Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35.367
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 572(7769): 341-346, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31367039

RESUMO

Salinity is detrimental to plant growth, crop production and food security worldwide. Excess salt triggers increases in cytosolic Ca2+ concentration, which activate Ca2+-binding proteins and upregulate the Na+/H+ antiporter in order to remove Na+. Salt-induced increases in Ca2+ have long been thought to be involved in the detection of salt stress, but the molecular components of the sensing machinery remain unknown. Here, using Ca2+-imaging-based forward genetic screens, we isolated the Arabidopsis thaliana mutant monocation-induced [Ca2+]i increases 1 (moca1), and identified MOCA1 as a glucuronosyltransferase for glycosyl inositol phosphorylceramide (GIPC) sphingolipids in the plasma membrane. MOCA1 is required for salt-induced depolarization of the cell-surface potential, Ca2+ spikes and waves, Na+/H+ antiporter activation, and regulation of growth. Na+ binds to GIPCs to gate Ca2+ influx channels. This salt-sensing mechanism might imply that plasma-membrane lipids are involved in adaption to various environmental salt levels, and could be used to improve salt resistance in crops.


Assuntos
Arabidopsis/citologia , Arabidopsis/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , Glicoesfingolipídeos/metabolismo , Células Vegetais/metabolismo , Cloreto de Sódio/metabolismo , Arabidopsis/genética , Glucuronosiltransferase/genética , Glucuronosiltransferase/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Mutação , Estresse Salino/genética , Estresse Salino/fisiologia , Cloreto de Sódio/farmacologia , Trocadores de Sódio-Hidrogênio/metabolismo
2.
Cell Mol Life Sci ; 81(1): 374, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39210039

RESUMO

Lysophosphatidylcholine (LPC) is a bioactive lipid present at high concentrations in inflamed and injured tissues where it contributes to the initiation and maintenance of pain. One of its important molecular effectors is the transient receptor potential canonical 5 (TRPC5), but the explicit mechanism of the activation is unknown. Using electrophysiology, mutagenesis and molecular dynamics simulations, we show that LPC-induced activation of TRPC5 is modulated by xanthine ligands and depolarizing voltage, and involves conserved residues within the lateral fenestration of the pore domain. Replacement of W577 with alanine (W577A) rendered the channel insensitive to strong depolarizing voltage, but LPC still activated this mutant at highly depolarizing potentials. Substitution of G606 located directly opposite position 577 with tryptophan rescued the sensitivity of W577A to depolarization. Molecular simulations showed that depolarization widens the lower gate of the channel and this conformational change is prevented by the W577A mutation or removal of resident lipids. We propose a gating scheme in which depolarizing voltage and lipid-pore helix interactions act together to promote TRPC5 channel opening.


Assuntos
Lisofosfatidilcolinas , Simulação de Dinâmica Molecular , Canais de Cátion TRPC , Humanos , Canais de Cátion TRPC/metabolismo , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/química , Lisofosfatidilcolinas/metabolismo , Lisofosfatidilcolinas/farmacologia , Animais , Ativação do Canal Iônico/efeitos dos fármacos , Células HEK293 , Mutação , Lisofosfolipídeos/metabolismo , Lisofosfolipídeos/farmacologia , Potenciais da Membrana/efeitos dos fármacos
3.
Am J Physiol Cell Physiol ; 327(4): C1023-C1034, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39159388

RESUMO

Melatonin is synthesized in and secreted from the pineal glands and regulates circadian rhythms. Although melatonin has been reported to modulate the activity of ion channels in several tissues, its effects on pineal ion channels remain unclear. In the present study, the effects of melatonin on voltage-gated K+ (KV) channels, which play a role in regulating the resting membrane potential, were examined in rat pinealocytes. The application of melatonin reduced pineal KV currents in a concentration-dependent manner (IC50 = 309 µM). An expression analysis revealed that KV4.2 channels were highly expressed in rat pineal glands. Melatonin-sensitive currents were abolished by the small interfering RNA knockdown of KV4.2 channels in rat pinealocytes. In human embryonic kidney 293 (HEK293) cells expressing KV4.2 channels, melatonin decreased outward currents (IC50 = 479 µM). Inhibitory effects were mediated by a shift in the voltage dependence of steady-state inactivation in a hyperpolarizing direction. This inhibition was observed even in the presence of 100 nM luzindole, an antagonist of melatonin receptors. Melatonin also blocked the activity of KV4.3, KV1.1, and KV1.5 channels in reconstituted HEK293 cells. The application of 1 mM melatonin caused membrane depolarization in rat pinealocytes. Furthermore, KV4.2 channel inhibition by 5 mM 4-aminopyridine attenuated melatonin secretion induced by 1 µM noradrenaline in rat pineal glands. These results strongly suggest that melatonin directly inhibited KV4.2 channels and caused membrane depolarization in pinealocytes, resulting in a decrease in melatonin secretion through parasympathetic signaling pathway. This mechanism may function as a negative-feedback mechanism of melatonin secretion in pineal glands. NEW & NOTEWORTHY Melatonin is a hormone that is synthesized in and secreted from the pineal glands, which regulates circadian rhythms. However, the effects of melatonin on pineal ion channels remain unclear. The present study demonstrated that melatonin directly inhibited voltage-gated potassium KV4.2 channels, which are highly expressed in rat pinealocytes, and induced membrane depolarization, resulting in a decrease in melatonin secretion. This mechanism may function as a negative-feedback mechanism of melatonin secretion in pineal glands.


Assuntos
Melatonina , Glândula Pineal , Canais de Potássio Shal , Animais , Glândula Pineal/metabolismo , Glândula Pineal/efeitos dos fármacos , Melatonina/farmacologia , Humanos , Células HEK293 , Ratos , Masculino , Canais de Potássio Shal/metabolismo , Canais de Potássio Shal/genética , Ratos Sprague-Dawley , Potenciais da Membrana/efeitos dos fármacos
4.
Pflugers Arch ; 476(5): 809-820, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38421408

RESUMO

Parathyroid hormone-related protein (PTHrP) released from detrusor smooth muscle (DSM) cells upon bladder distension attenuates spontaneous phasic contractions (SPCs) in DSM and associated afferent firing to facilitate urine storage. Here, we investigate the mechanisms underlying PTHrP-induced inhibition of SPCs, focusing on large-conductance Ca2+-activated K+ channels (BK channels) that play a central role in stabilizing DSM excitability. Perforated patch-clamp techniques were applied to DSM cells of the rat bladder dispersed using collagenase. Isometric tension changes were recorded from DSM strips, while intracellular Ca2+ dynamics were visualized using Cal520 AM -loaded DSM bundles. DSM cells developed spontaneous transient outward potassium currents (STOCs) arising from the opening of BK channels. PTHrP (10 nM) increased the frequency of STOCs without affecting their amplitude at a holding potential of - 30 mV but not - 40 mV. PTHrP enlarged depolarization-induced, BK-mediated outward currents at membrane potentials positive to + 20 mV in a manner sensitive to iberiotoxin (100 nM), the BK channel blocker. The PTHrP-induced increases in BK currents were also prevented by inhibitors of sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) (CPA 10 µM), L-type voltage-dependent Ca2+ channel (LVDCC) (nifedipine 3 µM) or adenylyl cyclase (SQ22536 100 µM). PTHrP had no effect on depolarization-induced LVDCC currents. PTHrP suppressed and slowed SPCs in an iberiotoxin (100 nM)-sensitive manner. PTHrP also reduced the number of Ca2+ spikes during each burst of spontaneous Ca2+ transients. In conclusion, PTHrP accelerates STOCs discharge presumably by facilitating SR Ca2+ release which prematurely terminates Ca2+ transient bursts resulting in the attenuation of SPCs.


Assuntos
Canais de Potássio Ativados por Cálcio de Condutância Alta , Contração Muscular , Músculo Liso , Proteína Relacionada ao Hormônio Paratireóideo , Bexiga Urinária , Animais , Ratos , Bexiga Urinária/metabolismo , Bexiga Urinária/fisiologia , Bexiga Urinária/efeitos dos fármacos , Proteína Relacionada ao Hormônio Paratireóideo/farmacologia , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Músculo Liso/metabolismo , Músculo Liso/efeitos dos fármacos , Músculo Liso/fisiologia , Ratos Sprague-Dawley , Masculino , Cálcio/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia
5.
Cell Physiol Biochem ; 58(2): 172-181, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643508

RESUMO

BACKGROUND/AIMS: Extracellular acidic conditions impair cellular activities; however, some cancer cells drive cellular signaling to adapt to the acidic environment. It remains unclear how ovarian cancer cells sense changes in extracellular pH. This study was aimed at characterizing acid-inducible currents in an ovarian cancer cell line and evaluating the involvement of these currents in cell viability. METHODS: The biophysical and pharmacological properties of membrane currents in OV2944, a mouse ovarian cancer cell line, were studied using the whole-cell configuration of the patch-clamp technique. Viability of this cell type in acidic medium was evaluated using the MTT assay. RESULTS: OV2944 had significant acid-sensitive outwardly rectifying (ASOR) Cl- currents at a pH50 of 5.3. The ASOR current was blocked by pregnenolone sulfate (PS), a steroid ion channel modulator that blocks the ASOR channel as one of its targets. The viability of the cells was reduced after exposure to an acidic medium (pH 5.3) but was slightly restored upon PS administration. CONCLUSION: These results offer first evidence for the presence of ASOR Cl- channel in ovarian cancer cells and indicate its involvement in cell viability under acidic environment.


Assuntos
Sobrevivência Celular , Neoplasias Ovarianas , Pregnenolona , Animais , Feminino , Camundongos , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Linhagem Celular Tumoral , Pregnenolona/farmacologia , Concentração de Íons de Hidrogênio , Sobrevivência Celular/efeitos dos fármacos , Canais de Cloreto/metabolismo , Canais de Cloreto/antagonistas & inibidores , Técnicas de Patch-Clamp , Potenciais da Membrana/efeitos dos fármacos
6.
Biochem Biophys Res Commun ; 720: 150105, 2024 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-38754163

RESUMO

BACKGROUND: Dexmedetomidine (DEX), a highly selective α2-adrenoceptor agonist, can decrease the incidence of arrhythmias, such as catecholaminergic polymorphic ventricular tachycardia (CPVT). However, the underlying mechanisms by which DEX affects cardiac electrophysiological function remain unclear. METHODS: Ryanodine receptor (RyR2) heterozygous R2474S mice were used as a model for CPVT. WT and RyR2R2474S/+ mice were treated with isoproterenol (ISO) and DEX, and electrocardiograms were continuously monitored during both in vivo and ex vivo experiments. Dual-dye optical mapping was used to explore the anti-arrhythmic mechanism of DEX. RESULTS: DEX significantly reduced the occurrence and duration of ISO-induced of VT/VF in RyR2R2474S/+ mice in vivo and ex vivo. DEX remarkably prolonged action potential duration (APD80) and calcium transient duration (CaTD80) in both RyR2R2474S/+ and WT hearts, whereas it reduced APD heterogeneity and CaT alternans in RyR2R2474S/+ hearts. DEX inhibited ectopy and reentry formation, and stabilized voltage-calcium latency. CONCLUSION: DEX exhibited an antiarrhythmic effect through stabilizing membrane voltage and intracellular Ca2+. DEX can be used as a beneficial perioperative anesthetic for patients with CPVT or other tachy-arrhythmias.


Assuntos
Arritmias Cardíacas , Cálcio , Dexmedetomidina , Canal de Liberação de Cálcio do Receptor de Rianodina , Animais , Dexmedetomidina/farmacologia , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Cálcio/metabolismo , Camundongos , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/genética , Potenciais da Membrana/efeitos dos fármacos , Isoproterenol/farmacologia , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/genética , Taquicardia Ventricular/tratamento farmacológico , Antiarrítmicos/farmacologia , Masculino , Potenciais de Ação/efeitos dos fármacos , Camundongos Endogâmicos C57BL
7.
Crit Care Med ; 52(10): 1499-1508, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39312458

RESUMO

OBJECTIVES: Hyperkalemia is a common life-threatening condition causing severe electrophysiologic derangements and arrhythmias. The beneficial effects of calcium (Ca 2+ ) treatment for hyperkalemia have been attributed to "membrane stabilization," by restoration of resting membrane potential (RMP). However, the underlying mechanisms remain poorly understood. Our objective was to investigate the mechanisms underlying adverse electrophysiologic effects of hyperkalemia and the therapeutic effects of Ca 2+ treatment. DESIGN: Controlled experimental trial. SETTING: Laboratory investigation. SUBJECTS: Canine myocytes and tissue preparations. INTERVENTIONS AND MEASUREMENTS: Optical action potentials and volume averaged electrocardiograms were recorded from the transmural wall of ventricular wedge preparations ( n = 7) at baseline (4 mM potassium), hyperkalemia (8-12 mM), and hyperkalemia + Ca 2+ (3.6 mM). Isolated myocytes were studied during hyperkalemia (8 mM) and after Ca 2+ treatment (6 mM) to determine cellular RMP. MAIN RESULTS: Hyperkalemia markedly slowed conduction velocity (CV, by 67% ± 7%; p < 0.001) and homogeneously shortened action potential duration (APD, by 20% ± 10%; p < 0.002). In all preparations, this resulted in QRS widening and the "sine wave" pattern observed in severe hyperkalemia. Ca 2+ treatment restored CV (increase by 44% ± 18%; p < 0.02), resulting in narrowing of the QRS and normalization of the electrocardiogram, but did not restore APD. RMP was significantly elevated by hyperkalemia; however, it was not restored with Ca 2+ treatment suggesting a mechanism unrelated to "membrane stabilization." In addition, the effect of Ca 2+ was attenuated during L-type Ca 2+ channel blockade, suggesting a mechanism related to Ca 2+ -dependent (rather than normally sodium-dependent) conduction. CONCLUSIONS: These data suggest that Ca 2+ treatment for hyperkalemia restores conduction through Ca 2+ -dependent propagation, rather than restoration of membrane potential or "membrane stabilization." Our findings provide a mechanistic rationale for Ca 2+ treatment when hyperkalemia produces abnormalities of conduction (i.e., QRS prolongation).


Assuntos
Cálcio , Hiperpotassemia , Hiperpotassemia/tratamento farmacológico , Animais , Cães , Cálcio/metabolismo , Potenciais de Ação/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Eletrocardiografia , Membrana Celular/efeitos dos fármacos
8.
Crit Care Med ; 52(10): 1499-1508, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39046789

RESUMO

OBJECTIVES: Hyperkalemia is a common life-threatening condition causing severe electrophysiologic derangements and arrhythmias. The beneficial effects of calcium (Ca 2+ ) treatment for hyperkalemia have been attributed to "membrane stabilization," by restoration of resting membrane potential (RMP). However, the underlying mechanisms remain poorly understood. Our objective was to investigate the mechanisms underlying adverse electrophysiologic effects of hyperkalemia and the therapeutic effects of Ca 2+ treatment. DESIGN: Controlled experimental trial. SETTING: Laboratory investigation. SUBJECTS: Canine myocytes and tissue preparations. INTERVENTIONS AND MEASUREMENTS: Optical action potentials and volume averaged electrocardiograms were recorded from the transmural wall of ventricular wedge preparations ( n = 7) at baseline (4 mM potassium), hyperkalemia (8-12 mM), and hyperkalemia + Ca 2+ (3.6 mM). Isolated myocytes were studied during hyperkalemia (8 mM) and after Ca 2+ treatment (6 mM) to determine cellular RMP. MAIN RESULTS: Hyperkalemia markedly slowed conduction velocity (CV, by 67% ± 7%; p < 0.001) and homogeneously shortened action potential duration (APD, by 20% ± 10%; p < 0.002). In all preparations, this resulted in QRS widening and the "sine wave" pattern observed in severe hyperkalemia. Ca 2+ treatment restored CV (increase by 44% ± 18%; p < 0.02), resulting in narrowing of the QRS and normalization of the electrocardiogram, but did not restore APD. RMP was significantly elevated by hyperkalemia; however, it was not restored with Ca 2+ treatment suggesting a mechanism unrelated to "membrane stabilization." In addition, the effect of Ca 2+ was attenuated during L-type Ca 2+ channel blockade, suggesting a mechanism related to Ca 2+ -dependent (rather than normally sodium-dependent) conduction. CONCLUSIONS: These data suggest that Ca 2+ treatment for hyperkalemia restores conduction through Ca 2+ -dependent propagation, rather than restoration of membrane potential or "membrane stabilization." Our findings provide a mechanistic rationale for Ca 2+ treatment when hyperkalemia produces abnormalities of conduction (i.e., QRS prolongation).


Assuntos
Cálcio , Hiperpotassemia , Hiperpotassemia/tratamento farmacológico , Animais , Cães , Cálcio/metabolismo , Potenciais de Ação/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Eletrocardiografia , Membrana Celular/efeitos dos fármacos
9.
J Bioenerg Biomembr ; 56(5): 483-493, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39266925

RESUMO

Neurons of the subpostremal nucleus of the solitary tract (NTS) respond to changes in extracellular glucose with alterations in membrane potential with both depolarization and hyperpolarization. From 5 mM glucose, a rapid shift to 0.5 mM glucose produces a membrane depolarization by an unknown mechanism in most neurons. However, the mechanism involved in this response needs to be known. Here, we investigated if the low glucose-induced depolarization could be mimicked by reducing ATP synthesis and possible mediators of this effect. We showed that applying the mitochondrial uncoupler CCCP (1 µM) reproduced the effects of low glucose depolarizing the membrane, generating an inward current, and decreasing membrane resistance. On the other hand, activation of AMPK did not alter these parameters. To test if low glucose and CCCP could depolarize the membrane by affecting the ionic gradient, we inhibited the electrogenic Na/K pump with 10 µM of ouabain. We observed a similar membrane depolarization but not a decrease in membrane resistance. We conclude that perfusion of neurons of the subpostremal NTS with a low glucose solution depolarizes the membrane by probably reducing intracellular ATP, but not by activating AMPK or decreasing the ionic gradient across the membrane.


Assuntos
Trifosfato de Adenosina , Glucose , Mitocôndrias , Neurônios , Núcleo Solitário , Animais , Ratos , Glucose/metabolismo , Glucose/farmacologia , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/biossíntese , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Núcleo Solitário/metabolismo , Núcleo Solitário/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Masculino , Potenciais da Membrana/efeitos dos fármacos
10.
Microb Pathog ; 194: 106801, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39025378

RESUMO

Listeria monocytogenes (L. monocytogenes) is a prevalent foodborne pathogen with a remarkable capacity to form biofilms on utensil surfaces. The Listeriolysin O (LLO) exhibits hemolytic activity, which is responsible for causing human infections. In this study, we investigated the inhibitory effect and mechanism of oregano essential oil (OEO) on L. monocytogenes, evaluated the effects on its biofilm removal and hemolytic activity. The minimum inhibitory concentration (MIC) of OEO against L. monocytogenes was 0.03 % (v/v). L. monocytogenes was treated with OEO at 3/2 MIC for 30 min the bacteria was decreased below the detection limit (10 CFU/mL) in PBS and TSB (the initial bacterial load was about 6.5 log CFU/mL). The level of L. monocytogenes in minced pork co-cultured with OEO (15 MIC) about 2.5 log CFU/g lower than that in the untreated group. The inhibitory mechanisms of OEO against planktonic L. monocytogenes encompassed perturbation of cellular morphology, elevation in reactive oxygen species levels, augmentation of lipid oxidation extent, hyperpolarization of membrane potential, and reduction in intracellular ATP concentration. In addition, OEO reduced biofilm coverage on the surface of glass slides by 62.03 % compared with the untreated group. Meanwhile, OEO (1/8 MIC) treatment reduced the hemolytic activity of L. monocytogenes to 24.6 % compared with the positive control. Molecular docking suggested carvacrol and thymol might reduce the hemolytic activity of L. monocytogenes. The results of this study demonstrate that OEO exhibits inhibitory effects against L. monocytogenes, biofilms and LLO, which had potential as natural antimicrobial for the inhibition of L. monocytogenes.


Assuntos
Antibacterianos , Toxinas Bacterianas , Biofilmes , Proteínas Hemolisinas , Listeria monocytogenes , Testes de Sensibilidade Microbiana , Óleos Voláteis , Origanum , Espécies Reativas de Oxigênio , Listeria monocytogenes/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Origanum/química , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/antagonistas & inibidores , Proteínas Hemolisinas/farmacologia , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Antibacterianos/farmacologia , Animais , Proteínas de Choque Térmico/metabolismo , Hemólise/efeitos dos fármacos , Suínos , Trifosfato de Adenosina/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Simulação de Acoplamento Molecular , Cimenos
11.
J Eukaryot Microbiol ; 71(4): e13030, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38757880

RESUMO

Paramecium exhibits responsive behavior to environmental changes, moving either closer to or further away from stimuli. Electrophysiological experiments have revealed that these behavioral responses are controlled by membrane potentials. Anoctamin, a Ca2+-activated Cl- channel, is involved in the regulation of membrane potential in mammals. However, it remains uncertain whether Cl- channels like anoctamin regulate Paramecium behavior. Herein, replacement of external Cl- ions with acetate ion and application of Cl- channel blocker niflumic acid (NFA, 0.1 µM) increased spontaneous avoiding reactions (sARs). Hence, we hypothesized that anoctamin is involved in the stabilization of membrane potential fluctuation. Paramecium cells in which the anoctamin-like protein 1 gene was knocked down displayed frequent sARs in the culture medium without external stimulation. Treatment of anoctamin-like protein 1-knockdown cells with the Ca2+ chelator BAPTA or Ca-channel blocker nicardipine reversed the increase in sARs. Electrophysiological experiments revealed extension of membrane depolarization when positive currents were applied to anoctamin-like protein 1-knockdown cells. We concluded that anoctamin-like protein 1 works as a Cl-channel and stabilizes the membrane potential oscillation, reducing sARs.


Assuntos
Potenciais da Membrana , Paramecium , Proteínas de Protozoários , Paramecium/fisiologia , Paramecium/genética , Potenciais da Membrana/efeitos dos fármacos , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Canais de Cloreto/metabolismo , Canais de Cloreto/genética , Cálcio/metabolismo , Ácido Niflúmico/farmacologia , Técnicas de Silenciamento de Genes
12.
Inflamm Res ; 73(9): 1459-1476, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38965133

RESUMO

OBJECTIVE: We aimed to broaden our understanding of a potential interaction between B1R and TLR4, considering earlier studies suggesting that lipopolysaccharide (LPS) may trigger B1R stimulation. METHODS: We assessed the impact of DBK and LPS on the membrane potential of thoracic aortas from C57BL/6, B1R, or TLR4 knockout mice. Additionally, we examined the staining patterns of these receptors in the thoracic aortas of C57BL/6 and in endothelial cells (HBMEC). RESULTS: DBK does not affect the resting membrane potential of aortic rings in C57BL/6 mice, but it hyperpolarizes preparations in B1KO and TLR4KO mice. The hyperpolarization mechanism in B1KO mice involves B2R, and the TLR4KO response is independent of cytoplasmic calcium influx but relies on potassium channels. Conversely, LPS hyperpolarizes thoracic aorta rings in both C57BL/6 and B1KO mice, with the response unaffected by a B1R antagonist. Interestingly, the absence of B1R alters the LPS response to potassium channels. These activities are independent of nitric oxide synthase (NOS). While exposure to DBK and LPS does not alter B1R and TLR4 mRNA expression, treatment with these agonists increases B1R staining in endothelial cells of thoracic aortic rings and modifies the staining pattern of B1R and TLR4 in endothelial cells. Proximity ligation assay suggests a interaction between the receptors. CONCLUSION: Our findings provide additional support for a putative connection between B1R and TLR4 signaling. Given the involvement of these receptors and their agonists in inflammation, it suggests that drugs and therapies targeting their effects could be promising therapeutic avenues worth exploring.


Assuntos
Aorta Torácica , Células Endoteliais , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor B1 da Bradicinina , Receptor 4 Toll-Like , Animais , Masculino , Camundongos , Aorta Torácica/metabolismo , Bradicinina/farmacologia , Bradicinina/metabolismo , Células Cultivadas , Células Endoteliais/metabolismo , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Receptor B1 da Bradicinina/metabolismo , Receptor B1 da Bradicinina/genética , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Feminino
13.
J Appl Toxicol ; 44(9): 1446-1453, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38797990

RESUMO

Voltage-dependent K+ (Kv) channels play an important role in restoring the membrane potential to its resting state, thereby maintaining vascular tone. In this study, native smooth muscle cells from rabbit coronary arteries were used to investigate the inhibitory effect of quetiapine, an atypical antipsychotic agent, on Kv channels. Quetiapine showed a concentration-dependent inhibition of Kv channels, with an IC50 of 47.98 ± 9.46 µM. Although quetiapine (50 µM) did not alter the steady-state activation curve, it caused a negative shift in the steady-state inactivation curve. The application of 1 and 2 Hz train steps in the presence of quetiapine significantly increased the inhibition of Kv current. Moreover, the recovery time constants from inactivation were prolonged in the presence of quetiapine, suggesting that its inhibitory action on Kv channels is use (state)-dependent. The inhibitory effects of quetiapine were not significantly affected by pretreatment with Kv1.5, Kv2.1, and Kv7 subtype inhibitors. Based on these findings, we conclude that quetiapine inhibits Kv channels in both a concentration- and use (state)-dependent manner. Given the physiological significance of Kv channels, caution is advised in the use of quetiapine as an antipsychotic due to its potential side effects on cardiovascular Kv channels.


Assuntos
Antipsicóticos , Vasos Coronários , Músculo Liso Vascular , Miócitos de Músculo Liso , Bloqueadores dos Canais de Potássio , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Fumarato de Quetiapina , Fumarato de Quetiapina/farmacologia , Animais , Coelhos , Antipsicóticos/farmacologia , Antipsicóticos/toxicidade , Canais de Potássio de Abertura Dependente da Tensão da Membrana/efeitos dos fármacos , Canais de Potássio de Abertura Dependente da Tensão da Membrana/antagonistas & inibidores , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Vasos Coronários/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Masculino , Relação Dose-Resposta a Droga , Potenciais da Membrana/efeitos dos fármacos , Células Cultivadas
14.
Foodborne Pathog Dis ; 21(7): 447-457, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38985570

RESUMO

Bacillus cereus causes food poisoning by producing toxins that cause diarrhea and vomiting and, in severe cases, endocarditis, meningitis, and other diseases. It also tends to form biofilms and spores that lead to contamination of the food production environment. Citral is a potent natural antibacterial agent, but its antibacterial activity against B. cereus has not been extensively studied. In this study, we first determined the minimum inhibitory concentrations and minimum bactericidal concentrations, growth curves, killing effect in different media, membrane potential, intracellular adenosine triphosphate (ATP), reactive oxygen species levels, and morphology of vegetative cells, followed by germination rate, morphology, germination state of spores, and finally biofilm clearance effect. The results showed that the minimum inhibitory concentrations and minimum bactericidal concentrations of citral against bacteria ranged from 100 to 800 µg/mL. The lag phase of bacteria was effectively prolonged by citral, and the growth rate of bacteria was slowed down. Bacteria in Luria-Bertani broth were reduced to below the detection limit by citral at 800 µg/mL within 0.5 h. Bacteria in rice were reduced to 3 log CFU/g by citral at 4000 µg/mL within 0.5 h. After treatment with citral, intracellular ATP concentration was reduced, membrane potential was altered, intracellular reactive oxygen species concentration was increased, and normal cell morphology was altered. After treatment with citral at 400 µg/mL, spore germination rate was reduced to 16.71%, spore morphology was affected, and spore germination state was altered. It also had a good effect on biofilm removal. The present study showed that citral had good bacteriostatic activity against B. cereus vegetative cells and its spores and also had a good clearance effect on its biofilm. Citral has the potential to be used as a bacteriostatic substance for the control of B. cereus in food industry production.


Assuntos
Monoterpenos Acíclicos , Bacillus cereus , Biofilmes , Monoterpenos Acíclicos/farmacologia , Anti-Infecciosos/farmacologia , Bacillus cereus/efeitos dos fármacos , Bacillus cereus/crescimento & desenvolvimento , Bacillus cereus/ultraestrutura , Esporos Bacterianos/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Oryza/microbiologia , Potenciais da Membrana/efeitos dos fármacos , Espaço Intracelular/enzimologia , Trifosfato de Adenosina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Microscopia Eletrônica de Varredura , Microbiologia de Alimentos
15.
Int J Mol Sci ; 25(16)2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39201487

RESUMO

Previous studies have suggested a role for selective serotonin reuptake inhibitors (SSRIs) such as fluoxetine (Prozac®) in the treatment of dizziness and inner ear vestibular dysfunction. The potential mechanism of action within the vestibular system remains unclear; however, fluoxetine has been reported to block certain types of K+ channel in other systems. Here, we investigated the direct actions of fluoxetine on membrane currents in presynaptic hair cells and postsynaptic calyx afferents of the gerbil peripheral vestibular system using whole cell patch clamp recordings in crista slices. We explored differences in K+ currents in peripheral zone (PZ) and central zone (CZ) calyces of the crista and their response to fluoxetine application. Outward K+ currents in PZ calyces showed greater inactivation at depolarized membrane potentials compared to CZ calyces. The application of 100 µM fluoxetine notably reduced K+ currents in calyx terminals within both zones of the crista, and the remaining currents exhibited distinct traits. In PZ cells, fluoxetine inhibited a non-inactivating K+ current and revealed a rapidly activating and inactivating K+ current, which was sensitive to blocking by 4-aminopyridine. This was in contrast to CZ calyces, where low-voltage-activated and non-inactivating K+ currents persisted following application of 100 µM fluoxetine. Additionally, marked inhibition of transient inward Na+ currents by fluoxetine was observed in calyces from both crista zones. Different concentrations of fluoxetine were tested, and the EC50 values were found to be 40 µM and 32 µM for K+ and Na+ currents, respectively. In contrast, 100 µM fluoxetine had no impact on voltage-dependent K+ currents in mechanosensory type I and type II vestibular hair cells. In summary, micromolar concentrations of fluoxetine are expected to strongly reduce both Na+ and K+ conductance in afferent neurons of the peripheral vestibular system in vivo. This would lead to inhibition of action potential firing in vestibular sensory neurons and has therapeutic implications for disorders of balance.


Assuntos
Fluoxetina , Gerbillinae , Fluoxetina/farmacologia , Animais , Potenciais da Membrana/efeitos dos fármacos , Vestíbulo do Labirinto/efeitos dos fármacos , Vestíbulo do Labirinto/metabolismo , Técnicas de Patch-Clamp , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Canais de Potássio/metabolismo , Masculino , Células Ciliadas Vestibulares/efeitos dos fármacos , Células Ciliadas Vestibulares/metabolismo
16.
World J Microbiol Biotechnol ; 40(7): 231, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38833075

RESUMO

To investigate the mechanism of Triton X-100 (TX-100) reducing the Ag+-resistance of Enterococcus faecalis (E. faecalis), and evaluate the antibacterial effect of TX-100 + Ag+ against the induced Ag+-resistant E. faecalis (AREf). The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of AgNO3 against E. faecalis with/without TX-100 were determined to verify the enhanced antibacterial activity. Transmission electron microscopy (TEM) was used to observe the morphological changes of E. faecalis after treatment. The intra- and extracellular concentration of Ag+ in treated E. faecalis was evaluated using inductively coupled plasma mass spectrometer (ICP-MS). The changes in cell membrane potential and integrity of treated E. faecalis were also observed using the flow cytometer. Moreover, AREf was induced through continuous exposure to sub-MIC of Ag+ and the antibacterial effect of TX-100 + Ag+ on AREf was further evaluated. The addition of 0.04% TX-100 showed maximal enhanced antibacterial effect of Ag+ against E. faecalis. The TEM and ICP-MS results demonstrated that TX-100 could facilitate Ag+ to enter E. faecalis through changing the membrane structure and integrity. Flow cytometry further showed the effect of TX-100 on membrane potential and permeability of E. faecalis. In addition, the enhanced antibacterial effect of TX-100 + Ag+ was also confirmed on induced AREf. TX-100 can facilitate Ag+ to enter E. faecalis through disrupting the membrane structure and changing the membrane potential and permeability, thus reducing the Ag+-resistance of E. faecalis and enhancing the antibacterial effect against either normal E. faecalis or induced AREf.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Enterococcus faecalis , Testes de Sensibilidade Microbiana , Octoxinol , Prata , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/crescimento & desenvolvimento , Octoxinol/farmacologia , Antibacterianos/farmacologia , Prata/farmacologia , Membrana Celular/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Microscopia Eletrônica de Transmissão , Nitrato de Prata/farmacologia
17.
Proc Natl Acad Sci U S A ; 117(30): 18079-18090, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32647060

RESUMO

Ion channels in excitable cells function in macromolecular complexes in which auxiliary proteins modulate the biophysical properties of the pore-forming subunits. Hyperpolarization-activated, cyclic nucleotide-sensitive HCN4 channels are critical determinants of membrane excitability in cells throughout the body, including thalamocortical neurons and cardiac pacemaker cells. We previously showed that the properties of HCN4 channels differ dramatically in different cell types, possibly due to the endogenous expression of auxiliary proteins. Here, we report the discovery of a family of endoplasmic reticulum (ER) transmembrane proteins that associate with and modulate HCN4. Lymphoid-restricted membrane protein (LRMP, Jaw1) and inositol trisphosphate receptor-associated guanylate kinase substrate (IRAG, Mrvi1, and Jaw1L) are homologous proteins with small ER luminal domains and large cytoplasmic domains. Despite their homology, LRMP and IRAG have distinct effects on HCN4. LRMP is a loss-of-function modulator that inhibits the canonical depolarizing shift in the voltage dependence of HCN4 in response to the binding of cAMP. In contrast, IRAG causes a gain of HCN4 function by depolarizing the basal voltage dependence in the absence of cAMP. The mechanisms of action of LRMP and IRAG are independent of trafficking and cAMP binding, and they are specific to the HCN4 isoform. We also found that IRAG is highly expressed in the mouse sinoatrial node where computer modeling predicts that its presence increases HCN4 current. Our results suggest important roles for LRMP and IRAG in the regulation of cellular excitability, as tools for advancing mechanistic understanding of HCN4 channel function, and as possible scaffolds for coordination of signaling pathways.


Assuntos
Retículo Endoplasmático/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Animais , Células CHO , Linhagem Celular , Cricetulus , AMP Cíclico/metabolismo , Regulação da Expressão Gênica , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/química , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Masculino , Potenciais da Membrana/efeitos dos fármacos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Modelos Biológicos , Família Multigênica , Miócitos Cardíacos/metabolismo , Fosfoproteínas/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas , Nó Sinoatrial/fisiologia , Nó Sinoatrial/fisiopatologia
18.
Proc Natl Acad Sci U S A ; 117(49): 31398-31409, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33229580

RESUMO

Toxin-antitoxin systems are found in many bacterial chromosomes and plasmids with roles ranging from plasmid stabilization to biofilm formation and persistence. In these systems, the expression/activity of the toxin is counteracted by an antitoxin, which, in type I systems, is an antisense RNA. While the regulatory mechanisms of these systems are mostly well defined, the toxins' biological activity and expression conditions are less understood. Here, these questions were investigated for a type I toxin-antitoxin system (AapA1-IsoA1) expressed from the chromosome of the human pathogen Helicobacter pylori We show that expression of the AapA1 toxin in H. pylori causes growth arrest associated with rapid morphological transformation from spiral-shaped bacteria to round coccoid cells. Coccoids are observed in patients and during in vitro growth as a response to different stress conditions. The AapA1 toxin, first molecular effector of coccoids to be identified, targets H. pylori inner membrane without disrupting it, as visualized by cryoelectron microscopy. The peptidoglycan composition of coccoids is modified with respect to spiral bacteria. No major changes in membrane potential or adenosine 5'-triphosphate (ATP) concentration result from AapA1 expression, suggesting coccoid viability. Single-cell live microscopy tracking the shape conversion suggests a possible association of this process with cell elongation/division interference. Oxidative stress induces coccoid formation and is associated with repression of the antitoxin promoter and enhanced processing of its transcript, leading to an imbalance in favor of AapA1 toxin expression. Our data support the hypothesis of viable coccoids with characteristics of dormant bacteria that might be important in H. pylori infections refractory to treatment.


Assuntos
Helicobacter pylori/citologia , Helicobacter pylori/efeitos dos fármacos , Peptídeos/farmacologia , Sistemas Toxina-Antitoxina , Trifosfato de Adenosina/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Helicobacter pylori/ultraestrutura , Peróxido de Hidrogênio/toxicidade , Espaço Intracelular/metabolismo , Cinética , Potenciais da Membrana/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Peptidoglicano/metabolismo
19.
Proc Natl Acad Sci U S A ; 117(49): 31376-31385, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33229526

RESUMO

For a myriad of different reasons most antimicrobial peptides (AMPs) have failed to reach clinical application. Different AMPs have different shortcomings including but not limited to toxicity issues, potency, limited spectrum of activity, or reduced activity in situ. We synthesized several cationic peptide mimics, main-chain cationic polyimidazoliums (PIMs), and discovered that, although select PIMs show little acute mammalian cell toxicity, they are potent broad-spectrum antibiotics with activity against even pan-antibiotic-resistant gram-positive and gram-negative bacteria, and mycobacteria. We selected PIM1, a particularly potent PIM, for mechanistic studies. Our experiments indicate PIM1 binds bacterial cell membranes by hydrophobic and electrostatic interactions, enters cells, and ultimately kills bacteria. Unlike cationic AMPs, such as colistin (CST), PIM1 does not permeabilize cell membranes. We show that a membrane electric potential is required for PIM1 activity. In laboratory evolution experiments with the gram-positive Staphylococcus aureus we obtained PIM1-resistant isolates most of which had menaquinone mutations, and we found that a site-directed menaquinone mutation also conferred PIM1 resistance. In similar experiments with the gram-negative pathogen Pseudomonas aeruginosa, PIM1-resistant mutants did not emerge. Although PIM1 was efficacious as a topical agent, intraperitoneal administration of PIM1 in mice showed some toxicity. We synthesized a PIM1 derivative, PIM1D, which is less hydrophobic than PIM1. PIM1D did not show evidence of toxicity but retained antibacterial activity and showed efficacy in murine sepsis infections. Our evidence indicates the PIMs have potential as candidates for development of new drugs for treatment of pan-resistant bacterial infections.


Assuntos
Antibacterianos/farmacologia , Drogas Desenhadas/farmacologia , Imidazóis/farmacologia , Animais , Antibacterianos/química , Antibacterianos/uso terapêutico , Morte Celular/efeitos dos fármacos , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Drogas Desenhadas/química , Drogas Desenhadas/uso terapêutico , Humanos , Interações Hidrofóbicas e Hidrofílicas , Imidazóis/química , Imidazóis/uso terapêutico , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/efeitos dos fármacos , Sepse/tratamento farmacológico , Sepse/prevenção & controle , Pele/efeitos dos fármacos , Pele/microbiologia , Pele/patologia
20.
Mol Pharmacol ; 101(3): 132-143, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34969832

RESUMO

Calcium- and voltage-gated K+ channels of large conductance (BKs) are expressed in the cell membranes of all excitable tissues. Currents mediated by BK channel-forming slo1 homotetramers are consistently inhibited by increases in membrane cholesterol (CLR). The molecular mechanisms leading to this CLR action, however, remain unknown. Slo1 channels are activated by increases in calcium (Ca2+) nearby Ca2+-recognition sites in the slo1 cytosolic tail: one high-affinity and one low-affinity site locate to the regulator of conductance for K+ (RCK) 1 domain, whereas another high-affinity site locates within the RCK2 domain. Here, we first evaluated the crosstalking between Ca2+ and CLR on the function of slo1 (cbv1 isoform) channels reconstituted into planar lipid bilayers. CLR robustly reduced channel open probability while barely decreasing unitary current amplitude, with CLR maximal effects being observed at 10-30 µM internal Ca2+ CLR actions were not only modulated by internal Ca2+ levels but also disappeared in absence of this divalent. Moreover, in absence of Ca2+, BK channel-activating concentrations of magnesium (10 mM) did not support CLR action. Next, we evaluated CLR actions on channels where the different Ca2+-sensing sites present in the slo1 cytosolic domain became nonfunctional via mutagenesis. CLR still reduced the activity of low-affinity Ca2+ (RCK1:E379A, E404A) mutants. In contrast, CLR became inefficacious when both high-affinity Ca2+ sites were mutated (RCK1:D367A,D372A and RCK2:D899N,D900N,D901N,D902N,D903N), yet still was able to decrease the activity of each high-affinity site mutant. Therefore, BK channel inhibition by CLR selectively requires optimal levels of Ca2+ being recognized by either of the slo1 high-affinity Ca2+-sensing sites. SIGNIFICANCE STATEMENT: Results reveal that inhibition of calcium/voltage-gated K+ channel of large conductance (BK) (slo1) channels by membrane cholesterol requires a physiologically range of internal calcium (Ca2+) and is selectively linked to the two high-affinity Ca2+-sensing sites located in the cytosolic tail domain, which underscores that Ca2+ and cholesterol actions are allosterically coupled to the channel gate. Cholesterol modification of BK channel activity likely contributes to disruption of normal physiology by common health conditions that are triggered by disruption of cholesterol homeostasis.


Assuntos
Cálcio/metabolismo , Colesterol/metabolismo , Citosol/metabolismo , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/antagonistas & inibidores , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Citosol/efeitos dos fármacos , Células HEK293 , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Alta/antagonistas & inibidores , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Estrutura Secundária de Proteína , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA