Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.089
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Neurophysiol ; 126(5): 1660-1669, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34644166

RESUMO

Studies of in vivo neuronal responses to auditory inputs in the superior olive complex (SOC) are usually done under anesthesia. However, little attention has been paid to the effect of anesthesia itself on response properties. Here, we assessed the effect of anesthesia depth under ketamine-xylazine anesthetics on auditory evoked response properties of lateral SOC neurons. Anesthesia depth was tracked by monitoring EEG spectral peak frequencies. An increase in anesthesia depth led to a decrease of spontaneous discharge activities and an elevated response threshold. The temporal responses to suprathreshold tones were also affected, with adapted responses reduced but peak responses unaffected. Deepening the anesthesia depth also increased first spike latency. However, spike jitter was not affected. Auditory brainstem responses to clicks confirmed that ketamine-xylazine anesthesia depth affects auditory neuronal activities and the effect on spike rate and spike timing persists through the auditory pathway. We concluded from those observations that ketamine-xylazine affects lateral SOC response properties depending on the anesthesia depth.NEW & NOTEWORTHY We studied how the depth of ketamine-xylazine anesthesia altered response properties of lateral superior olive complex neurons, and auditory brainstem evoked responses. Our results provide direct evidence that anesthesia depth affects auditory neuronal responses and reinforce the notion that both the anesthetics and the anesthesia depth should be considered when interpreting/comparing in vivo neuronal recordings.


Assuntos
Anestesia , Anestésicos Gerais/farmacologia , Percepção Auditiva/efeitos dos fármacos , Ketamina/farmacologia , Complexo Olivar Superior/efeitos dos fármacos , Xilazina/farmacologia , Animais , Eletroencefalografia/efeitos dos fármacos , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Feminino , Gerbillinae , Masculino
2.
Arch Toxicol ; 95(3): 1003-1021, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33495873

RESUMO

The peripheral auditory and vestibular systems rely on sensorineural structures that are vulnerable to ototoxic agents that cause hearing loss and/or equilibrium deficits. Although attention has focused on hair cell loss as the primary pathology underlying ototoxicity, evidence from the peripheral vestibular system indicates that hair cell loss during chronic exposure is preceded by synaptic uncoupling from the neurons and is potentially reversible. To determine if synaptic pathology also occurs in the peripheral auditory system, we examined the extent, time course, and reversibility of functional and morphological alterations in cochleae from mice exposed to 3,3'-iminodipropionitrile (IDPN) in drinking water for 2, 4 or 6 weeks. Functionally, IDPN exposure caused progressive high- to low-frequency hearing loss assessed by measurement of auditory brainstem response wave I absolute thresholds and amplitudes. The extent of hearing loss scaled with the magnitude of vestibular dysfunction assessed behaviorally. Morphologically, IDPN exposure caused progressive loss of outer hair cells (OHCs) and synapses between the inner hair cells (IHCs) and primary auditory neurons. In contrast, IHCs were spared from ototoxic damage. Importantly, hearing loss consistent with cochlear synaptopathy preceded loss of OHCs and synapses and, moreover, recovered if IDPN exposure was stopped before morphological pathology occurred. Our observations suggest that synaptic uncoupling, perhaps as an early phase of cochlear synaptopathy, also occurs in the peripheral auditory system in response to IDPN exposure. These findings identify novel mechanisms that contribute to the earliest stages of hearing loss in response to ototoxic agents and possibly other forms of acquired hearing loss.


Assuntos
Cóclea/efeitos dos fármacos , Perda Auditiva/induzido quimicamente , Nitrilas/toxicidade , Ototoxicidade/etiologia , Animais , Cóclea/patologia , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Células Ciliadas Auditivas Internas/efeitos dos fármacos , Células Ciliadas Auditivas Internas/patologia , Células Ciliadas Auditivas Externas/efeitos dos fármacos , Células Ciliadas Auditivas Externas/patologia , Perda Auditiva/fisiopatologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Nitrilas/administração & dosagem , Ototoxicidade/fisiopatologia , Sinapses/efeitos dos fármacos , Sinapses/patologia , Fatores de Tempo
3.
Mar Drugs ; 19(8)2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34436282

RESUMO

One of the well-known causes of hearing loss is noise. Approximately 31.1% of Americans between the ages of 20 and 69 years (61.1 million people) have high-frequency hearing loss associated with noise exposure. In addition, recurrent noise exposure can accelerate age-related hearing loss. Phlorofucofuroeckol A (PFF-A) and dieckol, polyphenols extracted from the brown alga Ecklonia cava, are potent antioxidant agents. In this study, we investigated the effect of PFF-A and dieckol on the consequences of noise exposure in mice. In 1,1-diphenyl-2-picrylhydrazyl assay, dieckol and PFF-A both showed significant radical-scavenging activity. The mice were exposed to 115 dB SPL of noise one single time for 2 h. Auditory brainstem response(ABR) threshold shifts 4 h after 4 kHz noise exposure in mice that received dieckol were significantly lower than those in the saline with noise group. The high-PFF-A group showed a lower threshold shift at click and 16 kHz 1 day after noise exposure than the control group. The high-PFF-A group also showed higher hair cell survival than in the control at 3 days after exposure in the apical turn. These results suggest that noise-induced hair cell damage in cochlear and the ABR threshold shift can be alleviated by dieckol and PFF-A in the mouse. Derivatives of these compounds may be applied to individuals who are inevitably exposed to noise, contributing to the prevention of noise-induced hearing loss with a low probability of adverse effects.


Assuntos
Antioxidantes/uso terapêutico , Benzofuranos/uso terapêutico , Dioxinas/uso terapêutico , Perda Auditiva Provocada por Ruído/tratamento farmacológico , Kelp , Extratos Vegetais/uso terapêutico , Animais , Antioxidantes/farmacologia , Organismos Aquáticos , Benzofuranos/farmacologia , Cóclea/efeitos dos fármacos , Dioxinas/farmacologia , Modelos Animais de Doenças , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Células Ciliadas Auditivas/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fitoterapia , Extratos Vegetais/farmacologia
4.
Int J Mol Sci ; 22(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34360766

RESUMO

Age-related hearing loss (ARHL) is the most common sensory disorder among older people, and yet, the treatment options are limited to medical devices such as hearing aids and cochlear implants. The high prevalence of ARHL mandates the development of treatment strategies that can prevent or rescue age-related cochlear degeneration. In this study, we investigated a novel pharmacological strategy based on inhibition of the adenosine A2A receptor (A2AR) in middle aged C57BL/6 mice prone to early onset ARHL. C57BL/6J mice were treated with weekly istradefylline (A2AR antagonist; 1 mg/kg) injections from 6 to 12 months of age. Auditory function was assessed using auditory brainstem responses (ABR) to tone pips (4-32 kHz). ABR thresholds and suprathreshold responses (wave I amplitudes and latencies) were evaluated at 6, 9, and 12 months of age. Functional outcomes were correlated with quantitative histological assessments of sensory hair cells. Cognitive function was assessed using the Morris water maze and the novel object recognition test, and the zero maze test was used to assess anxiety-like behaviour. Weekly injections of istradefylline attenuated ABR threshold shifts by approximately 20 dB at mid to high frequencies (16-32 kHz) but did not improve ABR suprathreshold responses. Istradefylline treatment improved hair cell survival in a turn-dependent manner, whilst the cognitive function was unaffected by istradefylline treatment. This study presents the first evidence for the rescue potential of istradefylline in ARHL and highlights the role of A2AR in development of age-related cochlear degeneration.


Assuntos
Envelhecimento , Limiar Auditivo/efeitos dos fármacos , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Presbiacusia , Purinas/farmacologia , Animais , Masculino , Camundongos , Presbiacusia/tratamento farmacológico , Presbiacusia/patologia , Presbiacusia/fisiopatologia
5.
Int J Mol Sci ; 22(18)2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34576224

RESUMO

Delivery of substances into the inner ear via local routes is increasingly being used in clinical treatment. Studies have focused on methods to increase permeability through the round window membrane (RWM) and enhance drug diffusion into the inner ear. However, the clinical applications of those methods have been unclear and few studies have investigated the efficacy of methods in an inner ear injury model. Here, we employed the medium chain fatty acid caprate, a biologically safe, clinically applicable substance, to modulate tight junctions of the RWM. Intratympanic treatment of sodium caprate (SC) induced transient, but wider, gaps in intercellular spaces of the RWM epithelial layer and enhanced the perilymph and cochlear concentrations/uptake of dexamethasone. Importantly, dexamethasone co-administered with SC led to significantly more rapid recovery from noise-induced hearing loss at 4 and 8 kHz, compared with the dexamethasone-only group. Taken together, our data indicate that junctional modulation of the RWM by SC enhances dexamethasone uptake into the inner ear, thereby hastening the recovery of hearing sensitivity after noise trauma.


Assuntos
Dexametasona/farmacocinética , Orelha Interna/efeitos dos fármacos , Perda Auditiva Provocada por Ruído/tratamento farmacológico , Janela da Cóclea/efeitos dos fármacos , Animais , Cóclea/efeitos dos fármacos , Ácidos Decanoicos/farmacologia , Dexametasona/administração & dosagem , Difusão , Sistemas de Liberação de Medicamentos/métodos , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Ácidos Graxos/química , Audição , Masculino , Microscopia Eletrônica de Transmissão , Perilinfa/efeitos dos fármacos , Permeabilidade , Ratos
6.
Int J Mol Sci ; 22(6)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799684

RESUMO

Age-related hearing loss (ARHL), a sensorineural hearing loss of multifactorial origin, increases its prevalence in aging societies. Besides hearing aids and cochlear implants, there is no FDA approved efficient pharmacotherapy to either cure or prevent ARHL. We hypothesized that selegiline, an antiparkinsonian drug, could be a promising candidate for the treatment due to its complex neuroprotective, antioxidant, antiapoptotic, and dopaminergic neurotransmission enhancing effects. We monitored by repeated Auditory Brainstem Response (ABR) measurements the effect of chronic per os selegiline administration on the hearing function in BALB/c and DBA/2J mice, which strains exhibit moderate and rapid progressive high frequency hearing loss, respectively. The treatments were started at 1 month of age and lasted until almost a year and 5 months of age, respectively. In BALB/c mice, 4 mg/kg selegiline significantly mitigated the progression of ARHL at higher frequencies. Used in a wide dose range (0.15-45 mg/kg), selegiline had no effect in DBA/2J mice. Our results suggest that selegiline can partially preserve the hearing in certain forms of ARHL by alleviating its development. It might also be otoprotective in other mammals or humans.


Assuntos
Envelhecimento/fisiologia , Modelos Animais de Doenças , Perda Auditiva Neurossensorial/tratamento farmacológico , Selegilina/farmacologia , Administração Oral , Animais , Antiparkinsonianos/administração & dosagem , Antiparkinsonianos/farmacologia , Limiar Auditivo/efeitos dos fármacos , Limiar Auditivo/fisiologia , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Perda Auditiva Neurossensorial/fisiopatologia , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos DBA , Substâncias Protetoras/administração & dosagem , Substâncias Protetoras/farmacologia , Selegilina/administração & dosagem , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
7.
Int J Mol Sci ; 22(10)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34070066

RESUMO

Megalin has been proposed as an endocytic receptor for aminoglycosides as well as estrogen and androgen. We aimed to investigate the otoprotective effects of antiandrogens (flutamide, FM) on kanamycin (KM)-induced hearing loss in rats. Rats were divided into four groups. The KM group was administered KM (20 mg/kg/day) for 5 days, while the FM group received FM (15 mg/kg/day) for 10 days. In the KM + FM group, KM and FM (15 mg/kg/day) were simultaneously injected for 5 days and then FM was injected for 5 days. Auditory brainstem responses were measured. Western blotting and/or quantitative reverse transcriptase-polymerase chain reaction were performed for megalin, cytochrome P450 1A1 (Cyp1a1), Cyp1b1, metallothionein 1A (MT1A), MT2A, tumor necrosis factor (TNF)-α, caspase 3, and cleaved caspase 3. The FM + KM group showed attenuated auditory thresholds when compared with the KM group at 4, 8, 16, and 32 kHz (all p < 0.05). The KM + FM group showed lower megalin and Cyp1b1 levels than the KM group (all p < 0.05). The KM + FM group revealed lower MT1A, TNFα, and caspase 3 protein levels, compared with those in the KM group (all p < 0.05). Androgen receptor inhibition protects against cochlear injuries in KM-induced hearing loss rats by attenuating megalin expression, revealing anti-inflammatory and anti-apoptotic effects.


Assuntos
Antagonistas de Receptores de Andrógenos/farmacologia , Perda Auditiva Neurossensorial/prevenção & controle , Animais , Antibacterianos/toxicidade , Limiar Auditivo/efeitos dos fármacos , Cóclea/efeitos dos fármacos , Cóclea/patologia , Cóclea/fisiopatologia , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1B1/genética , Citocromo P-450 CYP1B1/metabolismo , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Flutamida/farmacologia , Expressão Gênica/efeitos dos fármacos , Perda Auditiva Neurossensorial/induzido quimicamente , Perda Auditiva Neurossensorial/fisiopatologia , Canamicina/toxicidade , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Masculino , Metalotioneína/genética , Metalotioneína/metabolismo , Substâncias Protetoras/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/metabolismo
8.
Int J Mol Sci ; 22(23)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34884516

RESUMO

Telmisartan (TM) has been proposed to relieve inflammatory responses by modulating peroxisome proliferator activator receptor-γ (PPARγ) signaling. This study aimed to investigate the protective effects of TM on kanamycin(KM)-induced ototoxicity in rats. Forty-eight, 8-week-old female Sprague Dawley rats were divided into four groups: (1) control group, (2) TM group, (3) KM group, and (4) TM + KM group. Auditory brainstem response was measured. The histology of the cochlea was examined. The protein expression levels of angiotensin-converting enzyme 2 (ACE2), HO1, and PPARγ were measured by Western blotting. The auditory threshold shifts at 4, 8, 16, and 32 kHz were lower in the TM + KM group than in the KM group (all p < 0.05). The loss of cochlear outer hair cells and spiral ganglial cells was lower in the TM + KM group than in the KM group. The protein expression levels of ACE2, PPARγ, and HO1 were higher in the KM group than in the control group (all p < 0.05). The TM + KM group showed lower expression levels of PPARγ and HO1 than the KM group.TM protected the cochlea from KM-induced injuries in rats. TM preserved hearing levels and attenuated the increase in PPARγ and HO1 expression levels in KM-exposed rat cochleae.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Heme Oxigenase (Desciclizante)/metabolismo , Canamicina/toxicidade , Ototoxicidade/tratamento farmacológico , PPAR gama/metabolismo , Telmisartan/farmacologia , Enzima de Conversão de Angiotensina 2/genética , Animais , Antibacterianos/toxicidade , Anti-Hipertensivos/farmacologia , Limiar Auditivo/efeitos dos fármacos , Cóclea/efeitos dos fármacos , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Feminino , Heme Oxigenase (Desciclizante)/genética , Ototoxicidade/etiologia , Ototoxicidade/metabolismo , Ototoxicidade/patologia , PPAR gama/genética , Ratos , Ratos Sprague-Dawley
9.
Learn Mem ; 27(8): 328-339, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32669388

RESUMO

Despite identical learning experiences, individuals differ in the memory formed of those experiences. Molecular mechanisms that control the neurophysiological bases of long-term memory formation might control how precisely the memory formed reflects the actually perceived experience. Memory formed with sensory specificity determines its utility for selectively cueing subsequent behavior, even in novel situations. Here, a rodent model of auditory learning capitalized on individual differences in learning-induced auditory neuroplasticity to identify and characterize neural substrates for sound-specific (vs. general) memory of the training signal's acoustic frequency. Animals that behaviorally revealed a naturally induced signal-"specific" memory exhibited long-lasting signal-specific neurophysiological plasticity in auditory cortical and subcortical evoked responses. Animals with "general" memories did not exhibit learning-induced changes in these same measures. Manipulating a histone deacetylase during memory consolidation biased animals to have more signal-specific memory. Individual differences validated this brain-behavior relationship in both natural and manipulated memory formation, such that the degree of change in sensory cortical and subcortical neurophysiological responses could be used to predict the behavioral precision of memory.


Assuntos
Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Tronco Encefálico/fisiologia , Potenciais Evocados Auditivos/fisiologia , Aprendizagem/fisiologia , Plasticidade Neuronal/fisiologia , Acrilamidas/farmacologia , Animais , Percepção Auditiva/efeitos dos fármacos , Comportamento Animal/fisiologia , Tronco Encefálico/efeitos dos fármacos , Potenciais Evocados Auditivos/efeitos dos fármacos , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Individualidade , Aprendizagem/efeitos dos fármacos , Masculino , Consolidação da Memória/efeitos dos fármacos , Consolidação da Memória/fisiologia , Rememoração Mental/efeitos dos fármacos , Rememoração Mental/fisiologia , Fenilenodiaminas/farmacologia , Ratos , Ratos Sprague-Dawley , Recompensa
10.
Pak J Pharm Sci ; 34(3): 843-854, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34602405

RESUMO

The aim of research is to unveil the mechanisms of the beneficial effects of XYD on PCIV in a rabbit model. 40 New Zealand white rabbits were randomly divided into 5 groups,including normal control group (NC), model control group (MC), low-dose of XYD group (LXYD), high-dose of XYD group (HXYD) and Yang-Xue-Qin-Nao group (YXQN). PCIV rabbit model was established by feeding high-fat diet companied with paravertebral sclerotherapy and rotation exercise. The general observation, step-down test, rheoencephalogram, blood tests, histopathological detection and the plasma concentration of the effective component of XYD were investigated. After pharmacological intervening, the step-down time, REG, PL, IPL, blood viscosity, the levels of blood lipids, CRGP were significantly improved. Moreover, the vertebral artery showed the reduced stenosis of arterial lumen and less proliferation of fibrous tissue in the arterial wall in the LXYD, HXYD and YXQN group. Based on the LC-MS detection, the blood concentrations of puerarin in the LXYD and HXYD group were significantly increased after pharmacological intervening. XYD could ameliorate the symptoms of vertigo, Qi-deficiency and blood stasis in PCIV rabbits via effectively regulating the levels of blood lipids and vasoactive substances, decreasing blood viscosity, increasing CBF and protecting vestibular function.


Assuntos
Comportamento Animal/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Artéria Vertebral/efeitos dos fármacos , Insuficiência Vertebrobasilar/fisiopatologia , Vertigem/fisiopatologia , Núcleos Vestibulares/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Hemorreologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Medicina Tradicional Chinesa , Coelhos , Artéria Vertebral/patologia , Artéria Vertebral/ultraestrutura , Núcleos Vestibulares/patologia , Núcleos Vestibulares/ultraestrutura
11.
J Neurosci ; 39(24): 4797-4813, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-30936239

