RESUMO
There has been a great deal of interest in developing isolated dairy lipid fractions that are rich in phospholipids (PL), due to their health benefits and functional properties. Dairy by-products that contain elevated levels of PL and milk fat globule membrane (MFGM) proteins can be an excellent source for these isolates. The ß stream, a by-product of anhydrous milk fat production, is an excellent candidate because it contains a higher concentration of PL than many other dairy by-products. In this study, we investigated an economically feasible processing method to obtain these valuable components from the ß stream. The use of zinc acetate and calcium acetate, along with mild heat treatment and pH adjustment, was effective in precipitating PL and proteins into a pellet fraction. With an additional extraction from the pellet using ethanol (90% at 70°C), a PL-enriched lipid fraction was obtained. The effective precipitation conditions were zinc acetate of 25 mM concentration at pH greater than 6.5 at 30°C, and calcium acetate of greater than 75 mM concentration at pH greater than 6.5 at 60°C. With ethanol extraction, PL recovery of 97.7 ± 1.7% from the zinc acetate precipitate and 94.9 ± 3.7% from calcium acetate precipitate were achieved.
Assuntos
Acetatos/química , Glicolipídeos/química , Glicoproteínas/química , Proteínas do Leite/isolamento & purificação , Fosfolipídeos/isolamento & purificação , Zinco/química , Animais , Compostos de Cálcio/química , Etanol , Precipitação Fracionada , Temperatura Alta , Concentração de Íons de Hidrogênio , Gotículas Lipídicas , Membranas/química , Proteínas do Leite/química , Fosfolipídeos/química , SolubilidadeRESUMO
Continuous precipitation is a new unit operation for the continuous capture of antibodies. The capture step is based on continuous precipitation with PEG6000 and Zn++ in a tubular reactor integrated with a two-stage continuous tangential flow filtration unit. The precipitate cannot be separated with centrifugation, because a highly compressed sediment results in poor resolubilization. We developed a new two-stage tangential flow microfiltration method, where part of the concentrated retentate of the first stage was directly fed to the second stage, together with the wash buffer. Thus, the precipitate was concentrated and washed in a continuous process. We obtained 97% antibody purity, a 95% process yield during continuous operation, and a fivefold reduction in pre-existing high-molecular-weight impurities. For other unit operations, surge tanks are often required, due to interruptions in the product mass flow out of the unit operation (e.g., the bind/elute mode in periodic counter-current chromatography). Our setup required no surge tanks; thus, it provided a truly continuous antibody capture operation with uninterrupted product mass flow. Continuous virus inactivation and other flow-through unit operations can be readily integrated downstream of the capture step to create truly continuous, integrated, downstream antibody processing without the need for hold tanks.
Assuntos
Anticorpos Monoclonais , Precipitação Fracionada , Imunoglobulina G , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/isolamento & purificação , Células CHO , Cricetulus , Imunoglobulina G/química , Imunoglobulina G/isolamento & purificação , Polietilenoglicóis/química , UltrafiltraçãoRESUMO
Preparative protein precipitation is known as a cost-efficient and easy-to-use alternative to chromatographic purification steps. This said, at the moment, there is no process for monoclonal antibodies (mAb) on the market, although especially polyethylene glycol-induced precipitation has shown great potential. One reason might be the highly complex behavior of each component of a crude feedstock during the precipitation process. For different investigated mAbs, significant variations in the host cell protein (HCP) reduction are observed. In contrast to the precipitation behavior of single components, the interactions and interplay in a complex feedstock are not fully understood yet. This work discusses the influence of contaminants on the precipitation behavior of two different mAbs, an IgG1, and an IgG2. By spiking the mAbs with mock solution, a complex feedstock could successfully be mimicked. Spiking contaminants influenced the yield and purity of the mAbs after the precipitation step, compared to the precipitation behavior of the single components. The mixture showed a decrease in the contaminant and mAb solubility. By re-buffering the mock solution prior to spiking, special salts, small molecules like amino acids, vitamins, or sugars could be depleted while larger ones like HCP or DNA were still present. Therefore, it was possible to distinguish the influence of small molecules and larger ones. Hence, mAb-macromolecular interaction could be identified as a possible reason for the observed higher precipitation propensity, while small molecules of the cell culture medium were identified as solubilisation factors during the precipitation process.
Assuntos
Anticorpos Monoclonais/química , Anticorpos Monoclonais/isolamento & purificação , Precipitação Fracionada , Animais , Células CHO , Cricetinae , Cricetulus , SolubilidadeRESUMO
Background: Wet methods of 1-3, 1-4 -ß-D-glucan isolation from cereals differ mainly in the type of grain fraction used as raw material, the solid-liquid ratio of ß-glucan in raw material vs. solvent used, and the type of aqueous solvent modification (alkali, neutral or acidic). All these factors impact the characterization of the residues finally found in extracts. Oat bran is a rich source of globulin fraction which can be transferred into the extracts, especially when a high pH is employed. Methods: A multi-stage (enzymatic and acidic) purification procedure was performed to remove the residues, especially starch and protein, from ß-glucan isolates from oat of different molar mass. Pancreatin, thermostable α-amylase, amyloglucosidase, and papain were used for consecutive residue removal. Three levels of low pH = 4.5, 3.5 and 3.0 were also tested for effective protein precipitation. Results: The starch hydrolysis and liquefaction significantly facilitate the proteinaceous matter removal although papain usage showed an intensive unfavorable impact on ß-glucan molar mass. Soluble protein content was significantly decreased after pancreatin and α-amylase treatment, while the significant reduction of amine nitrogen was noted after complete starch hydrolysis and a second acidification step. Conclusions: A complex procedure employing different enzymes is needed to successfully reduce the possibly bioactive residues in isolated oat ß-glucan fractions.
Assuntos
Enzimas/metabolismo , Globulinas/isolamento & purificação , Amido/isolamento & purificação , beta-Glucanas/química , Avena , Precipitação Fracionada , Globulinas/química , Concentração de Íons de Hidrogênio , Hidrólise , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Solventes/química , Amido/química , Viscosidade , beta-Glucanas/isolamento & purificaçãoRESUMO
Protein precipitates that arise during bioprocessing can cause manufacturing challenges, but they can also aid in clearance of host-cell protein (HCP) and DNA impurities. Such precipitates differ from many protein precipitates that have been studied previously in their heterogeneous composition, particularly in the presence of high concentrations of the product protein. Here, we characterize the precipitates that form after neutralization of protein A purified and viral-inactivated material of an Fc-fusion protein produced in Chinese hamster ovary cells. The physical growth of precipitate particles was observed by optical microscopy, transmission electron microscopy, dynamic light scattering, and small-angle and ultra-small-angle X-ray scattering to characterize the precipitate microstructure and growth mechanism. The precipitate microstructure is well-described as a mass fractal with fractal dimension approximately 2. The growth is governed by a diffusion-limited aggregation mechanism as indicated by a power-law dependence on time of the size of the principal precipitate particles. Optical microscopy shows that these primary particles can further aggregate into larger particles in a manner that appears to be promoted by mixing. Absorbance experiments at varying pH and salt concentrations reveal that the growth is largely driven by attractive electrostatic interactions, as growth is hindered by an increase in ionic strength. The solution conditions that resulted in the most significant particle growth are also correlated with the greatest removal of soluble impurities (DNA and HCPs). Proteomic analysis of the precipitates allows identification of O ( 100 ) unique HCP impurities, depending on the buffer species (acetate or citrate) used for the viral inactivation. Most of these proteins have pI values near the precipitation pH, supporting the likely importance of electrostatic interactions in driving precipitate formation.
Assuntos
Precipitação Fracionada , Fragmentos Fc das Imunoglobulinas , Modelos Químicos , Proteômica , Proteínas Recombinantes de Fusão , Animais , Células CHO , Cricetinae , Cricetulus , Fragmentos Fc das Imunoglobulinas/biossíntese , Fragmentos Fc das Imunoglobulinas/química , Fragmentos Fc das Imunoglobulinas/isolamento & purificação , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificaçãoRESUMO
High-efficiency particulate air (HEPA) filtration in combination with an electrostatic precipitator (ESP) can be a cost-effective approach to reducing indoor particulate exposure, but ESPs produce ozone. The health effect of combined ESP-HEPA filtration has not been examined. We conducted an intervention study in 89 volunteers. At baseline, the air-handling units of offices and residences for all subjects were comprised of coarse, ESP, and HEPA filtration. During the 5-week long intervention, the subjects were split into 2 groups, 1 with just the ESP removed and the other with both the ESP and HEPA removed. Each subject was measured for cardiopulmonary risk indicators once at baseline, twice during the intervention, and once 2 weeks after baseline conditions were restored. Measured indoor and outdoor PM2.5 and ozone concentrations, coupled with time-activity data, were used to calculate exposures. Removal of HEPA filters increased 24-hour mean PM2.5 exposure by 38 (95% CI: 31, 45) µg/m3 . Removal of ESPs decreased 24-hour mean ozone exposure by 2.2 (2.0, 2.5) ppb. No biomarkers were significantly associated with HEPA filter removal. In contrast, ESP removal was associated with a -16.1% (-21.5%, -10.4%) change in plasma-soluble P-selectin and a -3.0% (-5.1%, -0.8%) change in systolic blood pressure, suggesting reduced cardiovascular risks.
Assuntos
Filtros de Ar , Poluição do Ar em Ambientes Fechados/análise , Precipitação Fracionada/instrumentação , Material Particulado/análise , Eletricidade Estática , Ventilação/instrumentação , Adulto , Poluição do Ar em Ambientes Fechados/efeitos adversos , Biomarcadores/sangue , Pressão Sanguínea , Feminino , Voluntários Saudáveis , Habitação , Humanos , Masculino , Pessoa de Meia-Idade , Ozônio/efeitos adversos , Ozônio/análise , Selectina-P/sangue , Material Particulado/efeitos adversos , Ventilação/métodos , Adulto JovemRESUMO
BACKGROUND: Emerging evidence has identified that exosomes play a pivotal role in intercellular signal transmission. However, the standardized purification techniques to isolate high quality exosomes are still deficient at present. This study was to evaluate reproducibility and efficiency of differential ultracentrifugation and solvent precipitation-based kits by isolating plasma-derived exosomes from oral lichen planus patients. METHODS: Morphology, exosomal biomarkers, particle size distribution, proteomic components, and protein yield of isolated exosomes were evaluated by transmission electron microscope, western blot, laser diffraction instrument, Coomassie staining, and BCA protein assay kit, respectively. RESULTS: TEM displayed representative cup-shaped morphology of exosomes and western blot identified exosomal biomarkers CD9 and CD63. The size distribution showed that particles by differential ultracentrifugation were mainly from 26.15 nm to 166.5 nm, while some of the particles obtained by solvent precipitation kits were larger than 1,000 nm. In addition, exosomes isolated by solvent precipitation kits showed a significantly higher amount of protein yield due to plasma albumin contamination. CONCLUSIONS: Both differential ultracentrifugation and precipitation based kits could successfully isolate plasma exosomes, and exosomes by differential ultracentrifugation were purer and more appropriate for further proteomic analysis.
Assuntos
Exossomos/metabolismo , Precipitação Fracionada/métodos , Líquen Plano Bucal/sangue , Solventes/química , Ultracentrifugação/métodos , Adulto , Idoso , Biomarcadores/sangue , Exossomos/ultraestrutura , Feminino , Humanos , Líquen Plano Bucal/metabolismo , Masculino , Microscopia Eletrônica de Transmissão , Pessoa de Meia-Idade , Proteômica , Reprodutibilidade dos Testes , Adulto JovemRESUMO
Quality of the analytical data obtained for large-scale and long term bioanalytical studies based on liquid chromatography depends on a number of experimental factors including the choice of sample preparation method. This review discusses this tedious part of bioanalytical studies, applied to large-scale samples and using liquid chromatography coupled with different detector types as core analytical technique. The main sample preparation methods included in this paper are protein precipitation, liquid-liquid extraction, solid-phase extraction, derivatization and their versions. They are discussed by analytical performances, fields of applications, advantages and disadvantages. The cited literature covers mainly the analytical achievements during the last decade, although several previous papers became more valuable in time and they are included in this review.
Assuntos
Métodos Analíticos de Preparação de Amostras/métodos , Materiais Biocompatíveis/química , Cromatografia Líquida/métodos , Animais , Precipitação Fracionada/métodos , Humanos , Extração Líquido-Líquido/métodos , Preparações Farmacêuticas/química , Extração em Fase Sólida/métodosRESUMO
Malaria is a vector-borne disease affecting more than two million people and accounting for more than 600,000 deaths each year, especially in developing countries. The most serious form of malaria is caused by Plasmodium falciparum. The complex life cycle of this parasite, involving pre-erythrocytic, asexual and sexual stages, makes vaccine development cumbersome but also offers a broad spectrum of vaccine candidates targeting exactly those stages. Vaccines targeting the sexual stage of P. falciparum are called transmission-blocking vaccines (TBVs). They do not confer protection for the vaccinated individual but aim to reduce or prevent the transmission of the parasite within a population and are therefore regarded as an essential tool in the fight against the disease. Malaria predominantly affects large populations in developing countries, so TBVs need to be produced in large quantities at low cost. Combining the advantages of eukaryotic expression with a virtually unlimited upscaling potential and a good product safety profile, plant-based expression systems represent a suitable alternative for the production of TBVs. We report here the high level (300 µg/g fresh leaf weight (FLW)) transient expression in Nicotiana benthamiana leaves of an effective TBV candidate based on a fusion protein F0 comprising Pfs25 and the C0-domain of Pfs230, and the implementation of a simple and cost-effective heat treatment step for purification that yields intact recombinant protein at >90% purity with a recovery rate of >70%. The immunization of mice clearly showed that antibodies raised against plant-derived F0 completely blocked the formation of oocysts in a malaria transmission-blocking assay (TBA) making F0 an interesting TBV candidate or a component of a multi-stage malaria vaccine cocktail.
Assuntos
Antígenos de Protozoários/isolamento & purificação , Precipitação Fracionada , Vacinas Antimaláricas/isolamento & purificação , Nicotiana/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Protozoários/isolamento & purificação , Proteínas Recombinantes de Fusão/isolamento & purificação , Animais , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Antígenos de Protozoários/metabolismo , Temperatura Alta , Vacinas Antimaláricas/genética , Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/metabolismo , Camundongos , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Nicotiana/genética , Vacinação/métodosRESUMO
Histidine decarboxylase (HDC) from Enterobacter aerogenes DL-1 was purified in a three-step procedure involving ammonium sulfate precipitation, Sephadex G-100, and DEAE-Sepharose column chromatography. The partially purified enzyme showed a single protein band of 52.4 kD on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The optimum pH for HDC activity was 6.5, and the enzyme was stable between pH 4 and 8. Enterobacter aerogenes HDC had optimal activity at 40°C and retained most of its activity between 4 and 50°C. HDC activity was reduced in the presence of numerous tested compounds. Particularly with SDS, it significantly (p < 0.01) inhibited enzyme activity. Conversely, Ca(2+) and Mn(2+) showed prominent activation effects (p < 0.01) with activity increasing to 117.20% and 123.42%, respectively. The Lineweaver-Burk plot showed that K m and V max values of the enzyme for L-histidine were 0.21 mM and 71.39 µmol/min, respectively. In comparison with most HDCs from other microorganisms and animals, HDC from E. aerogenes DL-1 displayed higher affinity and greater reaction velocity toward L-histidine.
Assuntos
Cromatografia DEAE-Celulose/métodos , Enterobacter aerogenes/classificação , Enterobacter aerogenes/enzimologia , Precipitação Fracionada/métodos , Histidina Descarboxilase/química , Histidina Descarboxilase/isolamento & purificação , Perciformes/microbiologia , Sequência de Aminoácidos , Animais , Ativação Enzimática , Estabilidade Enzimática , Histidina Descarboxilase/metabolismo , Dados de Sequência Molecular , Especificidade da EspécieRESUMO
Resveratrol, a natural polyphenolic component, has inspired considerable interest for its extensive physiological activities. However, the poor solubility of resveratrol circumscribes its therapeutic applications. The purpose of this study was to optimize and prepare resveratrol nanosuspensions using the antisolvent precipitation method. The effects of crucial formulation and process variables (drug concentration, stabilizer, and surfactant contents) on particle size were investigated by utilizing a three-factor three-level Box-Behnken design (BBD) to perform this experiment. Different mathematical polynomial models were used to identify the impact of selected parameters and to evaluate their interrelationship for predictive formulation purposes. The optimal formulation consisted of drug 29.2 (mg/ml), polyvinylpyrrolidone (PVP) K17 0.38%, and F188 3.63%, respectively. The morphology of nanosuspensions was found to be near-spherical shaped by scanning electron microscopy (SEM) observation. The X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) analysis confirmed that the nanoparticles were in the amorphous state. Furthermore, in comparison to raw material, resveratrol nanosuspensions showed significantly enhanced saturation solubility and accelerated dissolution rate resulting from the decrease in particle size and the amorphous status of nanoparticles. Meanwhile, resveratrol nanosuspensions exhibited the similar antioxidant potency to that of raw resveratrol. The in vivo pharmacokinetic study revealed that the C max and AUC0â∞ values of nanosuspension were approximately 3.35- and 1.27-fold greater than those of reference preparation, respectively. Taken together, these results suggest that this study provides a beneficial approach to address the poor solubility issue of the resveratrol and affords a rational strategy to widen the application range of this interesting substance.
Assuntos
Coloides/química , Precipitação Fracionada/métodos , Modelos Químicos , Nanocápsulas/química , Nanocápsulas/ultraestrutura , Tensoativos/química , Simulação por Computador , Difusão , Composição de Medicamentos/métodos , Desenho de Fármacos , Estabilidade de Medicamentos , Tamanho da Partícula , Resveratrol , Solubilidade , Solventes/química , EstilbenosRESUMO
Three bacteriocins from Lactobacillus plantarum KL-1 were successfully purified using ammonium sulfate precipitation, cation-exchange chromatography and reverse-phase HPLC. The bacteriocin peptides KL-1X, -1Y and -1Z had molecular masses of 3053.82, 3498.16 and 3533.16 Da, respectively. All three peptides were stable at pH 2-12 and 25 °C and at high temperatures of 80 and 100 °C for 30 min and 121 °C for 15 min. However, they differed in their susceptibility to proteolytic enzymes and their inhibition spectra. KL-1Y showed broad inhibitory activities against Gram-positive and Gram-negative bacteria, including Salmonella enterica serovar Enteritidis DMST 17368, Pseudomonas aeruginosa ATCC 15442, P. aeruginosa ATCC 9027, Escherichia coli O157:H7 and E. coli ATCC 8739. KL-1X and -1Z inhibited only Gram-positive bacteria. KL-1X, KL-1Y and KL-1Z exhibited synergistic activity. The successful amino acid sequencing of KL-1Y had a hydrophobicity of approximately 30 % and no cysteine residues suggested its novelty, and it was designated "plantaricin KL-1Y". Plantaricin KL-1Y exhibited bactericidal activity against Bacillus cereus JCM 2152(T). Compared to nisin, KL-1Y displayed broad inhibitory activities of 200, 800, 1600, 800, 400 and 400 AU/mL against the growth of Bacillus coagulans JCM 2257(T), B. cereus JCM 2152(T), Listeria innocua ATCC 33090(T), Staphylococcus aureus TISTR 118, E. coli O157:H7 and E. coli ATCC 8739, respectively, whereas nisin had similar activities against only B. coagulans JCM 2257(T) and B. cereus JCM 2152(T). Therefore, the novel plantaricin KL-1Y is a promising antimicrobial substance for food safety uses in the future.
Assuntos
Bacteriocinas/isolamento & purificação , Bacteriocinas/farmacologia , Lactobacillus plantarum/metabolismo , Viabilidade Microbiana/efeitos dos fármacos , Peptídeos/isolamento & purificação , Peptídeos/farmacologia , Bacteriocinas/química , Cromatografia Líquida de Alta Pressão , Cromatografia por Troca Iônica , Precipitação Fracionada , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Peso Molecular , Peptídeos/química , Estabilidade Proteica , Análise de Sequência de Proteína , TemperaturaRESUMO
Deliberate struvite (MgNH4PO4) precipitation from wastewater streams has been the topic of extensive research in the last two decades and is expected to gather worldwide momentum in the near future as a P-reuse technique. A wide range of operational alternatives has been reported for struvite precipitation, including the application of various Mg(II) sources, two pH elevation techniques and several Mg:P ratios and pH values. The choice of each operational parameter within the struvite precipitation process affects process efficiency, the overall cost and also the choice of other operational parameters. Thus, a comprehensive simulation program that takes all these parameters into account is essential for process design. This paper introduces a systematic decision-supporting tool which accepts a wide range of possible operational parameters, including unconventional Mg(II) sources (i.e. seawater and seawater nanofiltration brines). The study is supplied with a free-of-charge computerized tool (http://tx.technion.ac.il/~agrengn/agr/Struvite_Program.zip) which links two computer platforms (Python and PHREEQC) for executing thermodynamic calculations according to predefined kinetic considerations. The model can be (inter alia) used for optimizing the struvite-fluidized bed reactor process operation with respect to P removal efficiency, struvite purity and economic feasibility of the chosen alternative. The paper describes the algorithm and its underlying assumptions, and shows results (i.e. effluent water quality, cost breakdown and P removal efficiency) of several case studies consisting of typical wastewaters treated at various operational conditions.
Assuntos
Precipitação Fracionada/economia , Precipitação Fracionada/instrumentação , Compostos de Magnésio/economia , Fosfatos/economia , Eliminação de Resíduos Líquidos/economia , Purificação da Água/economia , Algoritmos , Simulação por Computador , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Israel , Compostos de Magnésio/química , Compostos de Magnésio/isolamento & purificação , Modelos Químicos , Fosfatos/química , Fosfatos/isolamento & purificação , Estruvita , Eliminação de Resíduos Líquidos/instrumentação , Poluentes Químicos da Água/química , Poluentes Químicos da Água/economia , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/instrumentaçãoRESUMO
Chaenomeles speciosa fruits were extracted using water. The extracts were precipitated with 20%~95% (φ) ethanol, respectively. The amount of total polysaccharide was measured with phenol-sulfuric acid method. A method using high-performance size-exclusion chromatography (HPSEC) equipped with multiangle laser-light-scattering photometry (MALLS) and differential refractometry (RI) was presented for determining the molecular weight and molecular weigh distribution. RAW264.7 macrophage were cultured and stimulated with the polysaccharides in vitro and the production of nitric oxide in the cells was determined by the Griess assay. The aim of the study is to determine the amount and the molecular weight of the polysaccharides from Chaenomeles speciosa fruits, and preliminary investigate the immunomodulatory activity, The study provided the basis datas for the further research of Chaenomeles speciosa fruits. , and provided a simple and system method for the research of natural polysaccharide. The ethanol fractional precipitation showed that the order of total polysaccharide content was 95%>80%>40% ≥60%>20%. The results indicated that most polysaccharide from Chaenomeles speciosa fruits might be precipitated when ethanol concentration was up to 95% (T) and the crude polysaccharide purity had risen from 35. 1% to 45. 0% when the concentration of ethanol increased from 20% to 95%. HPSEC-MALLS-RI system showed that all the polysaccharide samples had the similar compositions. They appeared three chromatographic peaks and the retention time were not apparently different. The Mw were 6. 570 X 10(4) g . mol-1 and 1. 393 X 10(4) g . mol-1 respectively, and one less than 10 000 which was failure to obtain accurate values. The molecular weight of the first two polysaccharide distribution index(Mw/Mn)were 1. 336 and 1. 639 respectively. The polysaccharide samples had not exhibited immunomodulatory activity assessed on the basis of nitric oxide production by RAW264. 7 macrophage cells in the experiment.
Assuntos
Frutas/química , Polissacarídeos/química , Rosaceae/química , Animais , Linhagem Celular , Cromatografia em Gel , Cromatografia Líquida de Alta Pressão , Etanol , Precipitação Fracionada , Macrófagos/efeitos dos fármacos , Camundongos , Peso Molecular , Óxido Nítrico/química , Refratometria , Ácidos Sulfúricos , ÁguaRESUMO
Protein precipitation in organic solvent is an effective strategy to deplete sodium dodecyl sulfate (SDS) ahead of MS analysis. Here we evaluate the recovery of membrane and water-soluble proteins through precipitation with chloroform/methanol/water or with acetone (80%). With each solvent system, membrane protein recovery was greater than 90%, which was generally higher than that of cytosolic proteins. With few exceptions, residual supernatant proteins detected by MS were also detected in the precipitation pellet, having higher MS signal intensity in the pellet fraction. Following precipitation, we present a novel strategy for the quantitative resolubilization of proteins in an MS-compatible solvent system. The pellet is incubated at -20 °C in 80% formic acid/water and then diluted 10-fold with water. Membrane protein recovery matches that of sonication of the pellet in 1% SDS. The resolubilized proteins are stable at room temperature, with no observed formylation as is typical of proteins suspended in formic acid at room temperature. The protocol is applied to the molecular weight determination of membrane proteins from a GELFrEE-fractionated sample of Escherichia coli proteins.
Assuntos
Temperatura Baixa , Formiatos/química , Espectrometria de Massas/métodos , Proteínas de Membrana/análise , Acetona/química , Membrana Celular/metabolismo , Clorofórmio/química , Cromatografia Líquida/métodos , Citosol/metabolismo , Eletroforese em Gel de Poliacrilamida , Proteínas de Escherichia coli/análise , Proteínas de Escherichia coli/química , Precipitação Fracionada/métodos , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Metanol/química , Peso Molecular , Proteoma/análise , Proteoma/química , Proteoma/metabolismo , Proteômica/métodos , Reprodutibilidade dos Testes , Solubilidade , Água/químicaRESUMO
Protein precipitation is one of the most widely used methods for antigen detection and purification in biological research. We developed a reproducible aptamer-mediated magnetic protein precipitation method that is able to efficiently capture, purify and isolate the target proteins. We discovered DNA aptamers having individually high affinity and specificity against human epidermal growth factor receptor (EGFR) and human insulin receptor (INSR). Using aptamers and magnetic beads, we showed it is highly efficient technique to enrich endogenous proteins complex and is applicable to identify physiologically relevant protein-protein interactions with minimized nonspecific binding of proteins. The results presented here indicate that aptamers would be applicable as a useful and cost-effective tool to identify the presence of the particular target protein with their specific protein partners.
Assuntos
Precipitação Fracionada/métodos , Proteínas/isolamento & purificação , Técnica de Seleção de Aptâmeros/métodos , Antígenos CD/isolamento & purificação , Aptâmeros de Nucleotídeos/metabolismo , Linhagem Celular Tumoral , Sulfato de Dextrana , Receptores ErbB/isolamento & purificação , Humanos , Magnetismo , Receptor de Insulina/isolamento & purificaçãoRESUMO
Amphipols (APols) are a newly designed and milder class of detergent. They have been used primarily in protein structure analysis for membrane protein trapping and stabilization. We have recently demonstrated that APols can be used as an alternative detergent for proteome extraction and digestion, to achieve a "One-stop" single-tube workflow for proteomics. In this workflow, APols are removed by precipitation after protein digestion without depleting the digested peptides. Here, we took further advantage of this precipitation characteristic of APols to concentrate proteins from diluted samples. In contrast with tryptic peptides, a decrease in pH leads to the unbiased co-precipitation of APols with proteins, including globular hydrophilic proteins. We demonstrated that this precipitation is a combined effect of acid precipitation and the APols' protein interactions. Also, we have been able to demonstrate that APols-aided protein precipitation works well on diluted samples, such as secretome sample, and provides a rapid method for protein concentration.
Assuntos
Precipitação Fracionada/métodos , Polímeros/química , Proteínas/química , Proteínas/isolamento & purificação , Proteoma/química , Proteoma/isolamento & purificação , Proteômica/métodos , Tensoativos/química , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Solubilidade , Soluções , Manejo de EspécimesRESUMO
Amphipols (APols) are short amphipathic polymers that keep integral membrane proteins water-soluble while stabilizing them as compared to detergent solutions. In the present work, we have carried out functional and structural studies of a membrane transporter that had not been characterized in APol-trapped form yet, namely EII(mtl), a dimeric mannitol permease from the inner membrane of Escherichia coli. A tryptophan-less and dozens of single-tryptophan (Trp) mutants of this transporter are available, making it possible to study the environment of specific locations in the protein. With few exceptions, the single-Trp mutants show a high mannitol-phosphorylation activity when in membranes, but, as variance with wild-type EII(mtl), some of them lose most of their activity upon solubilization by neutral (PEG- or maltoside-based) detergents. Here, we present a protocol to isolate these detergent-sensitive mutants in active form using APol A8-35. Trapping with A8-35 keeps EII(mtl) soluble and functional in the absence of detergent. The specific phosphorylation activity of an APol-trapped Trp-less EII(mtl) mutant was found to be ~3× higher than the activity of the same protein in dodecylmaltoside. The preparations are suitable both for functional and for fluorescence spectroscopy studies. A fluorescein-labeled version of A8-35 has been synthesized and characterized. Exploratory studies were conducted to examine the environment of specific Trp locations in the transmembrane domain of EII(mtl) using Trp fluorescence quenching by water-soluble quenchers and by the fluorescein-labeled APol. This approach has the potential to provide information on the transmembrane topology of MPs.
Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/isolamento & purificação , Escherichia coli/enzimologia , Fluoresceína/química , Precipitação Fracionada/métodos , Proteínas de Transporte de Monossacarídeos/química , Proteínas de Transporte de Monossacarídeos/isolamento & purificação , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/química , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/isolamento & purificação , Polímeros/química , Propilaminas/química , Tensoativos/química , Proteínas de Escherichia coli/ultraestrutura , Fluoresceína/análise , Corantes Fluorescentes/análise , Corantes Fluorescentes/química , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Transporte de Monossacarídeos/ultraestrutura , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/ultraestrutura , Solubilidade , Soluções , Manejo de Espécimes/métodos , Coloração e RotulagemRESUMO
Novel thermo-responsive affinity sugar binders were developed by fusing a bacterial fucose lectin with a thermo-responsive polypeptide. These designer affinity ligand fusions were produced using an Escherichia coli system capable of extracellular secretion of recombinant proteins and were isolated with a high recovery yield (95%) directly from growth medium by Inverse Temperature Cycling (ITC). With horse radish peroxidase (HRP) as a model protein, we demonstrate here that the designer thermo-responsive ligands are capable of interacting with glycans on a glycoprotein, a property that was used to develop a novel affinity precipitation method for glycoprotein purification. The method, requiring only simple process steps, affords full recovery of a target glycoprotein, and is effective at a target glycoprotein concentration as low as 1.4 pM in the presence of large amounts of contaminants. By developing other sugar binders in the similar fashion, the method should be highly useful for glycoprotein purification and detection.
Assuntos
Precipitação Fracionada/métodos , Fucose/metabolismo , Glicoproteínas/isolamento & purificação , Lectinas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Escherichia coli , Expressão Gênica , Glicoproteínas/química , Glicoproteínas/metabolismo , Lectinas/genética , Lectinas/isolamento & purificação , Ligação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , TemperaturaRESUMO
A consecutive preparation method for the isolation and purification of paclitaxel from the Taxus Chinensis cell culture was developed in this study. The process involved alkaline Al2O3 chromatography, fractional precipitation, and high-speed countercurrent chromatography. The original cell culture materials were first extracted with methanol using ultrasound-assisted extraction, and then the extract (the content of paclitaxel is 1.5%) was separated by alkaline Al2O3 column chromatography. Subsequently, fractional precipitation was used to obtain paclitaxel. In particular, response surface methodology was used to optimize the factors of fractional precipitation (methanol concentration, material-to-solvent ratio, and precipitating time were optimized as 48.14%, 8.85 mg/mL, and 48.71 h, respectively) and the yield of fractional precipitation product was 30.64 ± 0.60 mg (the content of paclitaxel is 89.3%, 27.37 ± 0.54 mg) from a 100 mg fraction by Al2O3 column separation (the content of paclitaxel is 32.4%). Then, the product was used for further isolation by high-speed countercurrent chromatography. About 1.00 g paclitaxel (200 ± 2 mg in each loading) with a purity up to 99.61% was isolated from 1.25 g of fractional precipitation product with a solvent system of n-hexane/ethyl acetate/methanol/water (1.2:1.8:1.5:1.5, v/v/v/v) in one run of five consecutive sample loadings without exchanging a new solvent system.