RESUMO
Viruses employ elaborate strategies to coopt the cellular processes they require to replicate while simultaneously thwarting host antiviral responses. In many instances, how this is accomplished remains poorly understood. Here, we identify a protein, F17 encoded by cytoplasmically replicating poxviruses, that binds and sequesters Raptor and Rictor, regulators of mammalian target of rapamycin complexes mTORC1 and mTORC2, respectively. This disrupts mTORC1-mTORC2 crosstalk that coordinates host responses to poxvirus infection. During infection with poxvirus lacking F17, cGAS accumulates together with endoplasmic reticulum vesicles around the Golgi, where activated STING puncta form, leading to interferon-stimulated gene expression. By contrast, poxvirus expressing F17 dysregulates mTOR, which localizes to the Golgi and blocks these antiviral responses in part through mTOR-dependent cGAS degradation. Ancestral conservation of Raptor/Rictor across eukaryotes, along with expression of F17 across poxviruses, suggests that mTOR dysregulation forms a conserved poxvirus strategy to counter cytosolic sensing while maintaining the metabolic benefits of mTOR activity.
Assuntos
Citosol/química , Poxviridae/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Proteína Regulatória Associada a mTOR/metabolismo , Proteínas de Transporte/metabolismo , Linhagem Celular , Citoplasma/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Células HEK293 , Homeostase , Humanos , Imunidade Inata , Interferons/metabolismo , Cinética , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismoRESUMO
Glucocorticoids (GC) are the mainstay treatment option for inflammatory conditions. Despite the broad usage of GC, the mechanisms by which GC exerts its effects remain elusive. Here, utilizing murine autoimmune and allergic inflammation models, we report that Foxp3+ regulatory T (Treg) cells are irreplaceable GC target cells in vivo. Dexamethasone (Dex) administered in the absence of Treg cells completely lost its ability to control inflammation, and the lack of glucocorticoid receptor in Treg cells alone resulted in the loss of therapeutic ability of Dex. Mechanistically, Dex induced miR-342-3p specifically in Treg cells and miR-342-3p directly targeted the mTORC2 component, Rictor. Altering miRNA-342-3p or Rictor expression in Treg cells dysregulated metabolic programming in Treg cells, controlling their regulatory functions in vivo. Our results uncover a previously unknown contribution of Treg cells during glucocorticoid-mediated treatment of inflammation and the underlying mechanisms operated via the Dex-miR-342-Rictor axis.
Assuntos
Dexametasona/farmacologia , Glucocorticoides/farmacologia , Inflamação/tratamento farmacológico , MicroRNAs/genética , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Linfócitos T Reguladores/imunologia , Animais , Anti-Inflamatórios/farmacologia , Fatores de Transcrição Forkhead/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/biossíntese , Receptores de Glucocorticoides/genética , Linfócitos T Reguladores/metabolismoRESUMO
mTORC2 controls glucose and lipid metabolism, but the mechanisms are unclear. Here, we show that conditionally deleting the essential mTORC2 subunit Rictor in murine brown adipocytes inhibits de novo lipid synthesis, promotes lipid catabolism and thermogenesis, and protects against diet-induced obesity and hepatic steatosis. AKT kinases are the canonical mTORC2 substrates; however, deleting Rictor in brown adipocytes appears to drive lipid catabolism by promoting FoxO1 deacetylation independently of AKT, and in a pathway distinct from its positive role in anabolic lipid synthesis. This facilitates FoxO1 nuclear retention, enhances lipid uptake and lipolysis, and potentiates UCP1 expression. We provide evidence that SIRT6 is the FoxO1 deacetylase suppressed by mTORC2 and show an endogenous interaction between SIRT6 and mTORC2 in both mouse and human cells. Our findings suggest a new paradigm of mTORC2 function filling an important gap in our understanding of this more mysterious mTOR complex.
Assuntos
Adipócitos Marrons/metabolismo , Proteína Forkhead Box O1/metabolismo , Lipólise , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Sirtuínas/metabolismo , Adipócitos Marrons/citologia , Animais , Proteína Forkhead Box O1/genética , Células HEK293 , Células HeLa , Humanos , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Camundongos , Camundongos Transgênicos , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Sirtuínas/genéticaRESUMO
ER-mitochondria contact sites (ERMCSs) regulate processes, including calcium homoeostasis, energy metabolism and autophagy. Previously, it was shown that during growth factor signalling, mTORC2/Akt gets recruited to and stabilizes ERMCSs. Independent studies showed that GSK3ß, a well-known Akt substrate, reduces ER-mitochondria connectivity by disrupting the VAPB-PTPIP51 tethering complex. However, the mechanisms that regulate ERMCSs are incompletely understood. Here we find that annulate lamellae (AL), relatively unexplored subdomains of ER enriched with a subset of nucleoporins, are present at ERMCSs. Depletion of Nup358, an AL-resident nucleoporin, results in enhanced mTORC2/Akt activation, GSK3ß inhibition and increased ERMCSs. Depletion of Rictor, a mTORC2-specific subunit, or exogenous expression of GSK3ß, was sufficient to reverse the ERMCS-phenotype in Nup358-deficient cells. We show that growth factor-mediated activation of mTORC2 requires the VAPB-PTPIP51 complex, whereas, Nup358's association with this tether restricts mTORC2/Akt signalling and ER-mitochondria connectivity. Expression of a Nup358 fragment that is sufficient for interaction with the VAPB-PTPIP51 complex suppresses mTORC2/Akt activation and disrupts ERMCSs. Collectively, our study uncovers a novel role for Nup358 in controlling ERMCSs by modulating the mTORC2/Akt/GSK3ß axis.
Assuntos
Retículo Endoplasmático , Mitocôndrias , Chaperonas Moleculares , Complexo de Proteínas Formadoras de Poros Nucleares , Transdução de Sinais , Humanos , Retículo Endoplasmático/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Mitocôndrias/metabolismo , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Complexos Multiproteicos/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Serina-Treonina Quinases TOR/metabolismoRESUMO
BACKGROUND: Lymphatic valves are specialized structures in collecting lymphatic vessels and are crucial for preventing retrograde lymph flow. Mutations in valve-forming genes have been clinically implicated in the pathology of congenital lymphedema. Lymphatic valves form when oscillatory shear stress from lymph flow signals through the PI3K/AKT pathway to promote the transcription of valve-forming genes that trigger the growth and maintenance of lymphatic valves. Conventionally, in many cell types, AKT is phosphorylated at Ser473 by the mTORC2 (mammalian target of rapamycin complex 2). However, mTORC2 has not yet been implicated in lymphatic valve formation. METHODS: In vivo and in vitro techniques were used to investigate the role of Rictor, a critical component of mTORC2, in lymphatic endothelium. RESULTS: Here, we showed that embryonic and postnatal lymphatic deletion of Rictor, a critical component of mTORC2, led to a significant decrease in lymphatic valves and prevented the maturation of collecting lymphatic vessels. RICTOR knockdown in human dermal lymphatic endothelial cells not only reduced the level of activated AKT and the expression of valve-forming genes under no-flow conditions but also abolished the upregulation of AKT activity and valve-forming genes in response to oscillatory shear stress. We further showed that the AKT target, FOXO1 (forkhead box protein O1), a repressor of lymphatic valve formation, had increased nuclear activity in Rictor knockout mesenteric lymphatic endothelial cells in vivo. Deletion of Foxo1 in Rictor knockout mice restored the number of valves to control levels in lymphatic vessels of the ear and mesentery. CONCLUSIONS: Our work identifies a novel role for RICTOR in the mechanotransduction signaling pathway, wherein it activates AKT and prevents the nuclear accumulation of the valve repressor, FOXO1, which ultimately enables the formation and maintenance of lymphatic valves.
Assuntos
Proteínas de Transporte , Proteína Forkhead Box O1 , Linfangiogênese , Vasos Linfáticos , Alvo Mecanístico do Complexo 2 de Rapamicina , Mecanotransdução Celular , Camundongos Knockout , Proteínas Proto-Oncogênicas c-akt , Proteína Companheira de mTOR Insensível à Rapamicina , Transdução de Sinais , Animais , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Vasos Linfáticos/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Humanos , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Células Endoteliais/metabolismo , Células Cultivadas , Serina-Treonina Quinases TOR/metabolismo , Fosforilação , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Camundongos , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/genética , Camundongos Endogâmicos C57BL , Interferência de RNA , TransfecçãoRESUMO
The Food and Drug Administrationapproved drug sirolimus, which inhibits mechanistic target of rapamycin (mTOR), is the leading candidate for targeting aging in rodents and humans. We previously demonstrated that sirolimus could treat ARHL in mice. In this study, we further demonstrate that sirolimus protects mice against cocaine-induced hearing loss. However, using efficacy and safety tests, we discovered that mice developed substantial hearing loss when administered high doses of sirolimus. Using pharmacological and genetic interventions in murine models, we demonstrate that the inactivation of mTORC2 is the major driver underlying hearing loss. Mechanistically, mTORC2 exerts its effects primarily through phosphorylating in the AKT/PKB signaling pathway, and ablation of P53 activity greatly attenuated the severity of the hearing phenotype in mTORC2-deficient mice. We also found that the selective activation of mTORC2 could protect mice from acoustic trauma and cisplatin-induced ototoxicity. Thus, in this study, we discover a function of mTORC2 and suggest that its therapeutic activation could represent a potentially effective and promising strategy to prevent sensorineural hearing loss. More importantly, we elucidate the side effects of sirolimus and provide an evaluation criterion for the rational use of this drug in a clinical setting.
Assuntos
Perda Auditiva Neurossensorial/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Transdução de Sinais , Animais , Modelos Animais de Doenças , Perda Auditiva Neurossensorial/induzido quimicamente , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/prevenção & controle , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Sirolimo/efeitos adversos , Sirolimo/farmacologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismoRESUMO
BACKGROUND: The main drawback of BRAF/MEK inhibitors (BRAF/MEKi)-based targeted therapy in the management of BRAF-mutated cutaneous metastatic melanoma (MM) is the development of therapeutic resistance. We aimed to assess in this context the role of mTORC2, a signaling complex defined by the presence of the essential RICTOR subunit, regarded as an oncogenic driver in several tumor types, including MM. METHODS: After analyzing The Cancer Genome Atlas MM patients' database to explore both overall survival and molecular signatures as a function of intra-tumor RICTOR levels, we investigated the effects of RICTOR downregulation in BRAFV600E MM cell lines on their response to BRAF/MEKi. We performed proteomic screening to identify proteins modulated by changes in RICTOR expression, and Seahorse analysis to evaluate the effects of RICTOR depletion on mitochondrial respiration. The combination of BRAFi with drugs targeting proteins and processes emerged in the proteomic screening was carried out on RICTOR-deficient cells in vitro and in a xenograft setting in vivo. RESULTS: Low RICTOR levels in BRAF-mutated MM correlate with a worse clinical outcome. Gene Set Enrichment Analysis of low-RICTOR tumors display gene signatures suggestive of activation of the mitochondrial Electron Transport Chain (ETC) energy production. RICTOR-deficient BRAFV600E cells are intrinsically tolerant to BRAF/MEKi and anticipate the onset of resistance to BRAFi upon prolonged drug exposure. Moreover, in drug-naïve cells we observed a decline in RICTOR expression shortly after BRAFi exposure. In RICTOR-depleted cells, both mitochondrial respiration and expression of nicotinamide phosphoribosyltransferase (NAMPT) are enhanced, and their pharmacological inhibition restores sensitivity to BRAFi. CONCLUSIONS: Our work unveils an unforeseen tumor-suppressing role for mTORC2 in the early adaptation phase of BRAFV600E melanoma cells to targeted therapy and identifies the NAMPT-ETC axis as a potential therapeutic vulnerability of low RICTOR tumors. Importantly, our findings indicate that the evaluation of intra-tumor RICTOR levels has a prognostic value in metastatic melanoma and may help to guide therapeutic strategies in a personalized manner.
Assuntos
Resistencia a Medicamentos Antineoplásicos , Alvo Mecanístico do Complexo 2 de Rapamicina , Melanoma , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas B-raf , Proteína Companheira de mTOR Insensível à Rapamicina , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Melanoma/genética , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Melanoma/patologia , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteômica/métodos , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Ensaios Antitumorais Modelo de Xenoenxerto , MAP Quinase Quinase Quinases/antagonistas & inibidoresRESUMO
Intestinal inflammation and compromised barrier function are critical factors in the pathogenesis of gastrointestinal disorders. This study aimed to investigate the role of miR-192-5p in modulating intestinal epithelial barrier (IEB) integrity and its association with autophagy. A DSS-induced colitis model was used to assess the effects of miR-192-5p on intestinal inflammation. In vitro experiments involved cell culture and transient transfection techniques. Various assays, including dual-luciferase reporter gene assays, quantitative real-time PCR, Western blotting, and measurements of transepithelial electrical resistance, were performed to evaluate changes in miR-192-5p expression, Rictor levels, and autophagy flux. Immunofluorescence staining, H&E staining, TEER measurements, and FITC-dextran analysis were also used. Our findings revealed a reduced expression of miR-192-5p in inflamed intestinal tissues, correlating with impaired IEB function. Overexpression of miR-192-5p alleviated TNF-induced IEB dysfunction by targeting Rictor, resulting in enhanced autophagy flux in enterocytes (ECs). Moreover, the therapeutic potential of miR-192-5p was substantiated in colitis mice, wherein increased miR-192-5p expression ameliorated intestinal inflammatory injury by enhancing autophagy flux in ECs through the modulation of Rictor. Our study highlights the therapeutic potential of miR-192-5p in enteritis by demonstrating its role in regulating autophagy and preserving IEB function. Targeting the miR-192-5p/Rictor axis is a promising approach for mitigating gut inflammatory injury and improving barrier integrity in patients with enteritis.NEW & NOTEWORTHY We uncover the pivotal role of miR-192-5p in fortifying intestinal barriers amidst inflammation. Reduced miR-192-5p levels correlated with compromised gut integrity during inflammation. Notably, boosting miR-192-5p reversed gut damage by enhancing autophagy via suppressing Rictor, offering a potential therapeutic strategy for fortifying the intestinal barrier and alleviating inflammation in patients with enteritis.
Assuntos
Autofagia , Enterite , Mucosa Intestinal , MicroRNAs , Proteína Companheira de mTOR Insensível à Rapamicina , MicroRNAs/metabolismo , MicroRNAs/genética , Animais , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Camundongos , Mucosa Intestinal/metabolismo , Humanos , Enterite/metabolismo , Enterite/genética , Enterite/patologia , Colite/metabolismo , Colite/induzido quimicamente , Colite/patologia , Colite/genética , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , MasculinoRESUMO
Osteoarthritis (OA) is a very common chronic joint condition marked by inflammation and cartilage loss. mTOR is a well-known mediator of inflammation, cell survival, and aging; however, its role in OA has not been determined. To explore the role of mTORC2 in OA-and associated pathological changes, we examined the contribution of mTORC2-mediated Akt, rictor and IκB-α/NF-κB p65 pathway in interleukin (IL)-1ß-treated human chondrocytes. We focused on the protein expression of proinflammatory cytokines and catabolic and apoptotic factors, including TNF-α, IL-6, iNOS, MMP13, Bax, and caspase3, which may occur through this signalling pathway in IL-1ß-treated chondrocytes. Chondrocytes were cultured and treated with either 2 ng/mL IL1ß alone or in combination with increasing concentrations of JR-AB2-011 (50, 100, or 250 µM), a selective mTORC2 inhibitor. The protein levels of phosphorylated (p)Akt, Akt, rictor, p-NF-κB p65, NF-κB p65, IκB-α, p-IκB-α, iNOS, MMP13, Bax, and caspase3 were evaluated by Western blotting. In IL-1ß-stimulated chondrocytes, mTORC2 activity was increased with increased phosphorylation of Akt and expression of rictor. IL-1ß increased the expression of p-IκBα, p-NF-κB p65, NF-κB p65, IL-6, TNF-α, iNOS, Bax, and caspase3 proteins and decreased the expression of IκB-α. All of these IL-1ß-induced alterations were prevented by JR-AB2-011. The main novel finding in the present study is that selective mTORC2 inhibition by JR-AB2-011 prevents the inflammatory, catabolic, and apoptotic responses induced by IL-1ß via modulation of IκB-α/NF-κB activity. Therefore, we demonstrated a previously unknown function of mTORC2 inhibition that seems to be a potential therapeutic target for OA.
Assuntos
Apoptose , Condrócitos , Inflamação , Interleucina-1beta , Alvo Mecanístico do Complexo 2 de Rapamicina , Inibidor de NF-kappaB alfa , Transdução de Sinais , Fator de Transcrição RelA , Humanos , Condrócitos/metabolismo , Condrócitos/efeitos dos fármacos , Interleucina-1beta/metabolismo , Apoptose/efeitos dos fármacos , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/antagonistas & inibidores , Inflamação/metabolismo , Inflamação/patologia , Transdução de Sinais/efeitos dos fármacos , Inibidor de NF-kappaB alfa/metabolismo , Fator de Transcrição RelA/metabolismo , Células Cultivadas , Osteoartrite/metabolismo , Osteoartrite/patologia , Osteoartrite/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Imidazóis , QuinoxalinasRESUMO
Mechanistic target of rapamycin (mTOR) complex 2 (mTORC2) regulates metabolism, cell proliferation, and cell survival. mTORC2 activity is stimulated by growth factors, and it phosphorylates the hydrophobic motif site of the AGC kinases AKT, SGK, and PKC. However, the proteins that interact with mTORC2 to control its activity and localization remain poorly defined. To identify mTORC2-interacting proteins in living cells, we tagged endogenous RICTOR, an essential mTORC2 subunit, with the modified BirA biotin ligase BioID2 and performed live-cell proximity labeling. We identified 215 RICTOR-proximal proteins, including proteins with known mTORC2 pathway interactions, and 135 proteins (63%) not previously linked to mTORC2 signaling, including nuclear and cytoplasmic proteins. Our imaging and cell fractionation experiments suggest nearly 30% of RICTOR is in the nucleus, hinting at potential nuclear functions. We also identified 29 interactors containing RICTOR-dependent, insulin-stimulated phosphorylation sites, thus providing insight into mTORC2-dependent insulin signaling dynamics. Finally, we identify the endogenous ADP ribosylation factor 1 (ARF1) GTPase as an mTORC2-interacting protein. Through gain-of-function and loss-of-function studies, we provide functional evidence that ARF1 may negatively regulate mTORC2. In summary, we present a new method of studying endogenous mTORC2, a resource of RICTOR/mTORC2 protein interactions in living cells, and a potential mechanism of mTORC2 regulation by the ARF1 GTPase.
Assuntos
Fator 1 de Ribosilação do ADP , Mapas de Interação de Proteínas , Proteína Companheira de mTOR Insensível à Rapamicina , Serina-Treonina Quinases TOR , Humanos , Fator 1 de Ribosilação do ADP/metabolismo , Insulina/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Mapeamento de Interação de Proteínas/métodosRESUMO
Mechanistic target of rapamycin complex 2 (mTORC2) is a multi-subunit kinase complex, central to multiple essential signaling pathways. Two core subunits, Rictor and mSin1, distinguish it from the related mTORC1 and support context-dependent phosphorylation of its substrates. mTORC2 structures have been determined previously; however, important questions remain, particularly regarding the structural determinants mediating substrate specificity and context-dependent activity. Here, we used cryo-EM to obtain high-resolution structures of the human mTORC2 apo-complex in the presence of substrates Akt and SGK1. Using functional assays, we then tested predictions suggested by substrate-induced structural changes in mTORC2. For the first time, we visualized in the apo-state the side chain interactions between Rictor and mTOR that sterically occlude recruitment of mTORC1 substrates and confer resistance to the mTORC1 inhibitor rapamycin. Also in the apo-state, we observed that mSin1 formed extensive contacts with Rictor via a pair of short α-helices nestled between two Rictor helical repeat clusters, as well as by an extended strand that makes multiple weak contacts with Rictor helical cluster 1. In co-complex structures, we found that SGK1, but not Akt, markedly altered the conformation of the mSin1 N-terminal extended strand, disrupting multiple weak interactions while inducing a large rotation of mSin1 residue Arg-83, which then interacts with a patch of negatively charged residues within Rictor. Finally, we demonstrate mutation of Arg-83 to Ala selectively disrupts mTORC2-dependent phosphorylation of SGK1, but not of Akt, supporting context-dependent substrate selection. These findings provide new structural and functional insights into mTORC2 specificity and context-dependent activity.
Assuntos
Proteínas Imediatamente Precoces , Proteínas Monoméricas de Ligação ao GTP , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas c-akt , Proteína Companheira de mTOR Insensível à Rapamicina , Humanos , Proteínas Imediatamente Precoces/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Sirolimo/farmacologia , Fatores de Transcrição/metabolismoRESUMO
BACKGROUND: Mutations in TP53 gene is considered a main driver of hepatocellular carcinoma (HCC). While TP53 mutations are the leading cause of p53 dysfunction, their occurrence rates may drop to approximately 10% in cohorts without hepatitis B virus and aflatoxin exposure. This observation suggests that the deactivation of wild-type p53 (p53wt) may be a critical factor in the majority of HCC cases. However, the mechanism undermining p53wt activity in the liver remains unclear. METHODS: Microarray analysis and luciferase assay were utilized to confirm target associations. Gain- and/or loss-of-function methods were employed to assess alterations in signaling pathways. Protein interactions were analyzed by molecular immunological methods and further visualized by confocal microscopy. Bioinformatic analysis was performed to analyze clinical significance. Tumor xenograft nude mice were used to validate the findings in vivo. RESULTS: Our study highlights the oncogenic role of Rictor, a key component of the mammalian target of rapamycin complex 2 (mTORC2), in hepatocytes. Rictor exerts its oncogenic function by binding to p53wt and subsequently blocking p53wt activity based on p53 status, requiring the involvement of mTOR. Moreover, we observed a dynamic nucleocytoplasmic distribution pattern of Rictor, characterized by its translocation from the nucleus (in precancerous lesions) to the cytoplasm (in HCCs) during malignant transformation. Notably, Rictor is directly targeted by the liver-enriched microRNA miR-192, and the disruption of the miR-192-Rictor-p53-miR-192 signaling axis was consistently observed in both human and rat HCC models. Clinical analysis associated lower miR-192/higher Rictor with shorter overall survival and more advanced clinical stages (P < 0.05). In mice, xenograft tumors overexpressing miR-192 exhibited lower Rictor expression levels, leading to higher p53 activity, and these tumors displayed slower growth compared to untreated HCC cells. CONCLUSIONS: Rictor dynamically shuttles between the nucleus and cytoplasm during HCC development. Its pivotal oncogenic role involves binding and inhibiting p53wt activity within the nucleus in early hepatocarcinogenesis. Targeting Rictor presents a promising strategy for HCC based on p53 status.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Proteína Companheira de mTOR Insensível à Rapamicina , Animais , Humanos , Camundongos , Ratos , Carcinogênese/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , Genes p53 , Hepatócitos/patologia , Neoplasias Hepáticas/patologia , Camundongos Nus , MicroRNAs/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismoRESUMO
Osteoporosis is a prevalent degenerative disease that is characterized by decreased bone density and strength, resulting in gradually increasing bone fragility. Osteoporosis is caused by an imbalance between osteoblastic bone formation and osteoclastic bone resorption. Recently, increasing evidence has suggested that long non-coding RNAs (lncRNAs) participate in the occurrence and development of osteoporosis. Herein, we explored the role of lncRNA KCNQ1OT1 in osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). QPCR results indicated that KCNQ1OT1 and RICTOR were down-regulated, while miR-205-5p was up-regulated in the osteoporotic patients, as compared with non-osteoporotic controls. During the osteogenic differentiation of BMSCs, the expression of KCNQ1OT1 and RICTOR was upregulated, whereas miR-205-5p was downregulated. The interaction among KCNQ1OT1, miR-205-5p and RICTOR was validated by dual luciferase reporter system. KCNQ1OT1 promoted RICTOR expression via inhibiting miR-205-5p, therefore promoting osteogenesis as demonstrated by ALP assay, alizarin red staining and the increased expression of osteogenic markers (OPN, RUNX2 and OCN). Furthermore, KCNQ1OT1 overexpression or miR-205-5p inhibition could promote ALP activity and mineralization of BMSCs, while overexpressed miR-205-5p could reverse the effects of overexpressed KCNQ1OT1, and knockdown of RICTOR could reverse the effects of miR-205-5p inhibition. In conclusion, our study illustrated that KCNQ1OT1 might inhibit miR-205-5p in BMSCs, thus upregulating the expression of RICTOR and promoting osteogenic differentiation.
Assuntos
MicroRNAs , Osteoporose , RNA Longo não Codificante , Diferenciação Celular/genética , Células Cultivadas , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Osteogênese/genética , Osteoporose/genética , Osteoporose/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana , RNA Longo não Codificante/genética , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Fatores de Transcrição/metabolismoRESUMO
Group 3 innate lymphoid cells (ILC3s) are mediators of intestinal immunity and barrier function. Recent studies have investigated the role of the mammalian target of rapamycin complex (mTOR) in ILC3s, whereas the mTORC1-related mechanisms and crosstalk between mTORC1 and mTORC2 involved in regulating ILC3 homeostasis remain unknown. In this study, we found that mTORC1 but not mTORC2 was critical in ILC3 development, IL-22 production, and ILC3-mediated intestinal homeostasis. Single-cell RNA sequencing revealed that mTORC1 deficiency led to disruption of ILC3 heterogeneity, showing an increase in differentiation into ILC1-like phenotypes. Mechanistically, mTORC1 deficiency decreased the expression of NFIL3, which is a critical transcription factor responsible for ILC3 development. The activities of both mTORC1 and mTORC2 were increased in wild-type ILC3s after activation by IL-23, whereas inhibition of mTORC1 by Raptor deletion or rapamycin treatment resulted in increased mTORC2 activity. Previous studies have demonstrated that S6K, the main downstream target of mTORC1, can directly phosphorylate Rictor to dampen mTORC2 activity. Our data found that inhibition of mTORC1 activity by rapamycin reduced Rictor phosphorylation in ILC3s. Reversing the increased mTORC2 activity via heterozygous or homozygous knockout of Rictor in Raptor-deleted ILC3s resulted in severe ILC3 loss and complete susceptibility to intestinal infection in mice with mTORC1 deficiency (100% mortality). Thus, mTORC1 acts as a rheostat of ILC3 heterogeneity, and mTORC2 protects ILC3s from severe loss of cells and immune activity against intestinal infection when mTORC1 activity is diminished.
Assuntos
Imunidade Inata , Linfócitos , Camundongos , Animais , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Proteína Regulatória Associada a mTOR/genética , Fatores de Transcrição/metabolismo , Sirolimo/farmacologia , Mamíferos/metabolismoRESUMO
Ingestion of arsenic interferes with spermatogenesis and increases the risk of male infertility, but the underlying mechanism remines unclear. In this study, we investigated spermatogenic injury with a focus on blood-testis barrier (BTB) disruption by administrating 5 mg/L and 15 mg/L arsenic orally to adult male mice for 60 d. Our results showed that arsenic exposure reduced sperm quality, altered testicular architecture, and impaired Sertoli cell junctions at the BTB. Analysis of BTB junctional proteins revealed that arsenic intake downregulated Claudin-11 expression and increased protein levels of ß-catenin, N-cadherin, and Connexin-43. Aberrant localization of these membrane proteins was also observed in arsenic-treated mice. Meanwhile, arsenic exposure altered the components of Rictor/mTORC2 pathway in mouse testis, including inhibition of Rictor expression, reduced phosphorylation of protein kinase Cα (PKCα) and protein kinase B (PKB), and elevated matrix metalloproteinase-9 (MMP-9) levels. Furthermore, arsenic also induced testicular lipid peroxidative damage, inhibited antioxidant enzyme (T-SOD) activity, and caused glutathione (GSH) depletion. Our findings suggest that disruption of BTB integrity is one of the main factors responsible for the decline in sperm quality caused by arsenic. PKCα-mediated rearrangement of actin filaments and PKB/MMP-9-increased barrier permeability jointly contribute to arsenic-induced BTB disruption.
Assuntos
Arsênio , Camundongos , Masculino , Animais , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Arsênio/toxicidade , Arsênio/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Proteína Quinase C-alfa/metabolismo , Barreira Hematotesticular/metabolismo , Sêmen , Testículo/metabolismo , Espermatogênese , Fatores de Transcrição/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismoRESUMO
The mechanistic target of rapamycin (mTOR) kinase is a central regulator of cell growth and metabolism. It is the catalytic subunit of two distinct large protein complexes, mTOR complex 1 (mTORC1) and mTORC2. mTOR activity is subjected to tight regulation in response to external nutrition and growth factor stimulation. As an important mechanism of signaling transduction, the 'second messenger' cyclic nucleotides including cAMP and cGMP and their associated cyclic nucleotide-dependent kinases, including protein kinase A (PKA) and protein kinase G (PKG), play essential roles in mediating the intracellular action of a variety of hormones and neurotransmitters. They have also emerged as important regulators of mTOR signaling in various physiological and disease conditions. However, the mechanism by which cAMP and cGMP regulate mTOR activity is not completely understood. In this review, we will summarize the earlier work establishing the ability of cAMP to dampen mTORC1 activation in response to insulin and growth factors and then discuss our recent findings demonstrating the regulation of mTOR signaling by the PKA- and PKG-dependent signaling pathways. This signaling framework represents a new non-canonical regulation of mTOR activity that is independent of AKT and could be a novel mechanism underpinning the action of a variety of G protein-coupled receptors that are linked to the mTOR signaling network. We will further review the implications of these signaling events in the context of cardiometabolic disease, such as obesity, non-alcoholic fatty liver disease, and cardiac remodeling. The metabolic and cardiac phenotypes of mouse models with targeted deletion of Raptor and Rictor, the two essential components for mTORC1 and mTORC2, will be summarized and discussed.
Assuntos
Doenças Cardiovasculares , Complexos Multiproteicos , Sirolimo , Serina-Treonina Quinases TOR , Animais , Camundongos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Complexos Multiproteicos/metabolismo , Nucleotídeos Cíclicos/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Serina-Treonina Quinases TOR/metabolismoRESUMO
BACKGROUND & AIMS: Oncogenic KrasG12D induces neoplastic transformation of pancreatic acinar cells through acinar-to-ductal metaplasia (ADM), an actin-based morphogenetic process, and drives pancreatic ductal adenocarcinoma (PDAC). mTOR (mechanistic target of rapamycin kinase) complex 1 (mTORC1) and 2 (mTORC2) contain Rptor and Rictor, respectively, and are activated downstream of KrasG12D, thereby contributing to PDAC. Yet, whether and how mTORC1 and mTORC2 impact on ADM and the identity of the actin nucleator(s) mediating such actin rearrangements remain unknown. METHODS: A mouse model of inflammation-accelerated KrasG12D-driven early pancreatic carcinogenesis was used. Rptor, Rictor, and Arpc4 (actin-related protein 2/3 complex subunit 4) were conditionally ablated in acinar cells to deactivate the function of mTORC1, mTORC2 and the actin-related protein (Arp) 2/3 complex, respectively. RESULTS: We found that mTORC1 and mTORC2 are markedly activated in human and mouse ADM lesions, and cooperate to promote KrasG12D-driven ADM in mice and in vitro. They use the Arp2/3 complex as a common downstream effector to induce the remodeling the actin cytoskeleton leading to ADM. In particular, mTORC1 regulates the translation of Rac1 (Rac family small GTPase 1) and the Arp2/3-complex subunit Arp3, whereas mTORC2 activates the Arp2/3 complex by promoting Akt/Rac1 signaling. Consistently, genetic ablation of the Arp2/3 complex prevents KrasG12D-driven ADM in vivo. In acinar cells, the Arp2/3 complex and its actin-nucleation activity mediated the formation of a basolateral actin cortex, which is indispensable for ADM and pre-neoplastic transformation. CONCLUSIONS: Here, we show that mTORC1 and mTORC2 attain a dual, yet nonredundant regulatory role in ADM and early pancreatic carcinogenesis by promoting Arp2/3 complex function. The role of Arp2/3 complex as a common effector of mTORC1 and mTORC2 fills the gap between oncogenic signals and actin dynamics underlying PDAC initiation.
Assuntos
Células Acinares/enzimologia , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Carcinoma Ductal Pancreático/enzimologia , Transformação Celular Neoplásica/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Mutação , Ductos Pancreáticos/enzimologia , Neoplasias Pancreáticas/enzimologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Células Acinares/patologia , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Metaplasia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ductos Pancreáticos/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Proteína Regulatória Associada a mTOR/genética , Proteína Regulatória Associada a mTOR/metabolismo , Transdução de SinaisRESUMO
Epithelial barrier impairment is a hallmark of several pathologic processes in the gut, including inflammatory bowel diseases. Several intracellular signals prevent apoptosis in intestinal epithelial cells. Herein, we show that in colonocytes, rictor/mammalian target of rapamycin complex 2 (mTORC2) signaling is a prosurvival stimulus. Mechanistically, mTORC2 activates Akt, which, in turn, inhibits apoptosis by phosphorylating B-cell lymphoma 2 (BCL2) associated agonist of cell death (Bad) and preventing caspase-3 activation. Nevertheless, during inflammation, rictor/mTORC2 signaling declines and Akt activity is reduced. Consequently, active caspase-3 increases in surface colonocytes undergoing apoptosis/anoikis and causes epithelial barrier breakdown. Likewise, Rictor ablation in intestinal epithelial cells interrupts mTORC2/Akt signaling and increases apoptosis/anoikis of surface colonocytes without affecting the crypt architecture. The increase in epithelial permeability induced by Rictor ablation produces a mild inflammatory response in the colonic mucosa, but minimally affects the development/establishment of colitis. The data identify a previously unknown mechanism by which rictor/mTORC2 signaling regulates apoptosis/anoikis in intestinal epithelial cells during colitis and clarify its role in the maintenance of the intestinal epithelial barrier.
Assuntos
Apoptose/fisiologia , Colite/patologia , Células Epiteliais/metabolismo , Mucosa Intestinal/patologia , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Animais , Colite/metabolismo , Células Epiteliais/patologia , Mucosa Intestinal/metabolismo , Camundongos , Transdução de Sinais/fisiologiaRESUMO
Polychlorinated biphenyls (PCBs) are a typical type of persistent organic pollutant. PCB exposure is associated to the occurrence and development of osteoarthritis (OA); however, the involved mechanisms have yet to be elucidated. Here, we investigated the pro-osteoarthritic effect of 2, 2', 4, 4', 5, 5'-hexachlorobiphenyl (PCB153), and the involvement of the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/ mammalian target of rapamycin (mTOR) and the RICTOR/Akt/mTOR signaling pathways. PCB153 of 20 and 30 µM increased the expression of MMP13 and decreased the expression of type II collagen, in a concentration-dependent manner. PCB153 treatment reduced the expression of Beclin 1 and LC3B, but increased the expression of p62 by upregulating miR-155 levels. PCB153 treatment activated the PI3K/Akt/mTOR signaling pathway by upregulating miR-155 levels. RICTOR was involved in activating the Akt/mTOR signaling pathway, and was also regulated by miR-155. In conclusion, PCB153 could promote the degradation of the extracellular matrix of chondrocytes by upregulating miR-155 via a mechanism related to the activation of the PI3K/Akt/mTOR and RICTOR/Akt/mTOR signaling pathway, which suppressed autophagy and facilitated the development of OA. MiR-155 may represent potential therapeutic targets to alleviate the development of OA.
Assuntos
MicroRNAs , Osteoartrite , Bifenilos Policlorados , Animais , Ratos , Autofagia , Condrócitos , Mamíferos/metabolismo , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Bifenilos Policlorados/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Regulação para CimaRESUMO
Innervation sustains cornea integrity. Pigment epithelium-derived factor (PEDF) plus docosahexaenoic acid (DHA) regenerated damaged nerves by stimulating the synthesis of a new stereoisomer of Resolvin D6 (RvD6si). Here, we resolved the structure of this lipid isolated from mouse tears after injured corneas were treated with PEDF + DHA. RvD6si synthesis was inhibited by fluvoxamine, a cytochrome P450 inhibitor, but not by 15- or 5-LOX inhibitors, suggesting that the 4- and 17-hydroxy of DHA have an RR- or SR-configuration. The two compounds were chemically synthesized. Using chiral phase HPLC, four peaks of RvD6si1-4 from tears were resolved. The RR-RvD6 standard eluted as a single peak with RvD61 while pure SR-RvD6 eluted with RvD63 . The addition of these pure mediators prompted a trigeminal ganglion transcriptome response in injured corneas and showed that RR-RvD6 was the more potent, increasing cornea sensitivity and nerve regeneration. RR-RvD6 stimulates Rictor and hepatocyte growth factor (hgf) genes specifically as upstream regulators and a gene network involved in axon growth and suppression of neuropathic pain, indicating a novel function of this lipid mediator to maintain cornea integrity and homeostasis after injury.