Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.142
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Mol Cell ; 84(10): 1948-1963.e11, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38759627

RESUMO

The yeast glucose-induced degradation-deficient (GID) E3 ubiquitin ligase forms a suite of complexes with interchangeable receptors that selectively recruit N-terminal degron motifs of metabolic enzyme substrates. The orthologous higher eukaryotic C-terminal to LisH (CTLH) E3 complex has been proposed to also recognize substrates through an alternative subunit, WDR26, which promotes the formation of supramolecular CTLH E3 assemblies. Here, we discover that human WDR26 binds the metabolic enzyme nicotinamide/nicotinic-acid-mononucleotide-adenylyltransferase 1 (NMNAT1) and mediates its CTLH E3-dependent ubiquitylation independently of canonical GID/CTLH E3-family substrate receptors. The CTLH subunit YPEL5 inhibits NMNAT1 ubiquitylation and cellular turnover by WDR26-CTLH E3, thereby affecting NMNAT1-mediated metabolic activation and cytotoxicity of the prodrug tiazofurin. Cryoelectron microscopy (cryo-EM) structures of NMNAT1- and YPEL5-bound WDR26-CTLH E3 complexes reveal an internal basic degron motif of NMNAT1 essential for targeting by WDR26-CTLH E3 and degron mimicry by YPEL5's N terminus antagonizing substrate binding. Thus, our data provide a mechanistic understanding of how YPEL5-WDR26-CTLH E3 acts as a modulator of NMNAT1-dependent metabolism.


Assuntos
Nicotinamida-Nucleotídeo Adenililtransferase , Pró-Fármacos , Ubiquitina-Proteína Ligases , Ubiquitinação , Humanos , Microscopia Crioeletrônica , Células HEK293 , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo , Nicotinamida-Nucleotídeo Adenililtransferase/genética , Pró-Fármacos/metabolismo , Ligação Proteica , Especificidade por Substrato , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
2.
Nature ; 632(8023): 39-49, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39085542

RESUMO

In this Review, we explore natural product antibiotics that do more than simply inhibit an active site of an essential enzyme. We review these compounds to provide inspiration for the design of much-needed new antibacterial agents, and examine the complex mechanisms that have evolved to effectively target bacteria, including covalent binders, inhibitors of resistance, compounds that utilize self-promoted entry, those that evade resistance, prodrugs, target corrupters, inhibitors of 'undruggable' targets, compounds that form supramolecular complexes, and selective membrane-acting agents. These are exemplified by ß-lactams that bind covalently to inhibit transpeptidases and ß-lactamases, siderophore chimeras that hijack import mechanisms to smuggle antibiotics into the cell, compounds that are activated by bacterial enzymes to produce reactive molecules, and antibiotics such as aminoglycosides that corrupt, rather than merely inhibit, their targets. Some of these mechanisms are highly sophisticated, such as the preformed ß-strands of darobactins that target the undruggable ß-barrel chaperone BamA, or teixobactin, which binds to a precursor of peptidoglycan and then forms a supramolecular structure that damages the membrane, impeding the emergence of resistance. Many of the compounds exhibit more than one notable feature, such as resistance evasion and target corruption. Understanding the surprising complexity of the best antimicrobial compounds provides a roadmap for developing novel compounds to address the antimicrobial resistance crisis by mining for new natural products and inspiring us to design similarly sophisticated antibiotics.


Assuntos
Antibacterianos , Bactérias , Produtos Biológicos , Animais , Humanos , Aminoglicosídeos/farmacologia , Aminoglicosídeos/química , Aminoglicosídeos/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/metabolismo , Bactérias/efeitos dos fármacos , Bactérias/enzimologia , Bactérias/metabolismo , Antibióticos beta Lactam/química , Antibióticos beta Lactam/farmacologia , Inibidores de beta-Lactamases/química , Inibidores de beta-Lactamases/farmacologia , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Produtos Biológicos/metabolismo , Desenho de Fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Peptidil Transferases/antagonistas & inibidores , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Pró-Fármacos/metabolismo , Sideróforos/metabolismo , Sideróforos/química , Sideróforos/farmacologia
3.
Nature ; 589(7843): 597-602, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33361818

RESUMO

Isoprenoids are vital for all organisms, in which they maintain membrane stability and support core functions such as respiration1. IspH, an enzyme in the methyl erythritol phosphate pathway of isoprenoid synthesis, is essential for Gram-negative bacteria, mycobacteria and apicomplexans2,3. Its substrate, (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP), is not produced in metazoans, and in humans and other primates it activates cytotoxic Vγ9Vδ2 T cells at extremely low concentrations4-6. Here we describe a class of IspH inhibitors and refine their potency to nanomolar levels through structure-guided analogue design. After modification of these compounds into prodrugs for delivery into bacteria, we show that they kill clinical isolates of several multidrug-resistant bacteria-including those from the genera Acinetobacter, Pseudomonas, Klebsiella, Enterobacter, Vibrio, Shigella, Salmonella, Yersinia, Mycobacterium and Bacillus-yet are relatively non-toxic to mammalian cells. Proteomic analysis reveals that bacteria treated with these prodrugs resemble those after conditional IspH knockdown. Notably, these prodrugs also induce the expansion and activation of human Vγ9Vδ2 T cells in a humanized mouse model of bacterial infection. The prodrugs we describe here synergize the direct killing of bacteria with a simultaneous rapid immune response by cytotoxic γδ T cells, which may limit the increase of antibiotic-resistant bacterial populations.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Proteínas de Escherichia coli/antagonistas & inibidores , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/imunologia , Ativação Linfocitária/efeitos dos fármacos , Viabilidade Microbiana/efeitos dos fármacos , Oxirredutases/antagonistas & inibidores , Linfócitos T Citotóxicos/efeitos dos fármacos , Animais , Resistência Microbiana a Medicamentos , Resistência a Múltiplos Medicamentos , Inibidores Enzimáticos/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Feminino , Meia-Vida , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Oxirredutases/deficiência , Oxirredutases/genética , Oxirredutases/metabolismo , Pró-Fármacos/farmacocinética , Pró-Fármacos/farmacologia , Especificidade por Substrato , Suínos/sangue , Linfócitos T Citotóxicos/imunologia
4.
Proc Natl Acad Sci U S A ; 121(20): e2318119121, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38709930

RESUMO

Brain metastasis of advanced breast cancer often results in deleterious consequences. Metastases to the brain lead to significant challenges in treatment options, as the blood-brain barrier (BBB) prevents conventional therapy. Thus, we hypothesized that creation of a nanoparticle (NP) that distributes to both primary tumor site and across the BBB for secondary brain tumor can be extremely beneficial. Here, we report a simple targeting strategy to attack both the primary breast and secondary brain tumors utilizing a single NP platform. The nature of these mitochondrion-targeted, BBB-penetrating NPs allow for simultaneous targeting and drug delivery to the hyperpolarized mitochondrial membrane of the extracranial primary tumor site in addition to tumors at the brain. By utilizing a combination of such dual anatomical distributing NPs loaded with therapeutics, we demonstrate a proof-of-concept idea to combat the increased metabolic plasticity of brain metastases by lowering two major energy sources, oxidative phosphorylation (OXPHOS) and glycolysis. By utilizing complementary studies and genomic analyses, we demonstrate the utility of a chemotherapeutic prodrug to decrease OXPHOS and glycolysis by pairing with a NP loaded with pyruvate dehydrogenase kinase 1 inhibitor. Decreasing glycolysis aims to combat the metabolic flexibility of both primary and secondary tumors for therapeutic outcome. We also address the in vivo safety parameters by addressing peripheral neuropathy and neurobehavior outcomes. Our results also demonstrate that this combination therapeutic approach utilizes mitochondrial genome targeting strategy to overcome DNA repair-based chemoresistance mechanisms.


Assuntos
Barreira Hematoencefálica , Neoplasias Encefálicas , Neoplasias da Mama , Nanopartículas , Fosforilação Oxidativa , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/patologia , Animais , Humanos , Feminino , Nanopartículas/química , Camundongos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Fosforilação Oxidativa/efeitos dos fármacos , Linhagem Celular Tumoral , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Glicólise/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico
5.
Proc Natl Acad Sci U S A ; 120(21): e2304081120, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37186828

RESUMO

Chemotherapy typically destroys the tumor mass but rarely eradicates the cancer stem cells (CSCs) that can drive metastatic recurrence. A key current challenge is finding ways to eradicate CSCs and suppress their characteristics. Here, we report a prodrug, Nic-A, created by combining a carbonic anhydrase IX (CAIX) inhibitor, acetazolamide, with a signal transducer and transcriptional activator 3 (STAT3) inhibitor, niclosamide. Nic-A was designed to target triple-negative breast cancer (TNBC) CSCs and was found to inhibit both proliferating TNBC cells and CSCs via STAT3 dysregulation and suppression of CSC-like properties. Its use leads to a decrease in aldehyde dehydrogenase 1 activity, CD44high/CD24low stem-like subpopulations, and tumor spheroid-forming ability. TNBC xenograft tumors treated with Nic-A exhibited decreased angiogenesis and tumor growth, as well as decreased Ki-67 expression and increased apoptosis. In addition, distant metastases were suppressed in TNBC allografts derived from a CSC-enriched population. This study thus highlights a potential strategy for addressing CSC-based cancer recurrence.


Assuntos
Pró-Fármacos , Neoplasias de Mama Triplo Negativas , Humanos , Linhagem Celular Tumoral , Neoplasias de Mama Triplo Negativas/metabolismo , Niclosamida/farmacologia , Niclosamida/metabolismo , Niclosamida/uso terapêutico , Pró-Fármacos/uso terapêutico , Recidiva Local de Neoplasia/patologia , Fatores de Transcrição/metabolismo , Células-Tronco Neoplásicas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Nat Methods ; 19(2): 205-215, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35132245

RESUMO

Transgenic expression of bacterial nitroreductase (NTR) enzymes sensitizes eukaryotic cells to prodrugs such as metronidazole (MTZ), enabling selective cell-ablation paradigms that have expanded studies of cell function and regeneration in vertebrates. However, first-generation NTRs required confoundingly toxic prodrug treatments to achieve effective cell ablation, and some cell types have proven resistant. Here we used rational engineering and cross-species screening to develop an NTR variant, NTR 2.0, which exhibits ~100-fold improvement in MTZ-mediated cell-specific ablation efficacy, eliminating the need for near-toxic prodrug treatment regimens. NTR 2.0 therefore enables sustained cell-loss paradigms and ablation of previously resistant cell types. These properties permit enhanced interrogations of cell function, extended challenges to the regenerative capacities of discrete stem cell niches, and novel modeling of chronic degenerative diseases. Accordingly, we have created a series of bipartite transgenic reporter/effector resources to facilitate dissemination of NTR 2.0 to the research community.


Assuntos
Metronidazol/farmacologia , Nitrorredutases/metabolismo , Pró-Fármacos/química , Animais , Animais Geneticamente Modificados , Células CHO , Cricetulus , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Metronidazol/farmacocinética , Nitrorredutases/química , Nitrorredutases/genética , Pró-Fármacos/farmacologia , Engenharia de Proteínas/métodos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Retina/citologia , Retina/efeitos dos fármacos , Vibrio/enzimologia , Peixe-Zebra/genética
7.
Nat Chem Biol ; 19(2): 151-158, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36253550

RESUMO

Colibactin, a DNA cross-linking agent produced by gut bacteria, is implicated in colorectal cancer. Its biosynthesis uses a prodrug resistance mechanism: a non-toxic precursor assembled in the cytoplasm is activated after export to the periplasm. This activation is mediated by ClbP, an inner-membrane peptidase with an N-terminal periplasmic catalytic domain and a C-terminal three-helix transmembrane domain. Although the transmembrane domain is required for colibactin activation, its role in catalysis is unclear. Our structure of full-length ClbP bound to a product analog reveals an interdomain interface important for substrate binding and enzyme stability and interactions that explain the selectivity of ClbP for the N-acyl-D-asparagine prodrug motif. Based on structural and biochemical evidence, we propose that ClbP dimerizes to form an extended substrate-binding site that can accommodate a pseudodimeric precolibactin with its two terminal prodrug motifs in the two ClbP active sites, thus enabling the coordinated activation of both electrophilic warheads.


Assuntos
Proteínas de Escherichia coli , Pró-Fármacos , Peptídeo Hidrolases/química , Escherichia coli/metabolismo , Peptídeos/química , Proteínas de Escherichia coli/metabolismo
8.
Nature ; 569(7757): 509-513, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31068699

RESUMO

A universal gain-of-function approach for selective and temporal control of protein activity in living systems is crucial to understanding dynamic cellular processes. Here we report development of a computationally aided and genetically encoded proximal decaging (hereafter, CAGE-prox) strategy that enables time-resolved activation of a broad range of proteins in living cells and mice. Temporal blockage of protein activity was computationally designed and realized by genetic incorporation of a photo-caged amino acid in proximity to the functional site of the protein, which can be rapidly removed upon decaging, resulting in protein re-activation. We demonstrate the wide applicability of our method on diverse protein families, which enabled orthogonal tuning of cell signalling and immune responses, temporal profiling of proteolytic substrates upon caspase activation as well as the development of protein-based pro-drug therapy. We envision that CAGE-prox will open opportunities for the gain-of-function study of proteins and dynamic biological processes with high precision and temporal resolution.


Assuntos
Sobrevivência Celular , Proteínas/metabolismo , Animais , Caspase 3/genética , Caspase 3/metabolismo , Linhagem Celular , Ativação Enzimática , Mutação com Ganho de Função , Humanos , Masculino , Camundongos , Neoplasias/tratamento farmacológico , Fosfotransferases/metabolismo , Pró-Fármacos/metabolismo , Pró-Fármacos/uso terapêutico , Proteínas/genética , Proteínas/imunologia , Proteínas/uso terapêutico , Proteólise , Proteômica , Transdução de Sinais , Fatores de Tempo
9.
Nucleic Acids Res ; 51(1): 144-165, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36546765

RESUMO

The emergence of drug-resistant Mycobacterium tuberculosis strains highlights the need to discover anti-tuberculosis drugs with novel mechanisms of action. Here we discovered a mycobactericidal strategy based on the prodrug activation of selected chemical derivatives classified as nitronaphthofurans (nNFs) mediated by the coordinated action of the sigH and mrx2 genes. The transcription factor SigH is a key regulator of an extensive transcriptional network that responds to oxidative, nitrosative, and heat stresses in M. tuberculosis. The nNF action induced the SigH stress response which in turn induced the mrx2 overexpression. The nitroreductase Mrx2 was found to activate nNF prodrugs, killing replicating, non-replicating and intracellular forms of M. tuberculosis. Analysis of SigH DNA sequences obtained from spontaneous nNF-resistant M. tuberculosis mutants suggests disruption of SigH binding to the mrx2 promoter site and/or RNA polymerase core, likely promoting the observed loss of transcriptional control over Mrx2. Mutations found in mrx2 lead to structural defects in the thioredoxin fold of the Mrx2 protein, significantly impairing the activity of the Mrx2 enzyme against nNFs. Altogether, our work brings out the SigH/Mrx2 stress response pathway as a promising target for future drug discovery programs.


Assuntos
Antibacterianos , Mycobacterium tuberculosis , Pró-Fármacos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Resposta ao Choque Térmico/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Pró-Fármacos/farmacologia , Regiões Promotoras Genéticas , Transcrição Gênica , Antibacterianos/farmacologia
10.
Proc Natl Acad Sci U S A ; 119(44): e2208593119, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36279462

RESUMO

Supramolecular self-assemblies of hydrophilic macromolecules functionalized with hydrophobic, structure-directing components have long been used for drug delivery. In these systems, loading of poorly soluble compounds is typically achieved through physical encapsulation during or after formation of the supramolecular assembly, resulting in low encapsulation efficiencies and limited control over release kinetics, which are predominately governed by diffusion and carrier degradation. To overcome these limitations, amphiphilic prodrugs that leverage a hydrophobic drug as both the therapeutic and structure-directing component can be used to create supramolecular materials with higher loading and controlled-release kinetics using biodegradable or enzymatically cleavable linkers. Here, we report the design, synthesis, and characterization of a library of supramolecular polymer prodrugs based on poly(ethylene glycol) (PEG) and the proregenerative drug 1,4-dihydrophenonthrolin-4-one-3-carboxylic acid (DPCA). Structure-property relationships were elucidated through experimental characterization of prodrug behavior in both the wet and dry states using scattering techniques and electron microscopy and corroborated by coarse-grained modeling. Molecular architecture and the hydrophobic-to-hydrophilic ratio of PEG-DPCA conjugates strongly influenced their physical state in water, ranging from fully soluble to supramolecular spherical assemblies and nanofibers. Molecular design and supramolecular structure, in turn, were shown to dramatically alter hydrolytic and enzymatic release and cellular transport of DPCA. In addition to potentially expanding therapeutic options for DPCA through control of supramolecular assemblies, the design principles elaborated here may inform the development of other supramolecular prodrugs based on hydrophobic small-molecule compounds.


Assuntos
Pró-Fármacos , Pró-Fármacos/química , Preparações de Ação Retardada , Polietilenoglicóis/química , Água , Ácidos Carboxílicos
11.
Proc Natl Acad Sci U S A ; 119(28): e2201423119, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35867758

RESUMO

Treatments for advanced and recurrent ovarian cancer remain a challenge due to a lack of potent, selective, and effective therapeutics. Here, we developed the basis for a transformative anticancer strategy based on anthrax toxin that has been engineered to be selectively activated by the catalytic power of zymogen-activating proteases on the surface of malignant tumor cells to induce cell death. Exposure to the engineered toxin is cytotoxic to ovarian tumor cell lines and ovarian tumor spheroids derived from patient ascites. Preclinical studies demonstrate that toxin treatment induces tumor regression in several in vivo ovarian cancer models, including patient-derived xenografts, without adverse side effects, supportive of progression toward clinical evaluation. These data lay the groundwork for developing therapeutics for treating women with late-stage and recurrent ovarian cancers, utilizing a mechanism distinct from current anticancer therapies.


Assuntos
Antígenos de Bactérias , Antineoplásicos , Toxinas Bacterianas , Neoplasias Ovarianas , Pró-Fármacos , Serina Proteases , Antígenos de Bactérias/farmacologia , Antígenos de Bactérias/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Toxinas Bacterianas/farmacologia , Toxinas Bacterianas/uso terapêutico , Linhagem Celular Tumoral , Precursores Enzimáticos/metabolismo , Feminino , Humanos , Recidiva Local de Neoplasia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Serina Proteases/metabolismo , Esferoides Celulares , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Chem Soc Rev ; 53(4): 2099-2210, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38226865

RESUMO

The delivery of a drug to a specific organ or tissue at an efficacious concentration is the pharmacokinetic (PK) hallmark of promoting effective pharmacological action at a target site with an acceptable safety profile. Sub-optimal pharmaceutical or ADME profiles of drug candidates, which can often be a function of inherently poor physicochemical properties, pose significant challenges to drug discovery and development teams and may contribute to high compound attrition rates. Medicinal chemists have exploited prodrugs as an informed strategy to productively enhance the profiles of new chemical entities by optimizing the physicochemical, biopharmaceutical, and pharmacokinetic properties as well as selectively delivering a molecule to the site of action as a means of addressing a range of limitations. While discovery scientists have traditionally employed prodrugs to improve solubility and membrane permeability, the growing sophistication of prodrug technologies has enabled a significant expansion of their scope and applications as an empowering tool to mitigate a broad range of drug delivery challenges. Prodrugs have emerged as successful solutions to resolve non-linear exposure, inadequate exposure to support toxicological studies, pH-dependent absorption, high pill burden, formulation challenges, lack of feasibility of developing solid and liquid dosage forms, first-pass metabolism, high dosing frequency translating to reduced patient compliance and poor site-specific drug delivery. During the period 2012-2022, the US Food and Drug Administration (FDA) approved 50 prodrugs, which amounts to 13% of approved small molecule drugs, reflecting both the importance and success of implementing prodrug approaches in the pursuit of developing safe and effective drugs to address unmet medical needs.


Assuntos
Pró-Fármacos , Humanos , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Sistemas de Liberação de Medicamentos , Descoberta de Drogas , Solubilidade , Poder Psicológico
13.
Chem Soc Rev ; 53(12): 6511-6567, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38775004

RESUMO

Polymer prodrugs are based on the covalent linkage of therapeutic molecules to a polymer structure which avoids the problems and limitations commonly encountered with traditional drug-loaded nanocarriers in which drugs are just physically entrapped (e.g., burst release, poor drug loadings). In the past few years, reversible-deactivation radical polymerization (RDRP) techniques have been extensively used to design tailor-made polymer prodrug nanocarriers. This synthesis strategy has received a lot of attention due to the possibility of fine tuning their structural parameters (e.g., polymer nature and macromolecular characteristics, linker nature, physico-chemical properties, functionalization, etc.), to achieve optimized drug delivery and therapeutic efficacy. In particular, adjusting the nature of the drug-polymer linker has enabled the easy synthesis of stimuli-responsive polymer prodrugs for efficient spatiotemporal drug release. In this context, this review article will give an overview of the different stimuli-sensitive polymer prodrug structures designed by RDRP techniques, with a strong focus on the synthesis strategies, the macromolecular architectures and in particular the drug-polymer linker, which governs the drug release kinetics and eventually the therapeutic effect. Their biological evaluations will also be discussed.


Assuntos
Portadores de Fármacos , Polimerização , Pró-Fármacos , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Pró-Fármacos/síntese química , Portadores de Fármacos/química , Humanos , Polímeros/química , Polímeros/síntese química , Nanopartículas/química , Liberação Controlada de Fármacos , Radicais Livres/química
14.
Nano Lett ; 24(28): 8741-8751, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38953486

RESUMO

The degradation of oncoproteins mediated by proteolysis-targeting chimera (PROTAC) has emerged as a potent strategy in cancer therapy. However, the clinical application of PROTACs is hampered by challenges such as poor water solubility and off-target adverse effects. Herein, we present an ultrasound (US)-activatable PROTAC prodrug termed NPCe6+PRO for actuating efficient sono-immunotherapy in a spatiotemporally controllable manner. Specifically, US irradiation, which exhibits deep-tissue penetration capability, results in Ce6-mediated generation of ROS, facilitating sonodynamic therapy (SDT) and inducing immunogenic cell death (ICD). Simultaneously, the generated ROS cleaves the thioketal (TK) linker through a ROS-responsive mechanism, realizing the on-demand activation of the PROTAC prodrug in deep tissues. This prodrug activation results in the degradation of the target protein BRD4, while simultaneously reversing the upregulation of PD-L1 expression associated with the SDT process. In the orthotopic mouse model of pancreatic tumors, NPCe6+PRO effectively suppressed tumor growth in conjunction with US stimulation.


Assuntos
Imunoterapia , Neoplasias Pancreáticas , Pró-Fármacos , Animais , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Pró-Fármacos/química , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/imunologia , Camundongos , Humanos , Linhagem Celular Tumoral , Proteólise/efeitos dos fármacos , Terapia por Ultrassom/métodos , Antígeno B7-H1 , Fatores de Transcrição , Proteínas de Ciclo Celular , Espécies Reativas de Oxigênio/metabolismo , Proteínas que Contêm Bromodomínio
15.
Nano Lett ; 24(12): 3759-3767, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38478977

RESUMO

Prodrug nanoassemblies are emerging as a novel drug delivery system for chemotherapy, comprising four fundamental modules: a drug module, a modification module, a response module, and a surface functionalization module. Among these modules, surface functionalization is an essential process to enhance the biocompatibility and stability of the nanoassemblies. Here, we selected mitoxantrone (MTO) as the drug module and DSPE-PEG2K as surface functionalization module to develop MTO prodrug nanoassemblies. We systematically evaluated the effect of surface functionalization module ratios (10%, 20%, 40%, and 60% of prodrug, WDSPE-mPEG2000/Wprodrug) on the prodrug nanoassemblies. The results indicated that 40% NPs significantly improved the self-assembly stability and cellular uptake of prodrug nanoassemblies. Compared with MTO solution, 40% NPs showed better tumor specificity and pharmacokinetics, resulting in potent antitumor activity with a good safety profile. These findings highlighted the pivotal role of the surface functionalization module in regulating the performance of mitoxantrone prodrug nanoassemblies for cancer treatment.


Assuntos
Antineoplásicos , Nanopartículas , Pró-Fármacos , Mitoxantrona , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos
16.
Nano Lett ; 24(1): 394-401, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38147432

RESUMO

The prodrug-based nanoassemblies offer an alternative to settle the deficiencies of traditional chemotherapy drugs. In this nanosystem, prodrugs typically comprise drug modules, modification modules, and response modules. The response modules are crucial for facilitating the accurate conversion of prodrugs at specific sites. In this work, we opted for differentiated disulfide bonds as response modules to construct docetaxel (DTX) prodrug nanoassemblies. Interestingly, a subtle change in response modules leads to a "U-shaped" conversion rate of DTX-prodrug nanoassemblies. Prodrug nanoassemblies with the least carbon numbers between the disulfide bond and ester bond (PDONα) offered the fastest conversion rate, resulting in powerful treatment outcomes with some unavoidable toxic effects. PDONß, with more carbon numbers, possessed a slow conversion rate and poor antitumor efficacy but good tolerance. With most carbon numbers in PDONγ, it demonstrated a moderate conversion rate and antitumor effect but induced a risk of lethality. Our study explored the function of response modules and highlighted their importance in prodrug development.


Assuntos
Antineoplásicos , Nanopartículas , Pró-Fármacos , Docetaxel , Pró-Fármacos/química , Linhagem Celular Tumoral , Dissulfetos/química , Carbono , Antineoplásicos/farmacologia , Nanopartículas/química
17.
Nano Lett ; 24(7): 2242-2249, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38346395

RESUMO

Bioorthogonal catalysis employing transition metal catalysts is a promising strategy for the in situ synthesis of imaging and therapeutic agents in biological environments. The transition metal Pd has been widely used as a bioorthogonal catalyst, but bare Pd poses challenges in water solubility and catalyst stability in cellular environments. In this work, Pd(0) loaded amphiphilic polymeric nanoparticles are applied to shield Pd in the presence of living cells for the in situ generation of a fluorescent dye and anticancer drugs. Pd(0) loaded polymeric nanoparticles prepared by the reduction of the corresponding Pd(II)-polymeric nanoparticles are highly active in the deprotection of pro-rhodamine dye and anticancer prodrugs, giving significant fluorescence enhancement and toxigenic effects, respectively, in HepG2 cells. In addition, we show that the microstructure of the polymeric nanoparticles for scaffolding Pd plays a critical role in tuning the catalytic efficiency, with the use of the ligand triphenylphosphine as a key factor for improving the catalyst stability in biological environments.


Assuntos
Antineoplásicos , Nanopartículas , Pró-Fármacos , Humanos , Pró-Fármacos/química , Antineoplásicos/química , Nanopartículas/química , Polímeros/química , Células Hep G2 , Catálise
18.
Nano Lett ; 24(29): 8929-8939, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38865330

RESUMO

Bioorthogonal chemistry represents a powerful tool in chemical biology, which shows great potential in epigenetic modulation. As a proof of concept, the epigenetic modulation model of mitochondrial DNA (mtDNA) is selected because mtDNA establishes a relative hypermethylation stage under oxidative stress, which impairs the mitochondrion-based therapeutic effect during cancer therapy. Herein, we design a new biocompatible hydrogen-bonded organic framework (HOF) for a HOF-based mitochondrion-targeting bioorthogonal platform TPP@P@PHOF-2. PHOF-2 can activate a prodrug (pro-procainamide) in situ, which can specifically inhibit DNA methyltransferase 1 (DNMT1) activity and remodel the epigenetic modification of mtDNA, making it more susceptible to ROS damage. In addition, PHOF-2 can also catalyze artemisinin to produce large amounts of ROS, effectively damaging mtDNA and achieving better chemodynamic therapy demonstrated by both in vitro and in vivo studies. This work provides new insights into developing advanced bioorthogonal therapy and expands the applications of HOF and bioorthogonal catalysis.


Assuntos
DNA Mitocondrial , Epigênese Genética , Mitocôndrias , Espécies Reativas de Oxigênio , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Humanos , DNA Mitocondrial/genética , Epigênese Genética/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Ligação de Hidrogênio , Animais , Camundongos , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/antagonistas & inibidores , DNA (Citosina-5-)-Metiltransferase 1/genética , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia
19.
Med Res Rev ; 44(3): 1013-1054, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38140851

RESUMO

The burgeoning prodrug strategy offers a promising avenue toward improving the efficacy and specificity of cytotoxic drugs. Elevated intracellular levels of glutathione (GSH) have been regarded as a hallmark of tumor cells and characteristic feature of the tumor microenvironment. Considering the pivotal involvement of elevated GSH in the tumorigenic process, a diverse repertoire of GSH-triggered prodrugs has been developed for cancer therapy, facilitating the attenuation of deleterious side effects associated with conventional chemotherapeutic agents and/or the attainment of more efficacious therapeutic outcomes. These prodrug formulations encompass a spectrum of architectures, spanning from small molecules to polymer-based and organic-inorganic nanomaterial constructs. Although the GSH-triggered prodrugs have been gaining increasing interests, a comprehensive review of the advancements made in the field is still lacking. To fill the existing lacuna, this review undertakes a retrospective analysis of noteworthy research endeavors, based on a categorization of these molecules by their diverse recognition units (i.e., disulfides, diselenides, Michael acceptors, and sulfonamides/sulfonates). This review also focuses on explaining the distinct benefits of employing various chemical architecture strategies in the design of these prodrug agents. Furthermore, we highlight the potential for synergistic functionality by incorporating multiple-targeting conjugates, theranostic entities, and combinational treatment modalities, all of which rely on the GSH-triggering. Overall, an extensive overview of the emerging field is presented in this review, highlighting the obstacles and opportunities that lie ahead. Our overarching goal is to furnish methodological guidance for the development of more efficacious GSH-triggered prodrugs in the future. By assessing the pros and cons of current GSH-triggered prodrugs, we expect that this review will be a handful reference for prodrug design, and would provide a guidance for improving the properties of prodrugs and discovering novel trigger scaffolds for constructing GSH-triggered prodrugs.


Assuntos
Antineoplásicos , Pró-Fármacos , Humanos , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Estudos Retrospectivos , Antineoplásicos/farmacologia , Antineoplásicos/química , Glutationa/química , Linhagem Celular Tumoral
20.
Biochemistry ; 63(20): 2580-2593, 2024 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-39359146

RESUMO

As a traceless, bioreversible modification, the esterification of carboxyl groups in peptides and proteins has the potential to increase their clinical utility. An impediment is the lack of strategies to quantify esterase-catalyzed hydrolysis rates for esters in esterified biologics. We have developed a continuous Förster resonance energy transfer (FRET) assay for esterase activity based on a peptidic substrate and a protease, Glu-C, that cleaves a glutamyl peptide bond only if the glutamyl side chain is a free acid. Using pig liver esterase (PLE) and human carboxylesterases, we validated the assay with substrates containing simple esters (e.g., ethyl) and esters designed to be released by self-immolation upon quinone methide elimination. We found that simple esters were not cleaved by esterases, likely for steric reasons. To account for the relatively low rate of quinone methide elimination, we extended the mathematics of the traditional Michaelis-Menten model to conclude with a first-order intermediate decay step. By exploring two regimes of our substrate → intermediate → product (SIP) model, we evaluated the rate constants for the PLE-catalyzed cleavage of an ester on a glutamyl side chain (kcat/KM = 1.63 × 103 M-1 s-1) and subsequent spontaneous quinone methide elimination to regenerate the unmodified peptide (kI = 0.00325 s-1; t1/2 = 3.55 min). The detection of esterase activity was also feasible in the human intestinal S9 fraction. Our assay and SIP model increase the understanding of the release kinetics of esterified biologics and facilitate the rational design of efficacious peptide prodrugs.


Assuntos
Esterases , Peptídeos , Pró-Fármacos , Pró-Fármacos/química , Pró-Fármacos/metabolismo , Humanos , Animais , Peptídeos/química , Peptídeos/metabolismo , Suínos , Esterases/metabolismo , Esterases/química , Transferência Ressonante de Energia de Fluorescência , Fígado/enzimologia , Cinética , Hidrólise , Especificidade por Substrato , Ésteres/química , Ésteres/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA