Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 544
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 174(3): 688-699.e16, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-29961577

RESUMO

Proteins such as FUS phase separate to form liquid-like condensates that can harden into less dynamic structures. However, how these properties emerge from the collective interactions of many amino acids remains largely unknown. Here, we use extensive mutagenesis to identify a sequence-encoded molecular grammar underlying the driving forces of phase separation of proteins in the FUS family and test aspects of this grammar in cells. Phase separation is primarily governed by multivalent interactions among tyrosine residues from prion-like domains and arginine residues from RNA-binding domains, which are modulated by negatively charged residues. Glycine residues enhance the fluidity, whereas glutamine and serine residues promote hardening. We develop a model to show that the measured saturation concentrations of phase separation are inversely proportional to the product of the numbers of arginine and tyrosine residues. These results suggest it is possible to predict phase-separation properties based on amino acid sequences.


Assuntos
Proteína FUS de Ligação a RNA/genética , Proteínas de Ligação a RNA/fisiologia , Sequência de Aminoácidos , Aminoácidos/química , Animais , Arginina/química , Simulação por Computador , Células HeLa , Humanos , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/fisiologia , Transição de Fase , Proteínas Priônicas/química , Proteínas Priônicas/genética , Príons/genética , Príons/fisiologia , Domínios Proteicos , Proteína FUS de Ligação a RNA/fisiologia , Proteínas de Ligação a RNA/isolamento & purificação , Células Sf9 , Tirosina/química
2.
Mol Cell ; 69(2): 195-202, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29153393

RESUMO

Epigenetics refers to changes in phenotype that are not rooted in DNA sequence. This phenomenon has largely been studied in the context of chromatin modification. Yet many epigenetic traits are instead linked to self-perpetuating changes in the individual or collective activity of proteins. Most such proteins are prions (e.g., [PSI+], [URE3], [SWI+], [MOT3+], [MPH1+], [LSB+], and [GAR+]), which have the capacity to adopt at least one conformation that self-templates over long biological timescales. This allows them to serve as protein-based epigenetic elements that are readily broadcast through mitosis and meiosis. In some circumstances, self-templating can fuel disease, but it also permits access to multiple activity states from the same polypeptide and transmission of that information across generations. Ensuing phenotypic changes allow genetically identical cells to express diverse and frequently adaptive phenotypes. Although long thought to be rare, protein-based epigenetic inheritance has now been uncovered in all domains of life.


Assuntos
Hereditariedade/fisiologia , Príons/metabolismo , Príons/fisiologia , Animais , Epigênese Genética/fisiologia , Epigenômica/métodos , Humanos , Meiose , Mitose , Fenótipo , Proteínas/metabolismo
3.
Mol Cell ; 72(3): 426-443.e12, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30401430

RESUMO

Protein phase separation by low-complexity, intrinsically disordered domains generates membraneless organelles and links to neurodegeneration. Cellular prion protein (PrPC) contains such domains, causes spongiform degeneration, and is a receptor for Alzheimer's amyloid-ß oligomers (Aßo). Here, we show that PrPC separates as a liquid phase, in which α-helical Thr become unfolded. At the cell surface, PrPC Lys residues interact with Aßo to create a hydrogel containing immobile Aßo and relatively mobile PrPC. The Aßo/PrP hydrogel has a well-defined stoichiometry and dissociates with excess Aßo. NMR studies of hydrogel PrPC reveal a distinct α-helical conformation for natively unfolded amino-terminal Gly and Ala residues. Aßo/PrP hydrogel traps signal-transducing mGluR5 on the plasma membrane. Recombinant PrPC extracts endogenous Aßo from human Alzheimer's soluble brain lysates into hydrogel, and a PrPC antagonist releases Aßo from endogenous brain hydrogel. Thus, coupled phase and conformational transitions of PrPC are driven by Aß species from Alzheimer's disease.


Assuntos
Peptídeos beta-Amiloides/fisiologia , Proteínas PrPC/química , Proteínas PrPC/fisiologia , Doença de Alzheimer/metabolismo , Animais , Encéfalo , Células COS , Linhagem Celular , Membrana Celular , Chlorocebus aethiops , Células HEK293 , Humanos , Hidrogéis , Imageamento por Ressonância Magnética/métodos , Conformação Molecular , Neurônios , Príons/química , Príons/fisiologia , Ligação Proteica , Receptor de Glutamato Metabotrópico 5 , Transdução de Sinais
4.
PLoS Pathog ; 17(2): e1009232, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33600485

RESUMO

Prion diseases are a group of neurodegenerative diseases affecting a wide range of mammalian species, including humans. During the course of the disease, the abnormally folded scrapie prion protein (PrPSc) accumulates in the central nervous system where it causes neurodegeneration. In prion disorders, the diverse spectrum of illnesses exists because of the presence of different isoforms of PrPSc where they occupy distinct conformational states called strains. Strains are biochemically distinguished by a characteristic three-band immunoblot pattern, defined by differences in the occupancy of two glycosylation sites on the prion protein (PrP). Characterization of the exact N-glycan structures attached on either PrPC or PrPSc is lacking. Here we report the characterization and comparison of N-glycans from two different sheep prion strains. PrPSc from both strains was isolated from brain tissue and enzymatically digested with trypsin. By using liquid chromatography coupled to electrospray mass spectrometry, a site-specific analysis was performed. A total of 100 structures were detected on both glycosylation sites. The N-glycan profile was shown to be similar to the one on mouse PrP, however, with additional 40 structures reported. The results presented here show no major differences in glycan composition, suggesting that glycans may not be responsible for the differences in the two analyzed prion strains.


Assuntos
Encéfalo/metabolismo , Glicopeptídeos/análise , Polissacarídeos/análise , Polissacarídeos/química , Proteínas PrPSc/metabolismo , Príons/classificação , Scrapie/metabolismo , Animais , Glicosilação , Proteínas PrPSc/genética , Príons/fisiologia , Ovinos
5.
Nat Rev Mol Cell Biol ; 11(12): 823-33, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21081963

RESUMO

Prions are unusual proteinaceous infectious agents that are typically associated with a class of fatal degenerative diseases of the mammalian brain. However, the discovery of fungal prions, which are not associated with disease, suggests that we must now consider the effect of these factors on basic cellular physiology in a different light. Fungal prions are epigenetic determinants that can alter a range of cellular processes, including metabolism and gene expression pathways, and these changes can lead to a range of prion-associated phenotypes. The mechanistic similarities between prion propagation in mammals and fungi suggest that prions are not a biological anomaly but instead could be a newly appreciated and perhaps ubiquitous regulatory mechanism.


Assuntos
Fenômenos Fisiológicos Celulares , Doenças Priônicas/etiologia , Príons/fisiologia , Animais , Fenômenos Fisiológicos Celulares/genética , Epigênese Genética/fisiologia , Fungos/genética , Fungos/metabolismo , Fungos/fisiologia , Regulação da Expressão Gênica/fisiologia , Humanos , Modelos Biológicos , Fenótipo , Doenças Priônicas/genética , Doenças Priônicas/metabolismo , Príons/genética , Príons/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
6.
Annu Rev Genet ; 47: 601-23, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24274755

RESUMO

Prions are proteins that acquire alternative conformations that become self-propagating. Transformation of proteins into prions is generally accompanied by an increase in ß-sheet structure and a propensity to aggregate into oligomers. Some prions are beneficial and perform cellular functions, whereas others cause neurodegeneration. In mammals, more than a dozen proteins that become prions have been identified, and a similar number has been found in fungi. In both mammals and fungi, variations in the prion conformation encipher the biological properties of distinct prion strains. Increasing evidence argues that prions cause many neurodegenerative diseases (NDs), including Alzheimer's, Parkinson's, Creutzfeldt-Jakob, and Lou Gehrig's diseases, as well as the tauopathies. The majority of NDs are sporadic, and 10% to 20% are inherited. The late onset of heritable NDs, like their sporadic counterparts, may reflect the stochastic nature of prion formation; the pathogenesis of such illnesses seems to require prion accumulation to exceed some critical threshold before neurological dysfunction manifests.


Assuntos
Doenças Neurodegenerativas/etiologia , Príons/fisiologia , Idade de Início , Proteínas Amiloidogênicas/química , Proteínas Amiloidogênicas/classificação , Proteínas Amiloidogênicas/fisiologia , Animais , Proteínas Fúngicas/química , Proteínas Fúngicas/classificação , Proteínas Fúngicas/fisiologia , Humanos , Corpos de Inclusão , Mamíferos , Modelos Moleculares , Doenças Neurodegenerativas/epidemiologia , Doenças Neurodegenerativas/genética , Emaranhados Neurofibrilares , Fatores de Terminação de Peptídeos/química , Fatores de Terminação de Peptídeos/classificação , Fatores de Terminação de Peptídeos/fisiologia , Placa Amiloide , Doenças Priônicas/etiologia , Doenças Priônicas/genética , Príons/genética , Conformação Proteica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/classificação , Proteínas de Saccharomyces cerevisiae/fisiologia , Sinucleínas/fisiologia , Tauopatias/etiologia , Tauopatias/genética , Fatores de Transcrição/química , Fatores de Transcrição/classificação , Virulência , Fatores de Poliadenilação e Clivagem de mRNA/química , Fatores de Poliadenilação e Clivagem de mRNA/classificação , Proteínas tau/genética , Proteínas tau/fisiologia
7.
PLoS Pathog ; 15(3): e1007662, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30908557

RESUMO

The protein-only hypothesis predicts that infectious mammalian prions are composed solely of PrPSc, a misfolded conformer of the normal prion protein, PrPC. However, protein-only PrPSc preparations lack significant levels of prion infectivity, leading to the alternative hypothesis that cofactor molecules are required to form infectious prions. Here, we show that prions with parental strain properties and full specific infectivity can be restored from protein-only PrPSc in vitro. The restoration reaction is rapid, potent, and requires bank vole PrPC substrate, post-translational modifications, and cofactor molecules. To our knowledge, this represents the first report in which the essential properties of an infectious mammalian prion have been restored from pure PrP without adaptation. These findings provide evidence for a unified hypothesis of prion infectivity in which the global structure of protein-only PrPSc accurately stores latent infectious and strain information, but cofactor molecules control a reversible switch that unmasks biological infectivity.


Assuntos
Proteínas PrPSc/metabolismo , Proteínas PrPSc/patogenicidade , Príons/metabolismo , Animais , Arvicolinae , Doenças Transmissíveis , Mamíferos , Proteínas PrPC/metabolismo , Proteínas PrPC/fisiologia , Proteínas PrPSc/fisiologia , Proteínas Priônicas/metabolismo , Proteínas Priônicas/fisiologia , Príons/patogenicidade , Príons/fisiologia , Processamento de Proteína Pós-Traducional
8.
Acta Neuropathol ; 142(1): 5-16, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33899132

RESUMO

Prions are novel pathogens that are composed entirely of PrPSc, the self-templating conformation of the host prion protein, PrPC. Prion strains are operationally defined as a heritable phenotype of disease that are encoded by strain-specific conformations of PrPSc. The factors that influence the relative distribution of strains in a population are only beginning to be understood. For prions with an infectious etiology, environmental factors, such as strain-specific binding to surfaces and resistance to weathering, can influence which strains are available for transmission to a naïve host. Strain-specific differences in efficiency of infection by natural routes of infection can also select for prion strains. The host amino acid sequence of PrPC has the greatest effect on dictating the repertoire of prion strains. The relative abundance of PrPC, post-translational modifications of PrPC and cellular co-factors involved in prion conversion can also provide conditions that favor the prevalence of a subset of prion strains. Additionally, prion strains can interfere with each other, influencing the emergence of a dominant strain. Overall, both environmental and host factors may influence the repertoire and distribution of strains within a population.


Assuntos
Evolução Biológica , Meio Ambiente , Proteínas PrPC/genética , Proteínas PrPC/fisiologia , Doenças Priônicas/parasitologia , Príons/genética , Príons/fisiologia , Animais , Humanos , Proteínas PrPSc , Príons/classificação
9.
Nature ; 518(7538): 236-9, 2015 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-25607368

RESUMO

In the healthy adult brain synapses are continuously remodelled through a process of elimination and formation known as structural plasticity. Reduction in synapse number is a consistent early feature of neurodegenerative diseases, suggesting deficient compensatory mechanisms. Although much is known about toxic processes leading to synaptic dysfunction and loss in these disorders, how synaptic regeneration is affected is unknown. In hibernating mammals, cooling induces loss of synaptic contacts, which are reformed on rewarming, a form of structural plasticity. We have found that similar changes occur in artificially cooled laboratory rodents. Cooling and hibernation also induce a number of cold-shock proteins in the brain, including the RNA binding protein, RBM3 (ref. 6). The relationship of such proteins to structural plasticity is unknown. Here we show that synapse regeneration is impaired in mouse models of neurodegenerative disease, in association with the failure to induce RBM3. In both prion-infected and 5XFAD (Alzheimer-type) mice, the capacity to regenerate synapses after cooling declined in parallel with the loss of induction of RBM3. Enhanced expression of RBM3 in the hippocampus prevented this deficit and restored the capacity for synapse reassembly after cooling. RBM3 overexpression, achieved either by boosting endogenous levels through hypothermia before the loss of the RBM3 response or by lentiviral delivery, resulted in sustained synaptic protection in 5XFAD mice and throughout the course of prion disease, preventing behavioural deficits and neuronal loss and significantly prolonging survival. In contrast, knockdown of RBM3 exacerbated synapse loss in both models and accelerated disease and prevented the neuroprotective effects of cooling. Thus, deficient synapse regeneration, mediated at least in part by failure of the RBM3 stress response, contributes to synapse loss throughout the course of neurodegenerative disease. The data support enhancing cold-shock pathways as potential protective therapies in neurodegenerative disorders.


Assuntos
Temperatura Baixa , Resposta ao Choque Frio/fisiologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Plasticidade Neuronal , Fármacos Neuroprotetores , Proteínas de Ligação a RNA/metabolismo , Sinapses/metabolismo , Doença de Alzheimer/metabolismo , Animais , Proteínas e Peptídeos de Choque Frio/metabolismo , Modelos Animais de Doenças , Hibernação/fisiologia , Hipocampo/metabolismo , Masculino , Camundongos , Príons/fisiologia , Proteínas de Ligação a RNA/genética , Regeneração
10.
Arch Virol ; 165(3): 535-556, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32025859

RESUMO

The existence of more than 30 strains of transmissible spongiform encephalopathy (TSE) and the paucity of infectivity of purified PrPSc, as well as considerations of PrP structure, are inconsistent with the protein-only (prion) theory of TSE. Nucleic acid is a strong contender as a second component. We juxtapose two key findings: (i) PrP is a nucleic-acid-binding antimicrobial protein that is similar to retroviral Gag proteins in its ability to trigger reverse transcription. (ii) Retroelement mobilization is widely seen in TSE disease. Given further evidence that PrP also mediates nucleic acid transport into and out of the cell, a strong case is to be made that a second element - retroelement nucleic acid - bound to PrP constitutes the second component necessary to explain the multiple strains of TSE.


Assuntos
Doenças Priônicas/patologia , Proteínas Priônicas/genética , Príons/genética , Animais , Humanos , Ácidos Nucleicos , Príons/fisiologia , Ligação Proteica , Retroelementos
11.
Proc Natl Acad Sci U S A ; 114(5): 1141-1146, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28096357

RESUMO

Adaptation of prions to new species is thought to reflect the capacity of the host-encoded cellular form of the prion protein (PrPC) to selectively propagate optimized prion conformations from larger ensembles generated in the species of origin. Here we describe an alternate replicative process, termed nonadaptive prion amplification (NAPA), in which dominant conformers bypass this requirement during particular interspecies transmissions. To model susceptibility of horses to prions, we produced transgenic (Tg) mice expressing cognate PrPC Although disease transmission to only a subset of infected TgEq indicated a significant barrier to EqPrPC conversion, the resulting horse prions unexpectedly failed to cause disease upon further passage to TgEq. TgD expressing deer PrPC was similarly refractory to deer prions from diseased TgD infected with mink prions. In both cases, the resulting prions transmitted to mice expressing PrPC from the species of prion origin, demonstrating that transmission barrier eradication of the originating prions was ephemeral and adaptation superficial in TgEq and TgD. Horse prions produced in vitro by protein misfolding cyclic amplification of mouse prions using horse PrPC also failed to infect TgEq but retained tropism for wild-type mice. Concordant patterns of neuropathology and prion deposition in susceptible mice infected with NAPA prions and the corresponding prion of origin confirmed preservation of strain properties. The comparable responses of both prion types to guanidine hydrochloride denaturation indicated this occurs because NAPA precludes selection of novel prion conformations. Our findings provide insights into mechanisms regulating interspecies prion transmission and a framework to reconcile puzzling epidemiological features of certain prion disorders.


Assuntos
Especificidade de Hospedeiro/fisiologia , Proteínas PrPC/fisiologia , Doenças Priônicas/transmissão , Doenças Priônicas/veterinária , Príons/fisiologia , Animais , Cervos , Guanidina/farmacologia , Cavalos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas PrPC/química , Proteínas PrPC/genética , Príons/química , Conformação Proteica , Desnaturação Proteica , Coelhos , Ovinos , Especificidade da Espécie , Relação Estrutura-Atividade
12.
Mol Psychiatry ; 23(3): 777-788, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28630454

RESUMO

Transmissible spongiform encephalopathies (TSEs) are fatal neurological disorders caused by prions, which are composed of a misfolded protein (PrPSc) that self-propagates in the brain of infected individuals by converting the normal prion protein (PrPC) into the pathological isoform. Here, we report a novel experimental strategy for preventing prion disease based on producing a self-replicating, but innocuous PrPSc-like form, termed anti-prion, which can compete with the replication of pathogenic prions. Our results show that a prophylactic inoculation of prion-infected animals with an anti-prion delays the onset of the disease and in some animals completely prevents the development of clinical symptoms and brain damage. The data indicate that a single injection of the anti-prion eliminated ~99% of the infectivity associated to pathogenic prions. Furthermore, this treatment caused significant changes in the profile of regional PrPSc deposition in the brains of animals that were treated, but still succumbed to the disease. Our findings provide new insights for a mechanistic understanding of prion replication and support the concept that prion replication can be separated from toxicity, providing a novel target for therapeutic intervention.


Assuntos
Doenças Priônicas/prevenção & controle , Doenças Priônicas/terapia , Príons/fisiologia , Animais , Encéfalo/metabolismo , Mesocricetus , Príons/metabolismo , Engenharia de Proteínas/métodos , Deficiências na Proteostase/prevenção & controle
13.
Brain ; 141(9): 2700-2710, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29985975

RESUMO

Mammalian prions propagate by template-directed misfolding and aggregation of normal cellular prion related protein PrPC as it converts into disease-associated conformers collectively referred to as PrPSc. Mammalian species may be permissive for prion disease because these hosts have co-evolved specific co-factors that assist PrPC conformational change and prion propagation. We have tested this hypothesis by examining whether faithful prion propagation occurs in the normally PrPC-null invertebrate host Drosophila melanogaster. Ovine PrP transgenic Drosophila exposed at the larval stage to ovine scrapie showed a progressive accumulation of transmissible prions in adult flies. Strikingly, the biological properties of distinct ovine prion strains were maintained during their propagation in Drosophila. Our observations show that the co-factors necessary for strain-specific prion propagation are not unique to mammalian species. Our studies establish Drosophila as a novel host for the study of transmissible mammalian prions.


Assuntos
Proteínas de Drosophila/fisiologia , Proteínas Priônicas/fisiologia , Príons/fisiologia , Animais , Animais Geneticamente Modificados , Modelos Animais de Doenças , Drosophila melanogaster/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Doenças Priônicas/complicações , Proteínas Priônicas/biossíntese , Proteínas Priônicas/isolamento & purificação , Príons/biossíntese , Scrapie/metabolismo , Ovinos
14.
Transfus Apher Sci ; 58(6): 102674, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31735652

RESUMO

Growth factor-rich pooled human platelet lysate (HPL), made from human platelet concentrates, is one new blood-derived bioproduct that is attracting justified interest as a xeno-free supplement of growth media for human cell propagation for cell therapy. HPL can also find potentially relevant applications in the field of regenerative medicine. Therefore, the therapeutic applications of HPL go far beyond the standard clinical applications of the traditional blood products typically used in patients suffering from life-threatening congenital or acquired deficiencies in cellular components or proteins due to severe genetic diseases or trauma. A wider population of patients, suffering from various pathologies than has traditionally been the case, is thus, now susceptible to receiving a human blood-derived product. These patients would, therefore, be exposed to the possible, but avoidable, side effects of blood products, including transfusion-transmitted infections, most specifically virus transmissions. Unfortunately, not all manufacturers, suppliers, and users of HPL may have a strong background in the blood product industry. As such, they may not be fully aware of the various building blocks that should contribute to the viral safety of HPL as is already the case for any licensed blood products. The purpose of this manuscript is to reemphasize all the measures, including in regulatory aspects, capable of assuring that HPL exhibits a sufficient pathogen safety margin, especially when made from large pools of human platelet concentrates. It is vital to remember the past to avoid that the mistakes, which happened 30 to 40 years ago and led to the contamination of many blood recipients, be repeated due to negligence or ignorance of the facts.


Assuntos
Plaquetas/virologia , Terapia Baseada em Transplante de Células e Tecidos , Medicina Regenerativa , Segurança , Humanos , Príons/fisiologia , Fatores de Risco
15.
Mol Cell ; 43(1): 72-84, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21726811

RESUMO

Sequences rich in glutamine (Q) and asparagine (N) residues often fail to fold at the monomer level. This, coupled to their unusual hydrogen-bonding abilities, provides the driving force to switch between disordered monomers and amyloids. Such transitions govern processes as diverse as human protein-folding diseases, bacterial biofilm assembly, and the inheritance of yeast prions (protein-based genetic elements). A systematic survey of prion-forming domains suggested that Q and N residues have distinct effects on amyloid formation. Here, we use cell biological, biochemical, and computational techniques to compare Q/N-rich protein variants, replacing Ns with Qs and Qs with Ns. We find that the two residues have strong and opposing effects: N richness promotes assembly of benign self-templating amyloids; Q richness promotes formation of toxic nonamyloid conformers. Molecular simulations focusing on intrinsic folding differences between Qs and Ns suggest that their different behaviors are due to the enhanced turn-forming propensity of Ns over Qs.


Assuntos
Asparagina/química , Glutamina/química , Fatores de Terminação de Peptídeos/química , Príons/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Amiloide/química , Amiloide/metabolismo , Asparagina/metabolismo , Asparagina/fisiologia , Glutamina/metabolismo , Glutamina/fisiologia , Dados de Sequência Molecular , Fatores de Terminação de Peptídeos/metabolismo , Fatores de Terminação de Peptídeos/fisiologia , Príons/metabolismo , Príons/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Análise de Sequência de Proteína
16.
Proteomics ; 18(1)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29087046

RESUMO

Transmissible spongiform encephalopathies (TSEs) are neurodegenerative disorders caused by the presence of an infectious prion protein. The primary site of pathology is the brain characterized by neuroinflammation, astrogliosis, prion fibrils, and vacuolation. The events preceding the observed pathology remain in question. We sought to identify biomarkers in the brain of TSE-infected and aged-matched control mice using two-dimensional fluorescence difference gel electrophoresis (2D-DIGE). Since the brain proteome is too complex to resolve all proteins using 2D-DIGE, protein samples are initially filtered through either concanavalin A (ConA) or wheat-germ agglutinin (WGA) columns. Four differentially abundant proteins are identified through screening of the two different glycoproteomes: Neuronal growth regulator 1 (NEGR1), calponin-3 (CNN3), peroxiredoxin-6 (Prdx6), and glial fibrillary acidic protein (GFAP). Confirmatory Western blots are performed with samples from TSE-infected and comparative Alzheimer's disease (AD) affected brains and their respective controls from time points throughout the disease courses. The abundance of three of the four proteins increases significantly during later stages of prion disease whereas NEGR1 decreases in abundance. Comparatively, no significant changes are observed in later stages of AD. Our lab is the first to associate the glycosylated NEGR1 protein with prion disease pathology.


Assuntos
Doença de Alzheimer/patologia , Biomarcadores/metabolismo , Encéfalo/patologia , Glicoproteínas/metabolismo , Príons/fisiologia , Proteoma/metabolismo , Scrapie/patologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Camundongos , Proteômica/métodos , Scrapie/genética , Scrapie/metabolismo
17.
Mol Microbiol ; 104(1): 125-143, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28073182

RESUMO

The ability of a yeast cell to propagate [PSI+ ], the prion form of the Sup35 protein, is dependent on the molecular chaperone Hsp104. Inhibition of Hsp104 function in yeast cells leads to a failure to generate new propagons, the molecular entities necessary for [PSI+ ] propagation in dividing cells and they get diluted out as cells multiply. Over-expression of Hsp104 also leads to [PSI+ ] prion loss and this has been assumed to arise from the complete disaggregation of the Sup35 prion polymers. However, in conditions of Hsp104 over-expression in [PSI+ ] cells we find no release of monomers from Sup35 polymers, no monomerization of aggregated Sup35 which is not accounted for by the proportion of prion-free [psi- ] cells present, no change in the molecular weight of Sup35-containing SDS-resistant polymers and no significant decrease in average propagon numbers in the population as a whole. Furthermore, they show that over-expression of Hsp104 does not interfere with the incorporation of newly synthesised Sup35 into polymers, nor with the multiplication of propagons following their depletion in numbers while growing in the presence of guanidine hydrochloride. Rather, they present evidence that over-expression of Hsp104 causes malpartition of [PSI+ ] propagons between mother and daughter cells in a sub-population of cells during cell division thereby generating prion-free [psi- ] cells.


Assuntos
Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/fisiologia , Fatores de Terminação de Peptídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Divisão Celular/fisiologia , Proteínas de Choque Térmico/genética , Chaperonas Moleculares/metabolismo , Proteínas Priônicas/metabolismo , Príons/biossíntese , Príons/metabolismo , Príons/fisiologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
18.
J Virol ; 91(10)2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28250130

RESUMO

Among prion infections, two scenarios of prion spread are generally observed: (i) early lymphoid tissue replication or (ii) direct neuroinvasion without substantial antecedent lymphoid amplification. In nature, cervids are infected with chronic wasting disease (CWD) prions by oral and nasal mucosal exposure, and studies of early CWD pathogenesis have implicated pharyngeal lymphoid tissue as the earliest sites of prion accumulation. However, knowledge of chronological events in prion spread during early infection remains incomplete. To investigate this knowledge gap in early CWD pathogenesis, we exposed white-tailed deer to CWD prions by mucosal routes and performed serial necropsies to assess PrPCWD tissue distribution by real-time quaking-induced conversion (RT-QuIC) and tyramide signal amplification immunohistochemistry (TSA-IHC). Although PrPCWD was not detected by either method in the initial days (1 and 3) postexposure, we observed PrPCWD seeding activity and follicular immunoreactivity in oropharyngeal lymphoid tissues at 1 and 2 months postexposure (MPE). At 3 MPE, PrPCWD replication had expanded to all systemic lymphoid tissues. By 4 MPE, the PrPCWD burden in all lymphoid tissues had increased and approached levels observed in terminal disease, yet there was no evidence of nervous system invasion. These results indicate the first site of CWD prion entry is in the oropharynx, and the initial phase of prion amplification occurs in the oropharyngeal lymphoid tissues followed by rapid dissemination to systemic lymphoid tissues. This lymphoid replication phase appears to precede neuroinvasion.IMPORTANCE Chronic wasting disease (CWD) is a universally fatal transmissible spongiform encephalopathy affecting cervids, and natural infection occurs through oral and nasal mucosal exposure to infectious prions. Terminal disease is characterized by PrPCWD accumulation in the brain and lymphoid tissues of affected animals. However, the initial sites of prion accumulation and pathways of prion spread during early CWD infection remain unknown. To investigate the chronological events of early prion pathogenesis, we exposed deer to CWD prions and monitored the tissue distribution of PrPCWD over the first 4 months of infection. We show CWD uptake occurs in the oropharynx with initial prion replication in the draining oropharyngeal lymphoid tissues, rapidly followed by dissemination to systemic lymphoid tissues without evidence of neuroinvasion. These data highlight the two phases of CWD infection: a robust prion amplification in systemic lymphoid tissues prior to neuroinvasion and establishment of a carrier state.


Assuntos
Cervos , Príons/patogenicidade , Doença de Emaciação Crônica/fisiopatologia , Animais , Western Blotting , Encéfalo/patologia , Imuno-Histoquímica , Tecido Linfoide/patologia , Proteínas Priônicas/imunologia , Proteínas Priônicas/isolamento & purificação , Príons/fisiologia , Doença de Emaciação Crônica/patologia
19.
J Virol ; 91(10)2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28275192

RESUMO

After oral exposure, the early replication of certain prion strains upon stromal cell-derived follicular dendritic cells (FDC) in the Peyer's patches in the small intestine is essential for the efficient spread of disease to the brain. However, little is known of how prions are initially conveyed from the gut lumen to establish infection on FDC. Our previous data suggest that mononuclear phagocytes such as CD11c+ conventional dendritic cells play an important role in the initial propagation of prions from the gut lumen into Peyer's patches. However, whether these cells conveyed orally acquired prions toward FDC within Peyer's patches was not known. The chemokine CXCL13 is expressed by FDC and follicular stromal cells and modulates the homing of CXCR5-expressing cells toward the FDC-containing B cell follicles. Here, novel compound transgenic mice were created in which a CXCR5 deficiency was specifically restricted to CD11c+ cells. These mice were used to determine whether CXCR5-expressing conventional dendritic cells propagate prions toward FDC after oral exposure. Our data show that in the specific absence of CXCR5-expressing conventional dendritic cells the early accumulation of prions upon FDC in Peyer's patches and the spleen was impaired, and disease susceptibility significantly reduced. These data suggest that CXCR5-expressing conventional dendritic cells play an important role in the efficient propagation of orally administered prions toward FDC within Peyer's patches in order to establish host infection.IMPORTANCE Many natural prion diseases are acquired by oral consumption of contaminated food or pasture. Once the prions reach the brain they cause extensive neurodegeneration, which ultimately leads to death. In order for the prions to efficiently spread from the gut to the brain, they first replicate upon follicular dendritic cells within intestinal Peyer's patches. How the prions are first delivered to follicular dendritic cells to establish infection was unknown. Understanding this process is important since treatments which prevent prions from infecting follicular dendritic cells can block their spread to the brain. We created mice in which mobile conventional dendritic cells were unable to migrate toward follicular dendritic cells. In these mice the early accumulation of prions on follicular dendritic cells was impaired and oral prion disease susceptibility was reduced. This suggests that prions exploit conventional dendritic cells to facilitate their initial delivery toward follicular dendritic cells to establish host infection.


Assuntos
Células Dendríticas Foliculares/imunologia , Encefalopatia Espongiforme Bovina/imunologia , Encefalopatia Espongiforme Bovina/fisiopatologia , Expressão Gênica , Príons/patogenicidade , Receptores CXCR5/genética , Animais , Encéfalo/patologia , Bovinos , Quimiocina CXCL13/genética , Células Dendríticas/patologia , Células Dendríticas/fisiologia , Células Dendríticas Foliculares/patologia , Suscetibilidade a Doenças , Intestino Delgado/imunologia , Intestino Delgado/patologia , Camundongos , Camundongos Transgênicos , Nódulos Linfáticos Agregados/imunologia , Nódulos Linfáticos Agregados/patologia , Príons/fisiologia , Scrapie/fisiopatologia , Baço/imunologia , Baço/patologia
20.
PLoS Genet ; 11(10): e1005567, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26473735

RESUMO

The role of Hsp70 chaperones in yeast prion propagation is well established. Highly conserved Hsp90 chaperones participate in a number of cellular processes, such as client protein maturation, protein degradation, cellular signalling and apoptosis, but little is known about their role in propagation of infectious prion like aggregates. Here, we examine the influence of Hsp90 in the maintenance of yeast prion [URE3] which is a prion form of native protein Ure2, and reveal a previously unknown role of Hsp90 as an important regulator of [URE3] stability. We show that the C-terminal MEEVD pentapeptide motif, but not the client maturation activity of Hsp90, is essential for [URE3] prion stability. In testing deletions of various Hsp90 co-chaperones known to bind this motif, we find the immunophilin homolog Cpr7 is essential for [URE3] propagation. We show that Cpr7 interacts with Ure2 and enhances its fibrillation. The requirement of Cpr7 is specific for [URE3] as its deletion does not antagonize both strong and weak variant of another yeast prion [PSI+], suggesting a distinct role of the Hsp90 co-chaperone with different yeast prions. Our data show that, similar to the Hsp70 family, the Hsp90 chaperones also influence yeast prion maintenance, and that immunophilins could regulate protein multimerization independently of their activity as peptidyl-prolyl isomerases.


Assuntos
Ciclofilinas/genética , Glutationa Peroxidase/genética , Proteínas de Choque Térmico HSP90/genética , Príons/genética , Proteínas de Saccharomyces cerevisiae/genética , Motivos de Aminoácidos/genética , Peptidil-Prolil Isomerase F , Glutationa Peroxidase/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Mitose/genética , Chaperonas Moleculares/genética , Príons/metabolismo , Príons/fisiologia , Ligação Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA