·4%. Equivalence was therefore shown. Of those seronegative at baseline, 143 (85·6%) of 167 (95% CI 79·4-90·6) infants and 54 (83·1%) of 65 (71·7-91·2) young children seroconverted over the two-dose nOPV2 schedule. The post-two-dose seroprotection rates, including participants who were both seronegative and seropositive at baseline, were 604 (92·9%) of 650 (95% CI 90·7-94·8) in infants and 276 (95·5%) of 289 (92·4-97·6) in young children. No safety concerns were identified. 7 days post-dose one, 78 (41·7%) of 187 (95% CI 34·6-49·1) infants were excreting the type 2 poliovirus. INTERPRETATION: nOPV2 was immunogenic and safe in infants and young children in The Gambia. The data support the licensure and WHO prequalification of nOPV2. FUNDING: Bill & Melinda Gates Foundation.
Assuntos
Poliomielite , Poliovirus , Pré-Escolar , Humanos , Lactente , Anticorpos Antivirais , Formação de Anticorpos , Gâmbia , Esquemas de Imunização , Poliomielite/epidemiologia , Vacina Antipólio OralRESUMO
Neurotropic viruses, with their ability to invade the central nervous system, present a significant public health challenge, causing a spectrum of neurological diseases. Clinical manifestations of neurotropic viral infections vary widely, from mild to life-threatening conditions, such as HSV-induced encephalitis or poliovirus-induced poliomyelitis. Traditional diagnostic methods, including polymerase chain reaction, serological assays, and imaging techniques, though valuable, have limitations. To address these challenges, biosensor-based methods have emerged as a promising approach. These methods offer advantages such as rapid results, high sensitivity, specificity, and potential for point-of-care applications. By targeting specific biomarkers or genetic material, biosensors utilise technologies like surface plasmon resonance and microarrays, providing a direct and efficient means of diagnosing neurotropic infections. This review explores the evolving landscape of biosensor-based methods, highlighting their potential to enhance the diagnostic toolkit for neurotropic viruses.
Assuntos
Técnicas Biossensoriais , Doenças do Sistema Nervoso , Poliomielite , Vírus , Humanos , Vírus/genéticaRESUMO
BACKGROUND: Novel oral poliovirus vaccine (OPV) type 2 (nOPV2) has been made available for outbreak response under an emergency use listing authorization based on supportive clinical trial data. Since 2021 more than 350 million doses of nOPV2 were used for control of a large outbreak of circulating vaccine-derived poliovirus type 2 (cVDPV2) in Nigeria. METHODS: Using a bayesian time-series susceptible-infectious-recovered model, we evaluate the field effectiveness of nOPV2 immunization campaigns in Nigeria compared with campaigns using monovalent OPV type 2 (mOPV2). RESULTS: We found that both nOPV2 and mOPV2 campaigns were highly effective in reducing transmission of cVDPV2, on average reducing the susceptible population by 42% (95% confidence interval, 28-54%) and 38% (20-51%) per campaign, respectively, which were indistinguishable from each other in this analysis (relative effect, 1.1 [.7-1.9]). Impact was found to vary across areas and between immunization campaigns. CONCLUSIONS: These results are consistent with the comparable individual immunogenicity of nOPV2 and mOPV2 found in clinical trials but also suggest that outbreak response campaigns may have small impacts in some areas requiring more campaigns than are suggested in current outbreak response procedures.
Assuntos
Poliomielite , Poliovirus , Humanos , Vacina Antipólio Oral/efeitos adversos , Poliomielite/epidemiologia , Poliomielite/prevenção & controle , Nigéria/epidemiologia , Teorema de Bayes , Vacinação/métodos , Surtos de Doenças/prevenção & controleRESUMO
BACKGROUND: In July 2022, New York State (NYS) reported a case of paralytic polio in an unvaccinated young adult, and subsequent wastewater surveillance confirmed sustained local transmission of type 2 vaccine-derived poliovirus (VDPV2) in NYS with genetic linkage to the paralyzed patient. METHODS: We adapted an established poliovirus transmission and oral poliovirus vaccine evolution model to characterize dynamics of poliovirus transmission in NYS, including consideration of the immunization activities performed as part of the declared state of emergency. RESULTS: Despite sustained transmission of imported VDPV2 in NYS involving potentially thousands of individuals (depending on seasonality, population structure, and mixing assumptions) in 2022, the expected number of additional paralytic cases in years 2023 and beyond is small (less than 0.5). However, continued transmission and/or reintroduction of poliovirus into NYS and other populations remains a possible risk in communities that do not achieve and maintain high immunization coverage. CONCLUSIONS: In countries such as the United States that use only inactivated poliovirus vaccine, even with high average immunization coverage, imported polioviruses may circulate and pose a small but nonzero risk of causing paralysis in nonimmune individuals.
Assuntos
Poliomielite , Poliovirus , Humanos , Surtos de Doenças/prevenção & controle , New York/epidemiologia , Poliomielite/epidemiologia , Poliomielite/prevenção & controle , Poliovirus/genética , Vacina Antipólio de Vírus Inativado , Vacina Antipólio Oral , Vigilância Epidemiológica Baseada em Águas ResiduáriasRESUMO
This study assesses poliovirus type 1 (PV1) immunity in children to inform the contribution of mucosal immunity in and prevention of poliovirus circulation. A community-based study was conducted in periurban Karachi, Pakistan. Randomly selected children (0-15 years of age) received oral poliovirus vaccine (OPV) challenge dose. Blood and stool samples were collected at several time points and evaluated for polio-neutralizing antibodies and serotype-specific poliovirus, respectively. Eighty-one of 589 (14%) children excreted PV1 7 days post-OPV challenge; 70 of 81 (86%) were seropositive at baseline. Twelve of 610 (2%) were asymptomatic wild poliovirus type 1 (WPV1) excretors. Most poliovirus excretors had humoral immunity, suggesting mucosal immunity in these children likely waned or never developed. Without mucosal immunity, they are susceptible to poliovirus infection, shedding, and transmission. Asymptomatic WPV1 excretion suggests undetected poliovirus circulation within the community.
Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Fezes , Imunidade nas Mucosas , Poliomielite , Vacina Antipólio Oral , Poliovirus , Humanos , Paquistão/epidemiologia , Poliovirus/imunologia , Lactente , Poliomielite/imunologia , Poliomielite/prevenção & controle , Poliomielite/epidemiologia , Poliomielite/virologia , Pré-Escolar , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Adolescente , Vacina Antipólio Oral/imunologia , Vacina Antipólio Oral/administração & dosagem , Feminino , Masculino , Criança , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Fezes/virologia , Recém-Nascido , Eliminação de Partículas ViraisRESUMO
This was a follow-up study conducted in 2020 assessing changes in levels of type 2 poliovirus-neutralizing antibodies 2 years postimmunization in children who received inactivated poliovirus vaccine (IPV) in Karachi, Pakistan. Unexpectedly, the findings revealed an increase in seroprevalence of type 2 antibodies from 73.1% to 81.6% 1 year and 2 years after IPV, respectively. The increase in type 2 immunity could result from the intensive transmission of circulating vaccine-derived poliovirus type 2 (cVDPV2) in Karachi during the second year of IPV administration. This study suggests that the cVDPV2 outbreak detected in Pakistan infected large proportions of children in Karachi. Clinical Trials Registration . NCT03286803.
Assuntos
Poliomielite , Poliovirus , Criança , Humanos , Anticorpos Antivirais , Seguimentos , Paquistão/epidemiologia , Vacina Antipólio de Vírus Inativado , Vacina Antipólio Oral , Estudos SoroepidemiológicosRESUMO
Wastewater testing can inform public health action as a component of polio outbreak response. During 2022-2023, a total of 7 US jurisdictions (5 states and 2 cities) participated in prospective or retrospective testing of wastewater for poliovirus after a paralytic polio case was identified in New York state. Two distinct vaccine-derived poliovirus type 2 viruses were detected in wastewater from New York state and New York City during 2022, representing 2 separate importation events. Of those viruses, 1 resulted in persistent community transmission in multiple New York counties and 1 paralytic case. No poliovirus was detected in the other participating jurisdictions (Connecticut, New Jersey, Michigan, and Illinois and Chicago, IL). The value of routine wastewater surveillance for poliovirus apart from an outbreak is unclear. However, these results highlight the ongoing risk for poliovirus importations into the United States and the need to identify undervaccinated communities and increase vaccination coverage to prevent paralytic polio.
Assuntos
Poliomielite , Poliovirus , Águas Residuárias , Humanos , Estados Unidos/epidemiologia , Poliomielite/epidemiologia , Poliomielite/prevenção & controle , Poliomielite/virologia , Águas Residuárias/virologia , Surtos de Doenças , História do Século XXIRESUMO
BACKGROUND: Type 2 circulating vaccine-derived polioviruses (cVDPV2) from Sabin oral poliovirus vaccines (OPVs) are the leading cause of poliomyelitis. A novel type 2 OPV (nOPV2) has been developed to be more genetically stable with similar tolerability and immunogenicity to that of Sabin type 2 vaccines to mitigate the risk of cVDPV2. We aimed to assess these aspects of nOPV2 in poliovirus vaccine-naive newborn infants. METHODS: In this randomised, double-blind, controlled, phase 2 trial we enrolled newborn infants at the Matlab Health Research Centre, Chandpur, Bangladesh. We included infants who were healthy and were a single birth after at least 37 weeks' gestation. Infants were randomly assigned (2:1) to receive either two doses of nOPV2 or placebo, administered at age 0-3 days and at 4 weeks. Exclusion criteria included receipt of rotavirus or any other poliovirus vaccine, any infection or illness at the time of enrolment (vomiting, diarrhoea, or intolerance to liquids), diagnosis or suspicion of any immunodeficiency disorder in the infant or a close family member, or any contraindication for venipuncture. The primary safety outcome was safety and tolerability after one and two doses of nOPV2, given 4 weeks apart in poliovirus vaccine-naive newborn infants and the primary immunogenicity outcome was the seroconversion rate for neutralising antibodies against type 2 poliovirus, measured 28 days after the first and second vaccinations with nOPV2. Study staff recorded solicited and unsolicited adverse events after each dose during daily home visits for 7 days. Poliovirus neutralising antibody responses were measured in sera drawn at birth and at age 4 weeks and 8 weeks. This study is registered on ClinicalTrials.gov, NCT04693286. FINDINGS: Between Sept 21, 2020, and Aug 16, 2021, we screened 334 newborn infants, of whom three (<1%) were found to be ineligible and one (<1%) was withdrawn by the parents; the remaining 330 (99%) infants were assigned to receive nOPV2 (n=220 [67%]) or placebo (n=110 [33%]). nOPV2 was well tolerated; 154 (70%) of 220 newborn infants in the nOPV2 group and 78 (71%) of 110 in the placebo group had solicited adverse events, which were all mild or moderate in severity. Severe unsolicited adverse events in 11 (5%) vaccine recipients and five (5%) placebo recipients were considered unrelated to vaccination. 306 (93%) of 330 infants had seroprotective maternal antibodies against type 2 poliovirus at birth, decreasing to 58 (56%) of 104 in the placebo group at 8 weeks. In the nOPV2 group 196 (90%) of 217 infants seroconverted by week 8 after two doses, when 214 (99%) had seroprotective antibodies. INTERPRETATION: nOPV2 was well tolerated and immunogenic in newborn infants, with two doses, at birth and 4 weeks, resulting in almost 99% of infants having protective neutralising antibodies. FUNDING: Bill & Melinda Gates Foundation.
Assuntos
Poliomielite , Poliovirus , Recém-Nascido , Humanos , Lactente , Pré-Escolar , Bangladesh , Anticorpos Antivirais , Vacina Antipólio Oral , Poliomielite/prevenção & controle , Anticorpos Neutralizantes , Método Duplo-CegoRESUMO
Patients with Primary immunodeficiency (PIDs) may be infected by Polioviruses (PVs), especially when vaccinated with live Oral Polio Vaccine before diagnosis. They may establish long-term shedding of divergent strains and may act as reservoirs of PV transmission. This study delved into the effect of the genetic evolution of complete PV genomes, from MHC class II-deficient patients, on the excretion duration and clinical outcomes. Stool samples from three PID patients underwent analysis for PV detection through inoculation on cell culture and real-time PCR, followed by VP1 partial sequencing and full genome sequencing using the Illumina technology. Our findings revealed a low number of mutations for one patient who cleared the virus, while two exhibited a high intra-host diversity favoring the establishment of severe outcomes. Neurovirulence-reverse mutations were detected in two patients, possibly leading to paralysis development. Furthermore, a recombination event, between type 3 Vaccine-Derived Poliovirus and Sabin-like1 (VDPV3/SL1), occurred in one patient. Our findings have suggested an association between intra-host diversity, recombination, prolonged excretion of the virus, and emergence of highly pathogenic strains. Further studies on intra-host diversity are crucial for a better understanding of the virus evolution as well as for the success of the Global Polio Eradication Initiative.
Assuntos
Fezes , Mutação , Poliomielite , Vacina Antipólio Oral , Poliovirus , Recombinação Genética , Eliminação de Partículas Virais , Humanos , Poliovirus/genética , Poliovirus/classificação , Poliovirus/isolamento & purificação , Poliovirus/imunologia , Vacina Antipólio Oral/genética , Vacina Antipólio Oral/efeitos adversos , Poliomielite/virologia , Poliomielite/prevenção & controle , Fezes/virologia , Masculino , Feminino , Genoma Viral/genética , Variação Genética , Doenças da Imunodeficiência Primária/genética , Pré-Escolar , Evolução Molecular , Criança , Lactente , Virulência/genética , FilogeniaRESUMO
The reliable and timely detection of poliovirus cases through surveillance for acute flaccid paralysis (AFP), supplemented by environmental surveillance of sewage samples, is a critical component of the polio eradication program. Since 1988, the number of polio cases caused by wild poliovirus (WPV) has declined by >99.9%, and eradication of WPV serotypes 2 and 3 has been certified; only serotype 1 (WPV1) continues to circulate, and transmission remains endemic in Afghanistan and Pakistan. This surveillance update evaluated indicators from AFP surveillance, environmental surveillance for polioviruses, and Global Polio Laboratory Network performance data provided by 28 priority countries for the program during 2022-2023. No WPV1 cases have been detected outside of Afghanistan and Pakistan since August 2022, when an importation into Malawi and Mozambique resulted in an outbreak during 2021-2022. During 2022-2023, among 28 priority countries, 20 (71.4%) met national AFP surveillance indicator targets, and the number of environmental surveillance sites increased. However, low national rates of reported AFP cases in priority countries in 2023 might have resulted from surveillance reporting lags; substantial national and subnational AFP surveillance gaps persist. Maintaining high-quality surveillance is critical to achieving the goal of global polio eradication. Monitoring surveillance indicators is important to identifying gaps and guiding surveillance-strengthening activities, particularly in countries at high risk for poliovirus circulation.
Assuntos
Enterovirus , Poliomielite , Poliovirus , Humanos , alfa-Fetoproteínas , Saúde Global , Vigilância da População/métodos , Erradicação de Doenças , Poliomielite/epidemiologia , Poliomielite/prevenção & controle , Poliomielite/diagnóstico , Programas de ImunizaçãoRESUMO
Since the launch of the Global Polio Eradication Initiative in 1988, substantial progress has been made in the interruption of wild poliovirus (WPV) transmission worldwide: global eradication of WPV types 2 and 3 were certified in 2015 and 2019, respectively, and endemic transmission of WPV type 1 continues only in Afghanistan and Pakistan. After the synchronized global withdrawal of all serotype 2 oral poliovirus vaccines (OPVs) in 2016, widespread outbreaks of circulating vaccine-derived poliovirus type 2 (cVDPV2) have occurred, which are linked to areas with low population immunity to poliovirus. Officials in Somalia have detected ongoing cVDPV2 transmission since 2017. Polio vaccination coverage and surveillance data for Somalia were reviewed to assess this persistent transmission. During January 2017-March 2024, officials in Somalia detected 39 cVDPV2 cases in 14 of 20 regions, and transmission has spread to neighboring Ethiopia and Kenya. Since January 2021, 28 supplementary immunization activities (SIAs) targeting cVDPV2 were conducted in Somalia. Some parts of the country are security-compromised and inaccessible for vaccination campaigns. Among 1,921 children with nonpolio acute flaccid paralysis, 231 (12%) had not received OPV doses through routine immunization or SIAs, 95% of whom were from the South-Central region, and 60% of whom lived in inaccessible districts. Enhancing humanitarian negotiation measures in Somalia to enable vaccination of children in security-compromised areas and strengthening campaign quality in accessible areas will help interrupt cVDPV2 transmission.
Assuntos
Surtos de Doenças , Poliomielite , Vacina Antipólio Oral , Poliovirus , Humanos , Poliomielite/epidemiologia , Poliomielite/prevenção & controle , Poliomielite/transmissão , Somália/epidemiologia , Poliovirus/isolamento & purificação , Vacina Antipólio Oral/administração & dosagem , Vacina Antipólio Oral/efeitos adversos , Pré-Escolar , Lactente , Vigilância da População , Programas de Imunização , Cobertura Vacinal/estatística & dados numéricos , CriançaRESUMO
Since its launch in 1988, the Global Polio Eradication Initiative has made substantial progress toward the eradication of wild poliovirus (WPV), including eradicating two of the three serotypes, and reducing the countries with ongoing endemic transmission of WPV type 1 (WPV1) to just Afghanistan and Pakistan. Both countries are considered a single epidemiologic block. Despite the occurrence of only a single confirmed WPV1 case during the first half of 2023, Pakistan experienced widespread circulation of WPV1 over the subsequent 12 months, specifically in the historical reservoirs of the cities of Karachi, Peshawar, and Quetta. As of June 30, 2024, eight WPV1 cases had been reported in Pakistan in 2024, compared with six reported during all of 2023. These cases, along with more than 300 WPV1-positive environmental surveillance (sewage) samples reported during 2023-2024, indicate that Pakistan is not on track to interrupt WPV1 transmission. The country's complex sociopolitical and security environment continues to pose formidable challenges to poliovirus elimination. To interrupt WPV1 transmission, sustained political commitment to polio eradication, including increased accountability at all levels, would be vital for the polio program. Efforts to systematically track and vaccinate children who are continually missed during polio vaccination activities should be enhanced by better addressing operational issues and the underlying reasons for community resistance to vaccination and vaccine hesitancy.
Assuntos
Erradicação de Doenças , Programas de Imunização , Poliomielite , Poliovirus , Poliomielite/prevenção & controle , Poliomielite/epidemiologia , Paquistão/epidemiologia , Humanos , Pré-Escolar , Lactente , Poliovirus/isolamento & purificação , Vigilância da População , Criança , Vacina Antipólio Oral/administração & dosagem , Vacinas contra Poliovirus/administração & dosagemRESUMO
Circulating vaccine-derived polioviruses (cVDPVs) can emerge and lead to outbreaks of paralytic polio as well as asymptomatic transmission in communities with a high percentage of undervaccinated children. Using data from the World Health Organization Polio Information System and Global Polio Laboratory Network, this report describes global polio outbreaks due to cVDPVs during January 2023-June 2024 and updates previous reports. During the reporting period, 74 cVDPV outbreaks were detected in 39 countries or areas (countries), predominantly in Africa. Among these 74 cVDPV outbreaks, 47 (64%) were new outbreaks, detected in 30 (77%) of the 39 countries. Three countries reported cVDPV type 1 (cVDPV1) outbreaks and 38 countries reported cVDPV type 2 (cVDPV2) outbreaks; two of these countries reported cocirculating cVDPV1 and cVDPV2. In the 38 countries with cVDPV2 transmission, 70 distinct outbreaks were reported. In 15 countries, cVDPV transmission has lasted >1 year into 2024. In Nigeria and Somalia, both countries with security-compromised areas, persistent cVDPV2 transmission has spread to neighboring countries. Delayed implementation of outbreak response campaigns and low-quality campaigns have resulted in further international spread. Countries can control cVDPV outbreaks with timely allocation of resources to implement prompt, high-quality responses after outbreak confirmation. Stopping all cVDPV transmission requires effectively increasing population immunity by overcoming barriers to reaching children.
Assuntos
Surtos de Doenças , Saúde Global , Poliomielite , Poliovirus , Humanos , Poliomielite/epidemiologia , Poliomielite/prevenção & controle , Saúde Global/estatística & dados numéricos , Poliovirus/isolamento & purificação , Vacinas contra Poliovirus/administração & dosagem , Vacina Antipólio Oral/administração & dosagem , Vacina Antipólio Oral/efeitos adversosRESUMO
In 1988, poliomyelitis (polio) was targeted for eradication. Global efforts have led to the eradication of two of the three wild poliovirus (WPV) serotypes (types 2 and 3), with only WPV type 1 (WPV1) remaining endemic, and only in Afghanistan and Pakistan. This report describes global polio immunization, surveillance activities, and poliovirus epidemiology during January 2022-December 2023, using data current as of April 10, 2024. In 2023, Afghanistan and Pakistan identified 12 total WPV1 polio cases, compared with 22 in 2022. WPV1 transmission was detected through systematic testing for poliovirus in sewage samples (environmental surveillance) in 13 provinces in Afghanistan and Pakistan, compared with seven provinces in 2022. The number of polio cases caused by circulating vaccine-derived polioviruses (cVDPVs; circulating vaccine virus strains that have reverted to neurovirulence) decreased from 881 in 2022 to 524 in 2023; cVDPV outbreaks (defined as either a cVDPV case with evidence of circulation or at least two positive environmental surveillance isolates) occurred in 32 countries in 2023, including eight that did not experience a cVDPV outbreak in 2022. Despite reductions in paralytic polio cases from 2022, cVDPV cases and WPV1 cases (in countries with endemic transmission) were more geographically widespread in 2023. Renewed efforts to vaccinate persistently missed children in countries and territories where WPV1 transmission is endemic, strengthen routine immunization programs in countries at high risk for poliovirus transmission, and provide more effective cVDPV outbreak responses are necessary to further progress toward global polio eradication.
Assuntos
Erradicação de Doenças , Saúde Global , Programas de Imunização , Poliomielite , Poliovirus , Vigilância da População , Poliomielite/epidemiologia , Poliomielite/prevenção & controle , Humanos , Saúde Global/estatística & dados numéricos , Poliovirus/isolamento & purificação , Surtos de Doenças/prevenção & controle , Vacinas contra Poliovirus/administração & dosagem , Pré-Escolar , Lactente , Vacina Antipólio Oral/administração & dosagemRESUMO
PURPOSE: Considering the re-emergence of poliomyelitis (PM) in non-endemic regions, it becomes apparent that vaccine preventable diseases can rapidly develop epi- or even pandemic potential. Evaluation of the current vaccination status is required to inform patients, health care providers and policy makers about vaccination gaps. METHODS: Between October 28 2022 and November 23 2022, 5,989 adults from the VACCELEREATE Volunteer Registry completed an electronic case report form on their previous PM vaccine doses including number, types/-valencies and the time of administration based on their vaccination records. A uni-/multivariable regression analysis was performed to assess associations in participant characteristics and immunization status. RESULTS: Among German volunteers (n = 5,449), complete PM immunization schedule was found in 1,981 (36%) participants. Uncertain immunization, due to unknown previous PM vaccination (n = 313, 6%), number of doses (n = 497, 9%), types/-valencies (n = 1,233, 23%) or incoherent immunization schedule (n = 149, 3%) was found in 40% (n = 2,192). Out of 1,276 (23%) participants who reported an incomplete immunization schedule, 62 (1%) never received any PM vaccine. A total of 5,074 (93%) volunteers reported having been vaccinated at least once and 2,087 (38%) indicated that they received vaccination within the last ten years. Female sex, younger age, as well as availability of first vaccination record were characteristics significantly associated with complete immunization (p < 0.001). CONCLUSION: Full PM immunization schedule was low and status frequently classified as uncertain due to lack of details on administered doses. There is an obviousneed for improved recording to enable long-term access to detailed vaccination history in the absence of a centralized immunization register.
Assuntos
Poliomielite , Vacinação , Humanos , Alemanha , Feminino , Masculino , Adulto , Poliomielite/prevenção & controle , Pessoa de Meia-Idade , Vacinação/estatística & dados numéricos , Adulto Jovem , Vacinas contra Poliovirus/administração & dosagem , Esquemas de Imunização , Adolescente , Inquéritos e Questionários , Idoso , Cobertura Vacinal/estatística & dados numéricosRESUMO
The pentavalent and poliomyelitis vaccines are provided to children through the National Immunization Program in Brazil. For the last few years, this program has been responsible for eradication of various diseases in the country. To describe the vaccination coverage of the pentavalent vaccine and the polio vaccine in Brazil from 2013 to 2022. This is a retrospective and descriptive study with a time series component in which we analyzed vaccination coverage rates of pentavalent and poliomyelitis in the national vaccination program of Brazil from 2013 to 2022. The collected data were arranged in spreadsheets, analyzed, and presented graphically. In general, the coverage of the poliomyelitis and pentavalent vaccines has declined in all regions of Brazil, with significant differences each year. Although there has been a decrease in vaccination coverage in all regions and states, the most affected regions are the North and Northeast. There has been a significant decrease in polio and pentavalent vaccine coverage in recent years, and the rate of decrease differs in different parts of the country.