RESUMO

Fragile X syndrome (FXS) is characterized by hypersensitivity to sensory stimuli, including environmental sounds. We compared the auditory brainstem response (ABR) recorded in vivo in mice lacking the gene (Fmr1-/y ) for fragile X mental retardation protein (FMRP) with that in wild-type animals. We found that ABR wave I, which represents input from the auditory nerve, is reduced in Fmr1-/y animals, but only at high sound levels. In contrast, wave IV, which represents the activity of auditory brainstem nuclei is enhanced at all sound levels, suggesting that loss of FMRP alters the central processing of auditory signals. Current-clamp recordings of neurons in the medial nucleus of the trapezoid body in the auditory brainstem revealed that, in contrast to neurons from wild-type animals, sustained depolarization triggers repetitive firing rather than a single action potential. In voltage-clamp recordings, K+ currents that activate at positive potentials ("high-threshold" K+ currents), which are required for high-frequency firing and are carried primarily by Kv3.1 channels, are elevated in Fmr1-/y mice, while K+ currents that activate near the resting potential and inhibit repetitive firing are reduced. We therefore tested the effects of AUT2 [((4-({5-[(4R)-4-ethyl-2,5-dioxo-1-imidazolidinyl]-2-pyridinyl}oxy)-2-(1-methylethyl) benzonitrile], a compound that modulates Kv3.1 channels. AUT2 reduced the high-threshold K+ current and increased the low-threshold K+ currents in neurons from Fmr1-/y animals by shifting the activation of the high-threshold current to more negative potentials. This reduced the firing rate and, in vivo, restored wave IV of the ABR. Our results from animals of both sexes suggest that the modulation of the Kv3.1 channel may have potential for the treatment of sensory hypersensitivity in patients with FXS.SIGNIFICANCE STATEMENT mRNA encoding the Kv3.1 potassium channel was one of the first described targets of the fragile X mental retardation protein (FMRP). Fragile X syndrome is caused by loss of FMRP and, in humans and mice, causes hypersensitivity to auditory stimuli. We found that components of the auditory brain response (ABR) corresponding to auditory brainstem activity are enhanced in mice lacking FMRP. This is accompanied by hyperexcitability and altered potassium currents in auditory brainstem neurons. Treatment with a drug that alters the voltage dependence of Kv3.1 channels normalizes the imbalance of potassium currents, as well as ABR responses in vivo, suggesting that such compounds may be effective in treating some symptoms of fragile X syndrome.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/metabolismo , Canais de Potássio Shaw/metabolismo , Animais , Vias Auditivas , Percepção Auditiva , Tronco Encefálico/efeitos dos fármacos , Núcleo Coclear/fisiologia , Fenômenos Eletrofisiológicos , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Potenciais Evocados Auditivos do Tronco Encefálico/genética , Feminino , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Síndrome do Cromossomo X Frágil/genética , Hidantoínas/farmacologia , Técnicas In Vitro , Masculino , Camundongos , Camundongos Knockout , Técnicas de Patch-Clamp , Piridinas/farmacologia
12.
J Neurosci ; 39(15): 2951-2964, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30733218

RESUMO

Ototoxic side effects of cisplatin and aminoglycosides have been extensively studied, but no therapy is available to date. Sensory hair cells, upon exposure to cisplatin or aminoglycosides, undergo apoptotic and necrotic cell death. Blocking these cell death pathways has therapeutic potential in theory, but incomplete protection and lack of therapeutic targets in the case of necrosis, has hampered the development of clinically applicable drugs. Over the past decade, a novel form of necrosis, termed necroptosis, was established as an alternative cell death pathway. Necroptosis is distinguished from passive necrotic cell death, in that it follows a cellular program, involving the receptor-interacting protein kinase (RIPK) 1 and RIPK3. In this study, we used pharmacological and genetic interventions in the mouse to test the relative contributions of necroptosis and caspase-8-mediated apoptosis toward cisplatin and aminoglycoside ototoxicity. We find that ex vivo, only apoptosis contributes to cisplatin and aminoglycoside ototoxicity, while in vivo, necroptosis as well as apoptosis are involved in both sexes. Inhibition of necroptosis and apoptosis using pharmacological compounds is thus a viable strategy to ameliorate aminoglycoside and cisplatin ototoxicity.SIGNIFICANCE STATEMENT The clinical application of cisplatin and aminoglycosides is limited due to ototoxic side effects. Here, using pharmaceutical and genetic intervention, we present evidence that two types of programmed cell death, apoptosis and necroptosis, contribute to aminoglycoside and cisplatin ototoxicity. Key molecular factors mediating necroptosis are well characterized and druggable, presenting new avenues for pharmaceutical intervention.


Assuntos
Aminoglicosídeos/toxicidade , Antibacterianos/toxicidade , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Cisplatino/toxicidade , Necroptose/efeitos dos fármacos , Ototoxicidade/prevenção & controle , Animais , Caspase 8/metabolismo , Morte Celular/efeitos dos fármacos , Orelha Interna/citologia , Orelha Interna/efeitos dos fármacos , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Feminino , Células Ciliadas Auditivas/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores
13.
Synapse ; 74(1): e22128, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31403743

RESUMO

The auditory system has an extensive efferent innervation, which contributes to processes of control and regulation of the afferent input. The expression of receptors to various neurotransmitters and neuropeptides in the inner ear has been described, among which endogenous opioid receptors are found. The role of opioid receptors in the cochlea is not yet fully defined, it has been reported that opioid agonists and antagonists modulate the response to auditory stimuli and in clinical practice, multiple cases have been reported in which the consumption of opioid derivatives induce sensorineural hearing loss. In this work, we evaluated the effects of acute treatment with morphine, fentanyl, tramadol, and naloxone, in the auditory brain stem potentials (ABR), the compound action potential (CAP), and distortion products otacoustic emissions (DPOAE), across a wide range of stimulus frequencies and amplitudes. Adult Long-Evans rats of the strain CII/ZV weighing 180-220 g were used. For the ABR recording drugs were administered intraperitoneally or intravenously. For the CAP and DPOAE drugs were applied by direct perfusion in the middle ear. The opioid agonists produced a consistent increase in the amplitude of the PI component of the ABR and of the N1-P1 amplitude of the CAP. Naloxone produced no significant changes in the ABR and a reduction of the CAP N1-P1 amplitude. Also, opioid agonists induced a decrease in the amplitude of the DPOAE. These results show that the opioid receptor activation modulates both the afferent response at both the afferent response to acoustic stimuli, and also at the cochlear mechanics as revealed by DPOAE changes. These results present a significant step in understanding how opioid modulation of auditory responses may contribute to the auditory processing and to sensorineural hearing loss produced by opioids.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Analgésicos Opioides/farmacologia , Cóclea/efeitos dos fármacos , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Antagonistas de Entorpecentes/farmacologia , Emissões Otoacústicas Espontâneas/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Cóclea/fisiologia , Fentanila/farmacologia , Morfina/farmacologia , Naloxona/farmacologia , Emissões Otoacústicas Espontâneas/fisiologia , Ratos , Ratos Long-Evans , Tramadol/farmacologia
14.
Mol Biol Rep ; 47(6): 4723-4736, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32323262

RESUMO

Sensorineural hearing loss (SNHL) is the most common form of hearing loss that is routinely treated with hearing aids or cochlear implants. Advances in regenerative medicine have now led to animal studies examining the possibility of restoring injured hair cells with mesenchymal stem/stromal cell (MSC) administration. We conducted a systematic review and meta-analysis to collate the existing preclinical literature evaluating MSCs as a treatment for SNHL and quantify the effect of MSCs on functional hearing. Our protocol was published online on CAMARADES. Searches were conducted in four medical databases by two independent investigators. Twelve studies met inclusion and were evaluated for risk of bias using SYRCLE. Rodent models were commonly used (n = 8, 66%), while auditory brainstem response (ABR) and distortion product otoacoustic emissions (DPOAE) were the most frequent measures assessing hearing loss. MSCs were derived from multiple tissue sources, including bone marrow, adipose tissue, and umbilical cord blood and the dose ranged from 4 × 103 to 1 × 107 cells. Treatment with MSCs resulted in an improvement in ABR and DPOAE (mean difference-15.22, + 9.10, respectively). Despite high heterogeneity and multiple "unclear" domains in the risk of bias, this review provides evidence that MSCs may have a beneficial effect in hearing function.


Assuntos
Perda Auditiva Neurossensorial/terapia , Transplante de Células-Tronco Mesenquimais/métodos , Animais , Modelos Animais de Doenças , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Perda Auditiva/fisiopatologia , Perda Auditiva/terapia , Perda Auditiva Neurossensorial/metabolismo , Perda Auditiva Neurossensorial/fisiopatologia , Transplante de Células-Tronco Mesenquimais/tendências , Células-Tronco Mesenquimais/metabolismo
15.
Audiol Neurootol ; 25(6): 291-296, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32403103

RESUMO

INTRODUCTION: The aim of this study was to assess the biocompatibility of several intra-tympanic (IT) drug delivery vehicles and to compare hearing outcomes. MATERIALS AND METHODS: After acute acoustic trauma, rats were treated with IT 10 mg/mL dexamethasone phosphate (D) and divided into the following groups for drug delivery: saline + D (n = 15), hyaluronic acid (HA) + D (n = 17), and methoxy polyethylene glycol-b-polycaprolactone block copolymer (MP) + D (n = 24). RESULTS: No inflammation was found in the saline + D or HA + D groups. The duration of vehicle/drug persistence in the bulla was significantly longer for the MP + D (47.5 days) and HA + D groups (1.8 days) than for the saline + D group (<1 day). The tympanic membrane was significantly thicker in the MP + D group than in the saline + D and HA + D groups. The proportion of ears with good hearing outcome was significantly higher (63.6%) in the HA + D group than in the MP + D group. The number of hair cells in the hearing loss (HL) control group was significantly lower than in the MP + D group. DISCUSSION/CONCLUSION: HA shows great potential as a biocompatible vehicle for D delivery via the IT route, without an inflammatory reaction and with better hearing outcomes. Considering inflammation and hearing, MP may not be a good candidate for IT drug delivery.


Assuntos
Dexametasona/administração & dosagem , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Glucocorticoides/administração & dosagem , Perda Auditiva Provocada por Ruído/tratamento farmacológico , Audição/efeitos dos fármacos , Membrana Timpânica/efeitos dos fármacos , Animais , Dexametasona/uso terapêutico , Glucocorticoides/uso terapêutico , Injeção Intratimpânica , Masculino , Ratos , Ratos Sprague-Dawley , Resultado do Tratamento
16.
Am J Otolaryngol ; 41(1): 102328, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31732304

RESUMO

OBJECTIVE: This study aimed to investigate the healing effect of metformin on noise induced hearing loss (NIHL) by measuring audiological, biochemical and histological parameters. MATERIALS AND METHODS: 32 rats were divided into four groups (Group 1: Noise, Group 2: Noise + Metformin, Grup 3: Metformin, Grup 4: Control). Broadband noise was applied to Group 1 and Group 2 after basal measurements. Measuring audiological (distortion product otoacoustic emission (DPOAE) and Auditory Brainstem Response (ABR)), biochemical (total antioxidant status (TAS), total oxidant status (TOS), oxidative status index (OSI), DNA damage, IL-1 beta, IL-6, TNF alfa, HSF-1 and COX-2) and histological parameters. RESULTS: Group 2 had significant decreases in ABR thresholds on day 7 and day 14 compared to day 1. DPOAE values of Group 2 on the 7th and 14th days were significantly higher than the post-noise levels. DNA damage, TOS and OSI values of Group 1 were significantly higher than the other groups. The Cox-2 value of Group 1 was higher than all other groups. The HSF-1 value of Group 2 was significantly higher than that of Group 1. In terms of IL-1 Beta, IL-6 and TNF-alpha values, there was no significant difference between groups 2, 3 and 4 and these values were significantly lower than group 1. In histopathological results of our study, no significant difference was found between the groups being exposed to noise and the control group. CONCLUSION: This study showed that early period of Metformin treatment has therapeutic effect on NIHL.


Assuntos
Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Perda Auditiva Provocada por Ruído/tratamento farmacológico , Metformina/farmacologia , Emissões Otoacústicas Espontâneas/efeitos dos fármacos , Animais , Limiar Auditivo , Biomarcadores/metabolismo , Modelos Animais de Doenças , Feminino , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/metabolismo
17.
J Craniofac Surg ; 31(5): e506-e509, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32541270

RESUMO

Cisplatin, a pharmacological agent widely used for treating many cancers, may cause serious side effects including ototoxicity, nephrotoxicity, and peripheral neuropathy. The present study aimed to investigate whether platelet-rich plasma (PRP) protects against cisplatin ototoxicity. Eight rats (16 ears) were divided into 2 groups: control group (4 rats, 8 ears) that received intratympanic saline and study group (4 rats, 8 ears) that received intratympanic PRP. Cisplatin (10 mg/day intraperitoneally) or vehicle was administered 2 times per day to the animals. Auditory brainstem responses were recorded preoperatively and postoperatively on day 4 and at week 3. The authors compared the morphological appearances of spiral ganglion cells and the organ of Corti and the density of spiral ganglion cells between treatment groups. The number of outer hair cells in the organ of Corti significantly decreased in the control group compared with that in the PRP group. Although no statistically significant difference was observed between the groups regarding ABR thresholds on day 4 (P = 0.083, a statistically significant difference was observed between groups at week 3 (P = 0.038). Our results suggest that PRP can prevent cisplatin-induced ototoxicity.


Assuntos
Antineoplásicos/toxicidade , Cisplatino/toxicidade , Ototoxicidade/prevenção & controle , Plasma Rico em Plaquetas , Animais , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Feminino , Ototoxicidade/etiologia , Ratos
18.
Int J Mol Sci ; 21(18)2020 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-32933159

RESUMO

The administration of immune checkpoint inhibitors (ICIs) often leads to immune-related adverse events. However, their effect on auditory function is largely unexplored. Thorough preclinical studies have not been published yet, only sporadic cases and pharmacovigilance reports suggest their significance. Here we investigated the effect of anti-PD-1 antibody treatment (4 weeks, intraperitoneally, 200 µg/mouse, 3 times/week) on hearing function and cochlear morphology in C57BL/6J mice. ICI treatment did not influence the hearing thresholds in click or tone burst stimuli at 4-32 kHz frequencies measured by auditory brainstem response. The number and morphology of spiral ganglion neurons were unaltered in all cochlear turns. The apical-middle turns (<32 kHz) showed preservation of the inner and outer hair cells (OHCs), whilst ICI treatment mitigated the age-related loss of OHCs in the basal turn (>32 kHz). The number of Iba1-positive macrophages has also increased moderately in this high frequency region. We conclude that a 4-week long ICI treatment does not affect functional and morphological integrity of the inner ear in the most relevant hearing range (4-32 kHz; apical-middle turns), but a noticeable preservation of OHCs and an increase in macrophage activity appeared in the >32 kHz basal part of the cochlea.


Assuntos
Anticorpos Monoclonais/farmacologia , Limiar Auditivo/efeitos dos fármacos , Cóclea/efeitos dos fármacos , Células Ciliadas Auditivas Externas/efeitos dos fármacos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Animais , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Audição , Inibidores de Checkpoint Imunológico/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Gânglio Espiral da Cóclea/efeitos dos fármacos
19.
Int J Mol Sci ; 22(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374326

RESUMO

Previous preclinical studies have demonstrated the otoprotective effects of resveratrol (RV) at low doses. This study aimed to investigate the dose-dependent effects of RV in rats with cisplatin (CXP)-induced hearing loss. Sprague-Dawley rats (8-weeks old) were divided into six treatment groups (n = 12/group) and treated as follows: control, 0.5 mg/kg RV, 50 mg/kg RV, CXP, 0.5 mg/kg RV + CXP), and 50 mg/kg RV + CXP groups. CXP (3 mg/kg) was intraperitoneally injected for 5 days. RV (0.5 or 50 mg/kg) was intraperitoneally injected for 10 days from the first day of CXP administration. Auditory brainstem response (ABR) thresholds were measured before and within 3 days at the end of the drug administration. Cochlear tissues were harvested, and the outer hair cells were examined using cochlear whole mounts. The mRNA expression of NFκB, IL6, IL1ß, and CYP1A1, and protein levels of aryl hydrocarbon receptor (AhR) and cytosolic and nuclear receptor for advanced glycation endproducts (RAGE) were evaluated. The ABR threshold increased in the 50 mg/kg RV and CXP groups at 4, 8, 16, and 32 kHz. The 0.5 mg/kg RV + CXP group demonstrated decreased hearing thresholds at 4 and 32 kHz compared to the CXP group. Cochlear whole-mount analysis revealed loss of outer hair cells in the 50 mg/kg RV and CXP groups and partial prevention of these cells in the 0.5 mg/kg RV + CXP group. The mRNA expressions of NFκB, IL6, and IL1ß were increased in the 50 mg/kg RV and CXP groups compared to the control group. In contrast, these levels were decreased in the 0.5 mg/kg RV + CXP group compared to the CXP group. The mRNA expression of CYP1A1 was increased in the CXP group, while it was decreased in the 0.5 mg/kg RV + CXP group compared to the control group. The protein levels of AhR and cytosolic RAGE decreased in the 0.5 mg/kg RV group. Low-dose RV had partial otoprotective effects on CXP ototoxicity. The otoprotective effects of RV may be mediated through anti-oxidative (CYP1A1 and RAGE) and anti-inflammatory (NFκB, IL6, and IL1ß) responses. High-dose RV exerted an inflammatory response and did not ameliorate CXP-induced ototoxicity.


Assuntos
Cisplatino/efeitos adversos , Perda Auditiva Neurossensorial/tratamento farmacológico , Resveratrol/farmacologia , Animais , Antioxidantes/farmacologia , Cóclea/efeitos dos fármacos , Citocromo P-450 CYP1A1/biossíntese , Relação Dose-Resposta a Droga , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Feminino , Perda Auditiva Neurossensorial/induzido quimicamente , Inflamação , Interleucina-1beta/biossíntese , Interleucina-6/biossíntese , Subunidade p50 de NF-kappa B/biossíntese , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Hidrocarboneto Arílico/metabolismo
20.
Int J Mol Sci ; 22(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33374915

RESUMO

We and others have previously identified signalling pathways associated with the adenosine A1 receptor (A1R) as important regulators of cellular responses to injury in the cochlea. We have shown that the "post-exposure" treatment with adenosine A1R agonists confers partial protection against acoustic trauma and other forms of sensorineural hearing loss (SNHL). The aim of this study was to determine if increasing A1R responsiveness to endogenous adenosine would have the same otoprotective effect. This was achieved by pharmacological targeting of the Regulator of G protein Signalling 4 (RGS4). RGS proteins inhibit signal transduction pathways initiated by G protein-coupled receptors (GPCR) by enhancing GPCR deactivation and receptor desensitisation. A molecular complex between RGS4 and neurabin, an intracellular scaffolding protein expressed in neural and cochlear tissues, is the key negative regulator of A1R activity in the brain. In this study, Wistar rats (6-8 weeks) were exposed to traumatic noise (110 dBSPL, 8-16 kHz) for 2 h and a small molecule RGS4 inhibitor CCG-4986 was delivered intratympanically in a Poloxamer-407 gel formulation for sustained drug release 24 or 48 h after noise exposure. Intratympanic administration of CCG-4986 48 h after noise exposure attenuated noise-induced permanent auditory threshold shifts by up to 19 dB, whilst the earlier drug administration (24 h) led to even better preservation of auditory thresholds (up to 32 dB). Significant improvement of auditory thresholds and suprathreshold responses was linked to improved survival of sensorineural tissues and afferent synapses in the cochlea. Our studies thus demonstrate that intratympanic administration of CCG-4986 can rescue cochlear injury and hearing loss induced by acoustic overexposure. This research represents a novel paradigm for the treatment of various forms of SNHL based on regulation of GPCR.


Assuntos
Perda Auditiva Provocada por Ruído/prevenção & controle , Perda Auditiva Neurossensorial/prevenção & controle , Proteínas RGS/antagonistas & inibidores , Sulfonamidas/farmacologia , Animais , Limiar Auditivo/efeitos dos fármacos , Cóclea/efeitos dos fármacos , Cóclea/metabolismo , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Células Ciliadas Auditivas/efeitos dos fármacos , Perda Auditiva Provocada por Ruído/metabolismo , Perda Auditiva Neurossensorial/metabolismo , Masculino , Proteínas dos Microfilamentos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas RGS/metabolismo , Ratos Wistar , Receptor A1 de Adenosina/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA