Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 805
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 628(8007): 320-325, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38600268

RESUMO

Force-controlled release of small molecules offers great promise for the delivery of drugs and the release of healing or reporting agents in a medical or materials context1-3. In polymer mechanochemistry, polymers are used as actuators to stretch mechanosensitive molecules (mechanophores)4. This technique has enabled the release of molecular cargo by rearrangement, as a direct5,6 or indirect7-10 consequence of bond scission in a mechanophore, or by dissociation of cage11, supramolecular12 or metal complexes13,14, and even by 'flex activation'15,16. However, the systems described so far are limited in the diversity and/or quantity of the molecules released per stretching event1,2. This is due to the difficulty in iteratively activating scissile mechanophores, as the actuating polymers will dissociate after the first activation. Physical encapsulation strategies can be used to deliver a larger cargo load, but these are often subject to non-specific (that is, non-mechanical) release3. Here we show that a rotaxane (an interlocked molecule in which a macrocycle is trapped on a stoppered axle) acts as an efficient actuator to trigger the release of cargo molecules appended to its axle. The release of up to five cargo molecules per rotaxane actuator was demonstrated in solution, by ultrasonication, and in bulk, by compression, achieving a release efficiency of up to 71% and 30%, respectively, which places this rotaxane device among the most efficient release systems achieved so far1. We also demonstrate the release of three representative functional molecules (a drug, a fluorescent tag and an organocatalyst), and we anticipate that a large variety of cargo molecules could be released with this device. This rotaxane actuator provides a versatile platform for various force-controlled release applications.


Assuntos
Preparações de Ação Retardada , Rotaxanos , Preparações de Ação Retardada/síntese química , Preparações de Ação Retardada/química , Polímeros/química , Rotaxanos/química , Preparações Farmacêuticas/química , Corantes Fluorescentes/química
2.
Pharm Dev Technol ; 26(9): 1010-1020, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34412566

RESUMO

This work focuses on the extrusion of a brittle, tacky, cationic copolymer i.e. Eudragit® E-100 to prepare filament and subsequent 3D printing of hollow capsular device using the extruded filament. An optimum amount of talc and triethyl citrate was used for the possible extrusion of the polymer. There was no thermal and chemical degradation of the polymer observed after extrusion confirmed by DSC and FTIR analysis. Microscopic analysis of the printed capsule showed the layer-by-layer manner of 3D printing. Capsule parts were printed according to the set dimensions (00 size) with minimal deviation. Printed capsule showed the soluble behaviour in gastric fluid pH 1.2 where within 15 min the encapsulated drug encounters with the dissolution medium and almost 70% drug was dissolved within 4 hr. In case of phosphate buffer pH 6.8, the printed capsule showed a longed swelling behaviour up to 12 hr and then gradually bursting of capsule occurred wherein more than 90% encapsulated drug was dissolved within 36 hr. Enteric coating of the printed capsule showed similar behaviour in alkaline medium that observed with non-enteric capsule. This indicates the potential application of this printed capsules for both gastric and intestinal specific delayed drug delivery by a single step enteric coating process.


Assuntos
Acrilatos/síntese química , Acrilatos/farmacocinética , Química Farmacêutica/métodos , Polímeros/síntese química , Polímeros/farmacocinética , Impressão Tridimensional , Berberina/síntese química , Berberina/farmacocinética , Cápsulas , Preparações de Ação Retardada/síntese química , Preparações de Ação Retardada/farmacocinética , Avaliação Pré-Clínica de Medicamentos/métodos , Liberação Controlada de Fármacos , Comprimidos com Revestimento Entérico
3.
Pharm Dev Technol ; 26(1): 92-100, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33074769

RESUMO

Isradipine is a dihydropyridine calcium channel blocker (CCB) commonly used as vasodilator with antihypertensive properties. A remote-controlled release formulation for isradipine would substantially improve the clinical outcomes of the patients requiring chronic long-term treatment. In this work, sustained release (SR) tablets of isradipine, composed of hydroxypropylmethyl cellulose (HPMC), have been produced by wet granulation and their in vitro and in vivo characterization was compared to a conventional tablet dosage form of immediate release (IR) as preliminary assessment. Tablets composed of 15.0% (wt/wt) HPMC exhibited a SR profile over a period of 24 hours. The release of isradipine followed a Fickian diffusion pattern obeying to the first order kinetics and the extent of absorption was even higher in comparison to the developed conventional tablets, which showed immediate drug release. In vivo studies were carried out in rabbits, showing that the extent of isradipine absorption from the developed tablets was higher in comparison to IR tablets due to the modified release profile obtained for the former (p < 0.05). Our results suggest that SR tablets of isradipine are an efficient solid dosage form to overcome the limitations encountered in conventional IR tablets.


Assuntos
Anti-Hipertensivos/síntese química , Anti-Hipertensivos/farmacocinética , Fenômenos Químicos , Isradipino/síntese química , Isradipino/farmacocinética , Animais , Anti-Hipertensivos/administração & dosagem , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/síntese química , Preparações de Ação Retardada/farmacocinética , Isradipino/administração & dosagem , Coelhos , Comprimidos
4.
AAPS PharmSciTech ; 22(5): 174, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34114068

RESUMO

Posterior eye diseases are a common cause of vision problems in developing countries, which have encouraged the development of new treatment models for these degenerative diseases. Intraocular implants are one of the drug delivery systems to the posterior region of the eye. Using these implants, the blood-eye barrier can be bypassed; the complications caused by repeated in vitro administrations can be eliminated, and smaller amounts of the drug would be used during the treatment process. Meanwhile, biodegradable implants have received more attention due to their biodegradable structure and the lack of need for re-surgery to remove the rest of the system from the eye. The aim of this study is to employ biodegradable implants composed of polyethylene glycol (PEG) and 3-hydroxybutyrate-co-3-hydroxyvalerat (PHBV) to deliver betamethasone to the back of the eye in the treatment of retinopathy. PHBV polymer has been selected as the main polymer with a certain ratio of drug to polymer for fabrication of enamel and different amounts of PEG with three molecular weights used as pore generators to control drug release over a period of time. Based on the analysis of the results of differential scanning calorimetry (DSC) and FTIR spectroscopy, none of the polymers were degraded in the temperature range of the manufacturing process, and among betamethasone derivatives, the best option for implant preparation is the use of its basic form. Drug release studies over a period of three months showed that implants containing PHBV HV2% and PEG 6000 had a more appropriate release profile.


Assuntos
Implantes Absorvíveis , Betametasona/farmacocinética , Desenho de Fármacos , Poliésteres/farmacocinética , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/farmacocinética , Betametasona/análogos & derivados , Betametasona/síntese química , Preparações de Ação Retardada/síntese química , Preparações de Ação Retardada/farmacocinética , Implantes de Medicamento , Liberação Controlada de Fármacos , Poliésteres/síntese química , Polietilenoglicóis/síntese química , Polietilenoglicóis/farmacocinética
5.
AAPS PharmSciTech ; 22(5): 177, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34128106

RESUMO

Fluvastatin (FLV) is known to inhibit the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA), which is over-expressed in various cancers. FLV has been reported to decrease cancer development and metastasis. However, because of low bioavailability, extensive first-pass metabolism and short half-life of FLV (1.2 h), it is not appropriate for clinical application. Therefore, FLV-loaded emulsomes were formulated and optimized using Box-Behnken experimental design to achieve higher efficiency of formulation. Antitumor activity of optimized FLV-loaded emulsomes was evaluated in prostate cancer cells using cell cytotoxicity, apoptotic activity, cell cycle analysis, and enzyme-linked immunosorbent assay. The FLV-loaded emulsomes exhibited a monodispersed size distribution with a mean particle size less than 100 nm as measured by zetasizer. The entrapment efficiency was found to be 93.74% with controlled drug release profile. FLV-EMLs showed a significant inhibitory effect on the viability of PC3 cells when compared to the free FLV (P < 0.0025). Furthermore, FLV-EMLs showed significant arrest in G2/M and increase in percentage of apoptotic cells as compared to free FLV. FLV-EMLs were more effective than free FLV in reducing mitochondrial membrane potential and increase in caspase-3 activity. These results suggesting that FLV-EMLs caused cell cycle arrest which clarifies its significant antiproliferative effect compared to the free drug. Therefore, optimized FLV-EMLs may be an effective carrier for FLV in prostate cancer treatment.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Citotoxinas/farmacologia , Portadores de Fármacos/farmacologia , Fluvastatina/farmacologia , Neoplasias da Próstata , Antineoplásicos/síntese química , Apoptose/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Citotoxinas/síntese química , Preparações de Ação Retardada/síntese química , Preparações de Ação Retardada/farmacologia , Portadores de Fármacos/síntese química , Fluvastatina/síntese química , Humanos , Masculino , Células PC-3 , Tamanho da Partícula
6.
AAPS PharmSciTech ; 22(5): 187, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34155595

RESUMO

Several drugs have poor oral bioavailability due to low or incomplete absorption which is affected by various effects as pH, motility of GI, and enzyme activity. The gastroretentive drug delivery systems are able to deal with these problems by prolonging the gastric residence time, while increasing the therapeutic efficacy of drugs. Previously, we developed a novel technology to foam hot and molten dispersions on atmospheric pressure by a batch-type in-house apparatus. Our aim was to upgrade this technology by a new continuous lab-scale apparatus and confirm that our formulations are gastroretentive. At first, we designed and built the apparatus and continuous production was optimized using a Box-Behnken experimental design. Then, we formulated barium sulfate-loaded samples with the optimal production parameters, which was suitable for in vivo imaging analysis. In vitro study proved the low density, namely 507 mg/cm3, and the microCT record showed high porosity with 40 µm average size of bubbles in the molten suspension. The BaSO4-loaded samples showed hard structure at room temperature and during the wetting test, the complete wetting was detected after 120 min. During the in vivo study, the X-ray taken showed the retention of the formulation in the rat stomach after 2 h. We can conclude that with our device low-density floating formulations were prepared with prolonged gastric residence time. This study provides a promising platform for marketed active ingredients with low bioavailability.


Assuntos
Sulfato de Bário/síntese química , Sulfato de Bário/farmacocinética , Sistemas de Liberação de Medicamentos/métodos , Absorção Gastrointestinal/efeitos dos fármacos , Animais , Sulfato de Bário/administração & dosagem , Disponibilidade Biológica , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/síntese química , Preparações de Ação Retardada/farmacocinética , Formas de Dosagem , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/metabolismo , Absorção Gastrointestinal/fisiologia , Masculino , Porosidade , Ratos , Ratos Endogâmicos F344
7.
Pak J Pharm Sci ; 34(1): 57-63, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34248003

RESUMO

The limitations of conventional type delivery systems to retain drug (s) in the stomach has resulted in the development of novel gastroretentive drug delivery system. We developed single-layer effervescent floating tablets of loxoprofen sodium for prolong delivery in the stomach using natural polymers xanthan gum, guar gum and semisynthetic polymer HPMCK4M. All the formulations (F1-F9) were developed by varying concentrations of xanthan gum and HPMCK4M while guar gum concentration was kept constant. Two gas generating agent (s) incorporated were sodium bicarbonate and citric acid. All compendial pre and post-compression tests results were in the acceptable limits. FTIR analysis confirmed drug-polymer compatibility. The in-vitro drug release in simulated conditions i.e., 0.1 N HCl for 12 h revealed orderly increase in total floating time, i.e., less than 6 h for F1 over 12 h for F9. Formulations F1 to F4 were not capable to retard drug release up to 12 h, whereas F5-F7 for 12 h, while F8 and F9 for more than 12 h. Data fitting in various kinetic models showed that drug release best fit in first order kinetic model and F9 in zero order. Based on results data, F7 was the best among all.


Assuntos
Química Farmacêutica/métodos , Composição de Medicamentos/métodos , Sistemas de Liberação de Medicamentos/métodos , Excipientes/síntese química , Excipientes/farmacocinética , Fármacos Gastrointestinais/síntese química , Fármacos Gastrointestinais/farmacocinética , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/síntese química , Preparações de Ação Retardada/farmacocinética , Excipientes/administração & dosagem , Galactanos/administração & dosagem , Galactanos/síntese química , Galactanos/farmacocinética , Fármacos Gastrointestinais/administração & dosagem , Mananas/administração & dosagem , Mananas/síntese química , Mananas/farmacocinética , Gomas Vegetais/administração & dosagem , Gomas Vegetais/síntese química , Gomas Vegetais/farmacocinética , Polissacarídeos Bacterianos/administração & dosagem , Polissacarídeos Bacterianos/síntese química , Polissacarídeos Bacterianos/farmacocinética , Solubilidade , Comprimidos
8.
Drug Dev Ind Pharm ; 46(5): 852-860, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32338551

RESUMO

Metformin hydrochloride (MFM) is often used as a controlled-release (CR) tablet to reduce dosing frequency. However, the MFM CR tablet contains significant amounts of excipients and the tablet size is also large. Dosing convenience and patient compliance can be increased by reducing the size of the CR tablets. The aim of this study was to prepare and evaluate the MFM controlled-release tablet (MFM-CRT) using two types of release modulators, inner and outer. The MFM-CRT was prepared by coating the MFM granules using a binder solution containing aluminum stearate (ALS) as the inner release-modulator, and polyethylene oxide (PEO) as the outer release-modulator. The dispersion stability of the binder solution was optimized by the dispersion analyzer. The MFM-CRT was evaluated for dissolution rate and tablet volume. Additionally, dissolution behavior and dissolution kinetics of the MFM-CRT were analyzed using micro-computed tomography (micro-CT). Although the optimal MFM-CRT showed no difference in the release rate as compared to the commercially available product of Glucophage® XR 500 mg (f2 value: 72), the length of the long axis was reduced by 6 mm and the weight was reduced by about 27%. We expect patient compliance to improve because of effective sustained release and volume reduction of MFM-CRT.


Assuntos
Portadores de Fármacos/síntese química , Liberação Controlada de Fármacos , Ácidos Graxos/síntese química , Hipoglicemiantes/síntese química , Metformina/síntese química , Preparações de Ação Retardada/síntese química , Preparações de Ação Retardada/metabolismo , Portadores de Fármacos/metabolismo , Ácidos Graxos/metabolismo , Hipoglicemiantes/metabolismo , Metformina/metabolismo , Espectrometria por Raios X/métodos , Microtomografia por Raio-X/métodos
9.
Molecules ; 25(4)2020 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-32079068

RESUMO

Thymol and the corresponding brominated derivatives constitute important biological active molecules as antibacterial, antioxidant, antifungal, and antiparasitic agents. However, their application is often limited, because their pronounced fragrance, their poor solubility in water, and their high volatility. The encapsulation of different thymol derivatives into biocompatible lignin-microcapsules is presented as a synergy-delivering remedy. The adoption of lignosulfonate as an encapsulating material possessing relevant antioxidant activity, as well as general biocompatibility allows for the development of new materials that are suitable for the application in various fields, especially cosmesis. To this purpose, lignin microcapsules containing thymol, 4-bromothymol, 2,4-dibromothymol, and the corresponding O-methylated derivatives have been efficiently prepared through a sustainable ultrasonication procedure. Actives could be efficiently encapsulated with efficiencies of up to 50%. To evaluate the applicability of such systems for topical purposes, controlled release experiments have been performed in acetate buffer at pH 5.4, to simulate skin pH: all of the capsules show a slow release of actives, which is strongly determined by their inherent lipophilicity.


Assuntos
Anti-Infecciosos/farmacologia , Antioxidantes/farmacologia , Cápsulas/química , Preparações de Ação Retardada/síntese química , Lignina/análogos & derivados , Timol/farmacologia , Animais , Anti-Infecciosos/química , Antioxidantes/química , Soluções Tampão , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Halogenação , Humanos , Concentração de Íons de Hidrogênio , Cinética , Lignina/química , Tamanho da Partícula , Solubilidade , Soluções , Sonicação , Timol/química
10.
Molecules ; 25(19)2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-33027947

RESUMO

Phlorotannins are a group of major polyphenol secondary metabolites found only in brown algae and are known for their bioactivities and multiple health benefits. However, they can be oxidized due to external factors and their bioavailability is low due to their low water solubility. In this study, the potential of utilizing nanoencapsulation with polyvinylpyrrolidone (PVP) to improve various activities of phlorotannins was explored. Phlorotannins encapsulated by PVP nanoparticles (PPNPS) with different loading ratios were prepared for characterization. Then, the PPNPS were evaluated for in vitro controlled release of phlorotannin, toxicity and antioxidant activities at the ratio of phlorotannin to PVP 1:8. The results indicated that the PPNPS showed a slow and sustained kinetic release of phlorotannin in simulated gastrointestinal fluids, they were non-toxic to HaCaT keratinocytes and they could reduce the generation of endogenous reactive oxygen species (ROS). Therefore, PPNPS have the potential to be a useful platform for the utilization of phlorotannin in both pharmaceutical and cosmetics industries.


Assuntos
Antioxidantes , Materiais Revestidos Biocompatíveis , Kelp/classificação , Queratinócitos/metabolismo , Teste de Materiais , Nanopartículas , Povidona/química , Antioxidantes/química , Antioxidantes/farmacocinética , Antioxidantes/farmacologia , Linhagem Celular , Materiais Revestidos Biocompatíveis/síntese química , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacocinética , Materiais Revestidos Biocompatíveis/farmacologia , Preparações de Ação Retardada/síntese química , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Humanos , Nanopartículas/química , Nanopartículas/uso terapêutico
11.
Pharm Dev Technol ; 25(6): 659-665, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32067550

RESUMO

In this study, we developed a one-step method to prepare ibuprofen fast- and sustained-release complex preparation. It was based on a double jets electrospinning process. Ibuprofen, a poorly water-soluble drug, was electrospun into fibers with polyvinyl pyrrolidone and hydroxypropyl methyl cellulose by two jets, respectively. The complex preparation had an enough initial dose come from fast-release part and a maintenance dose come from sustained-release part. Through the study of X-ray diffraction, differential scanning colorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM), it was confirmed that ibuprofen was highly dispersed in nanofibers (NFs) in amorphous state. Because one line of NFs was very thin and could only extend along two directions, it was difficult for ibuprofen to transform from amorphous to crystal in this kind of approximate one-dimensional structure. Additionally, it was confirmed by animal experiment that the complex preparation also had a benefit to reduce gastric irritation that usually caused by traditional oral ibuprofen preparation. Therefore, the method developed in this study was a convenient and good-quality approach for ibuprofen pain-alleviating preparation.


Assuntos
Anti-Inflamatórios não Esteroides/síntese química , Composição de Medicamentos/métodos , Ibuprofeno/síntese química , Tecnologia Farmacêutica/métodos , Animais , Anti-Inflamatórios não Esteroides/farmacocinética , Preparações de Ação Retardada/síntese química , Preparações de Ação Retardada/farmacocinética , Ibuprofeno/farmacocinética , Masculino , Ratos , Ratos Sprague-Dawley , Solubilidade , Suínos , Resultado do Tratamento , Difração de Raios X/métodos
12.
Pharm Dev Technol ; 25(7): 874-881, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32274946

RESUMO

In clinical practice, lidocaine is used as local anesthetic for the management of post-operative pain. The commercial formulation including gels, injections and ointments showed short duration of action (1 to 2 h). In this paper, the efforts have being made to develop tailored lidocaine-microemulsion (o/w), which on penetration in the skin layer cause micro-depots formation due to destabilization of the microemulsion system. To identify the microemulsion region, pseudo ternary diagrams were constructed using Capmul MCM as oil, Pluronic F68 as tri-block surfactant, polyethylene glycol 200 as co-surfactant at 1:4 and 1:6 ratios (S:Co-S). The selected 5%w/v lidocaine loaded microemulsion [Ld-ME-2(1:4)] was stable in thermodynamic test and during shelf life period (3 months). In ex vivo permeability study, the lidocaine release from Ld-ME-2(1:4) microemulsion was sustained in comparison to the marketed lidocaine ointment. The skin irritation study confirmed the safety of lidocaine loaded microemulsion. Tail flick test showed improved and sustain local anaesthetic effect in comparison to the market ointment. The improved efficacy of microemulsion system, was due to high penetration in the skin layer due to local precipitation of lidocaine from microemulsion. The findings suggest that the tailored microemulsion could be a potential strategy to prolong the local anaesthesia.


Assuntos
Anestesia Local/métodos , Anestésicos Locais/farmacocinética , Lidocaína/farmacocinética , Absorção Cutânea/fisiologia , Anestésicos Locais/administração & dosagem , Anestésicos Locais/síntese química , Animais , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/síntese química , Preparações de Ação Retardada/farmacocinética , Cabras , Lidocaína/administração & dosagem , Lidocaína/síntese química , Masculino , Técnicas de Cultura de Órgãos , Medição da Dor/métodos , Ratos , Ratos Wistar , Pele/efeitos dos fármacos , Pele/metabolismo , Absorção Cutânea/efeitos dos fármacos
13.
Pharm Dev Technol ; 25(6): 666-675, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32067531

RESUMO

The aim was to develop sustained-release aqueous suspensions of ambroxol utilizing drug-polymer complexation and raft-forming formulations. Ambroxol-carrageenan (ABX-CRG) complexation was studied for the optimum binding capacity, which was used to prepare the complex by kneading and coprecipitation. The prepared complex was characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry and powder X-ray diffractometry. The complex was formulated as suspensions in aqueous raft-forming vehicle of sodium alginate (NA) and calcium carbonate (CC). The suspensions differed in the molecular weight and concentration of NA, in addition to CC level and inclusion of CRG in excess of drug-polymer complexation. In 0.1 M HCl as simulated gastric fluid, the suspensions were observed for their ability to form rafts and studied for drug-release. The optimum sustained-release, raft forming and pourable formulation using high molecular weight NA, NA concentration of 18 mg/ml and CC concentration of 9 mg/ml was reached. Another optimum suspension was obtained by replacement of CC with excess CRG. However, pH dissolution profiles of the optimum suspensions revealed less pH sensitivity of the release consequent to this replacement as well as more stable ABX release upon aging. Relative to Gaviscon liquid, the optimum suspensions formed rafts of similar strength and higher resilience.


Assuntos
Ambroxol/síntese química , Química Farmacêutica/métodos , Preparações de Ação Retardada/síntese química , Polímeros/síntese química , Administração Oral , Alginatos/síntese química , Alginatos/farmacocinética , Ambroxol/farmacocinética , Carbonato de Cálcio/síntese química , Carbonato de Cálcio/farmacocinética , Varredura Diferencial de Calorimetria/métodos , Carragenina/síntese química , Carragenina/farmacocinética , Preparações de Ação Retardada/farmacocinética , Polímeros/farmacocinética , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Suspensões/síntese química , Suspensões/farmacocinética , Difração de Raios X/métodos
14.
AAPS PharmSciTech ; 21(3): 93, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32076885

RESUMO

To explore the potential utility of combination of hydrophilic matrix with membrane-controlled technology, the present study prepared tablets of a water-soluble model drug (ambroxol hydrochloride), through process of direct compression and spray coating. Single-factor experiments were accomplished to optimize the formulation. In vivo pharmacokinetics was then performed to evaluate the necessity and feasibility of further development of this simple process and low-cost approach. Various release rates could be easily obtained by adjusting the viscosity and amount of hypromellose, pore-former ratios in coating dispersions and coating weight gains. Dissolution profiles of coated tablets displayed initial delay, followed by near zero-order kinetics. The pharmacokinetic study of different formulations showed that lag time became longer as the permeability of coating membrane decreased, which was consistent with the in vitro drug release trend. Besides, in vitro/in vivo correlation study indicated that coated tablets exhibited a good correlation between in vitro release and in vivo absorption. The results, therefore, demonstrated that barrier-membrane-coated matrix formulations were extremely promising for further application in industrialization and commercialization.


Assuntos
Ambroxol/síntese química , Ambroxol/farmacocinética , Expectorantes/síntese química , Expectorantes/farmacocinética , Interações Hidrofóbicas e Hidrofílicas , Animais , Preparações de Ação Retardada/síntese química , Preparações de Ação Retardada/farmacocinética , Cães , Avaliação Pré-Clínica de Medicamentos/métodos , Liberação Controlada de Fármacos , Derivados da Hipromelose/síntese química , Derivados da Hipromelose/farmacocinética , Permeabilidade , Distribuição Aleatória , Solubilidade , Comprimidos , Viscosidade
15.
Pak J Pharm Sci ; 33(2): 567-573, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32276899

RESUMO

The oral control drug delivery is the most acceptable delivery system for patient acceptance, industrial application and economical but still it has several challenges to design a dosage form. The gastro intestinal pHis one of the major limitations for constant drug release due to different pH variations different regions (stomach vs small intestine) throughout the GIT. The aim of the present research work was to develop a pH independent oral control release drug delivery of pH dependent Ondansetron HCl for the treatment of CINV or PONV. The major limitation of the drug was found burst release in SGF pH 1.2 and highly precipitation in intestinal pH (pH 6.8 phosphate buffer). The formulator is challenging to develop constant controlled drug release in entire gastro intestinal tract. The techniques involve the use of pH modulating agents and acidifying agents to achieve pH independent controlled drug release. It was found that incorporation of anionic polymer (Eudragit L100-55) with control release nonionic HPMC matrix shows pH independent drug release in both SGF pH 1.2 and pH 6.8 phosphate buffer. In conclusion it was understood that the release profile of HPMC sellable matrices of Ondansetron HCl with manipulating the micro environmental pH, at variable pH conditions provided a efficient and predictable results.


Assuntos
Desenho de Fármacos , Desenvolvimento de Medicamentos/métodos , Ondansetron/síntese química , Ondansetron/farmacocinética , Preparações de Ação Retardada/síntese química , Preparações de Ação Retardada/farmacocinética , Liberação Controlada de Fármacos , Concentração de Íons de Hidrogênio , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Comprimidos
16.
Pak J Pharm Sci ; 33(1(Supplementary)): 269-279, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32122858

RESUMO

The main objective of the present study was to explore the potential of matrix tablets as extended release dosage form of tianeptine, using HMPC K100 as a polymer. HPMC K100 extended the release of the drug from formulation due to the gel-like structure. Direct compression method was adopted to compress the tablets using different concentrations of polymer. Tablets were evaluated for pre-compression and post-compression parameters. Drug release study showed that tablet extends the release of drug with the increasing concentration of polymer. Drug, polymers and tablets were analyzed and/or characterized for compatibility, degradation, thermal stability, amorphous or crystalline nature via FTIR, DSC, TGA, XRD studies. SEM study predicted that tablets had a uniform structure. HPMC K100 based tablets were similar to that of the reference product. Acute toxicity study conducted on Swiss albino mice showed that matrix tablets were safe and non-toxic, as no changes in physical activity and functions of organs were observed. Biochemical and histopathological study revealed lack of any kind of abnormality in liver and renal function. Moreover, necrotic changes were absent at organ level.


Assuntos
Antidepressivos Tricíclicos/síntese química , Antidepressivos Tricíclicos/toxicidade , Química Farmacêutica/métodos , Tiazepinas/síntese química , Tiazepinas/toxicidade , Testes de Toxicidade Aguda/métodos , Animais , Preparações de Ação Retardada/síntese química , Preparações de Ação Retardada/toxicidade , Feminino , Derivados da Hipromelose/síntese química , Derivados da Hipromelose/toxicidade , Metilcelulose/síntese química , Metilcelulose/toxicidade , Camundongos , Comprimidos
17.
Biopolymers ; 110(7): e23272, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30897210

RESUMO

Oxaliplatin (OXA) was coupled to PEGylated polyamidoamine dendrimers of fourth generation (G4-PEG@OXA) in the comparison to PEGylated ones of odd generation (G3.5-PEG@OXA). Proton nuclear magnetic resonance and Fourier-transform infrared spectroscopy were used to confirm the successful incorporation of OXA as well as the synthesis of carrier systems. Both two types of carrier systems exhibited in sphere nanoparticle shape with size of less than 100 nm that was in the range being able to cause toxicity on cancer cells. The average drug loading efficiency (DLE) of G4-PEG@OXA was obtained at 84.63% that was higher than DLE of G3.5-PEG of 75.69%. The release kinetic of G4-PEG@OXA and G3.5-PEG@OXA did not show any burst release phenomenon while free OXA was released over 40% at the first hour. The sustainable release of OXA was achieved when it was encapsulated in these carriers, but the G4 generation liberated OXA (3.4%-6.4%) slower than G3.5 one (11.9%-22.8%). The in vitro cytotoxicities of G4-PEG@OXA were evaluated in HeLa cell lines using resazurin assay and live/dead staining test. Although the free OXA showed a rather moderate killing ability, the G4-PEG@OXA still displayed the low viability of HeLa that was better to the result of G3.5-PEG@OXA due to released OXA amount. The benefit of this system was to overcome the burst release phenomenon to minimize OXA toxicity without compromising its efficiency.


Assuntos
Antineoplásicos/farmacologia , Preparações de Ação Retardada/síntese química , Dendrímeros/síntese química , Portadores de Fármacos/síntese química , Nanopartículas/química , Oxaliplatina/farmacologia , Antineoplásicos/química , Sobrevivência Celular/efeitos dos fármacos , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Células HeLa , Humanos , Cinética , Nanopartículas/ultraestrutura , Oxaliplatina/química , Tamanho da Partícula , Poliaminas/química , Polietilenoglicóis/química
18.
Biomacromolecules ; 20(12): 4602-4610, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31674776

RESUMO

This paper presents the design and synthesis of star-shaped copolymers with two poly[2-(diethylamino)ethyl methacrylate] and poly(ethylene glycol) blocks linked via a disulfide bond and each end of the four arms capped by folic acid (FA), from which the prepared nanodrug carriers simultaneously possess pH/redox dual response and active targeting functions. The polymer micelles exhibit excellent stability as reflected by their low critical micelle concentration values of 1.03-2.51 mg/L. The doxorubicin (DOX)-loaded polymer micelles are in the range of 108 to 143 nm, and the DOX-loading capacities are found to be up to 32.3%. The sensitive pH and redox responses are demonstrated by examining the drug release behaviors under the varied acidic condition from pH 7.4 to 5.0 and the glutathione concentrations from 0 to 10 mM, respectively. Moreover, the observation of confocal laser scanning microscopy confirms that the functionalization of arm ends by FA indeed enhances the internalization of DOX-loaded micelle particles in HeLa cells. As a result, the DOX-loaded nanocarriers can deliver therapeutic drugs to target HeLa cells, and the viability of HeLa cells (10.1%) approaches the value of the pristine DOX (9.98%), showing promising application as drug delivery nanocarriers for safe and highly efficient cancer therapy.


Assuntos
Doxorrubicina , Micelas , Neoplasias/tratamento farmacológico , Compostos de Organossilício , Preparações de Ação Retardada/síntese química , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Neoplasias/metabolismo , Neoplasias/patologia , Compostos de Organossilício/química , Compostos de Organossilício/farmacocinética , Compostos de Organossilício/farmacologia
19.
Biomacromolecules ; 20(12): 4546-4562, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31697482

RESUMO

Macromolecular architecture plays an important role in the self-assembly process of block copolymer amphiphiles. Herein, two series of stimuli-responsive amphiphilic 3-miktoarm star hybrid terpolypeptides and their corresponding linear analogues were synthesized exhibiting the same overall composition and molecular weight but different macromolecular architecture. The macromolecular architecture was found to be a key parameter in defining the morphology of the nanostructures formed in aqueous solutions as well as to alter the self-assembly behavior of the polymers independently of their composition. In addition, it was found that the assemblies prepared from the star-shaped polymers showed superior tolerance against enzymatic degradation due to the increased corona block density on the outer surface of the nanoparticles. Encapsulation of the hydrophobic anticancer drug Everolimus resulted in the formation of intriguing non-spherical and non-symmetric pH-responsive nanostructures, such as "stomatocytes" and "multi-compartmentalized suprapolymersomes", while the pH-triggered release of the drug was also investigated. Owing to the similarities of the developed "stomatocytes" with red blood cells, in combination with their pH-responsiveness and superior stability over enzymatic degradation, they are expected to present advanced drug delivery properties and have the ability to bypass several extra- and intracellular barriers to reach and effectively treat cancer cells.


Assuntos
Antineoplásicos , Everolimo , Hidrogéis , Nanopartículas/química , Peptídeos , Antineoplásicos/química , Antineoplásicos/farmacocinética , Preparações de Ação Retardada/síntese química , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Everolimo/química , Everolimo/farmacocinética , Humanos , Hidrogéis/síntese química , Hidrogéis/química , Hidrogéis/farmacocinética , Concentração de Íons de Hidrogênio , Neoplasias/tratamento farmacológico , Peptídeos/síntese química , Peptídeos/química , Peptídeos/farmacocinética
20.
Biomacromolecules ; 20(4): 1740-1747, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30844246

RESUMO

In this work, novel amphiphilic diblock copolymers of polyethylene glycol and polyphosphoester with pendant thioether groups, denoted as mPEG- b-PMSPEP, were synthesized through the ring-opening polymerization of functionalized cyclic phosphoester monomer using methoxy poly(ethylene glycol) and Sn(Oct)2 as the macroinitiator and catalyst, respectively. The successful synthesis was confirmed by 1H, 13C, 31P nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC). These amphiphilic block copolymers self-assembled spontaneously in the aqueous solution, and the formed nanoparticles were sensitive to the oxidation that induced the hydrophobic to hydrophilic transition for its PMSPEP core under triggering of H2O2 and the subsequent dissociation of the nanoparticles. In addition, the reactive oxygen species (ROS) generated by light and the photosensitizer were also capable of carrying out the oxidation of these nanoparticles. Their oxidation profiles were systemically evaluated by 1H NMR. Finally, the mPEG- b-PMSPEP nanoparticles were used to coencapsulate the photosensitizer chlorin e6 (Ce6) and anticancer drug paclitaxel (PTX), achieving the photoaccelerated PTX release via oxidation of the nanoparticles by the generated ROS under light irradiation. Meanwhile, the in vitro cytotoxicity assays indicated that these nanoparticles coencapsulated with PTX and Ce6 showed a combined cell-killing effect toward MDA-MB-231 tumor cells, exhibiting great potential for drug delivery systems that realize the synergistic chemo-photodynamic therapy for cancer treatment.


Assuntos
Portadores de Fármacos , Nanopartículas , Neoplasias/tratamento farmacológico , Paclitaxel , Polietilenoglicóis , Linhagem Celular Tumoral , Clorofilídeos , Preparações de Ação Retardada/síntese química , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Portadores de Fármacos/síntese química , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Humanos , Peróxido de Hidrogênio/química , Nanopartículas/química , Nanopartículas/uso terapêutico , Neoplasias/metabolismo , Neoplasias/patologia , Paclitaxel/química , Paclitaxel/farmacocinética , Paclitaxel/farmacologia , Polietilenoglicóis/síntese química , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Polietilenoglicóis/farmacologia , Porfirinas/química , Porfirinas/farmacocinética , Porfirinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA