RESUMO
Human pluripotent stem cells (hPSCs), both embryonic (hESCs) and induced (hiPSCs), can be differentiated into derivatives of the three germ layers and are promising tools in regenerative medicine. Cardiovascular diseases are the top-ranking cause of premature death worldwide, and cell replacement therapies based on in vitro differentiated cardiomyocytes might provide a promising perspective to cure patients in the future. The molecular processes during hPSC cardiomyogenesis are far from being fully understood, and we thus have focused here on characterizing the proteome along hESC in vitro differentiation into cardiomyocytes (CMs). Stable isotope labeling of amino acids in cell culture was applied to quantitatively assess the proteome throughout defined stages of hESC cardiomyogenesis. Genetically enriched, >90% pure CM populations were used for shotgun proteomics, leading to the identification and quantitative determination of several thousand proteins. Pathway analysis revealed alterations in energy metabolism during cardiomyogenesis. Enzymes of glycolysis were identified as up-regulated upon differentiation, whereas enzymes involved in oxidative phosphorylation were down-regulated in aggregates on day 20 of differentiation (<10% CMs) and reconstituted on day 35 in >90% pure CMs. A structural protein that attracted our attention was the PDZ and LIM domain containing protein 5 (PDLIM5), which was strongly up-regulated during cardiomyogenesis and for which we detected novel stage-specific isoforms. Notably, expression of the 53 kDa isoforms b and g (corresponding to transcript variants 2 and 7) of PDLIM5 occurred simultaneously to the onset of expression of the early cardiac transcription factor NKX2.5, known to play a key role in cardiac development.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Enzimas/metabolismo , Regulação da Expressão Gênica , Proteínas com Domínio LIM/metabolismo , Miócitos Cardíacos/citologia , Células-Tronco Pluripotentes/citologia , Proteômica/métodos , Proteínas Adaptadoras de Transdução de Sinal/química , Diferenciação Celular , Células Cultivadas , Metabolismo Energético , Glicólise , Proteína Homeobox Nkx-2.5/análise , Humanos , Marcação por Isótopo , Proteínas com Domínio LIM/química , Redes e Vias Metabólicas , Fosforilação Oxidativa , Isoformas de Proteínas/genética , Medicina RegenerativaRESUMO
The present study tested the hypotheses that i) transforming growth factor beta 1 (TGF-ß1) enhances differentiation of rat bone marrow mesenchymal stem cells (MSCs) towards the cardiomyogenic phenotype and ii) intramyocardial implantation of the TGF-ß1-treated MSCs improves cardiac function in heart failure rats. MSCs were treated with different concentrations of TGF-ß1 for 72 h, and then morphological characteristics, surface antigens and mRNA expression of several transcription factors were assessed. Intramyocardial implantation of these TGF-ß1-treated MSCs to infarcted heart was also investigated. MSCs were initially spindle-shaped with irregular processes. On day 28 after TGF-ß1 treatment, MSCs showed fusiform shape, orientating parallel with one another, and were connected with adjoining cells forming myotube-like structures. Immunofluorescence revealed the expression of cardiomyocyte-specific proteins, α-sarcomeric actin and troponin T, in these cells. The mRNA expression of GATA4 and Nkx2.5 genes was slightly increased on day 7, enhanced on day 14 and decreased on day 28 while α-MHC gene was not expressed on day 7, but expressed slightly on day 14 and enhanced on day 28. Transmission electron microscopy showed that the induced cells had myofilaments, z line-like substances, desmosomes, and gap junctions, in contrast with control cells. Furthermore, intramyocardial implantation of TGF-ß1-treated MSCs to infarcted heart reduced scar area and increased the number of muscle cells. This structure regeneration was concomitant with the improvement of cardiac function, evidenced by decreased left ventricular end-diastolic pressure, increased left ventricular systolic pressure and increased maximal positive pressure development rate. Taken together, these results indicate that intramyocardial implantation of differentiated MSCs enhanced by TGF-ß1 improved cardiac function in heart failure rats.
Assuntos
Transplante de Medula Óssea/métodos , Insuficiência Cardíaca/cirurgia , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/farmacologia , Animais , Diferenciação Celular , Fator de Transcrição GATA4/análise , Proteína Homeobox Nkx-2.5/análise , Masculino , Microscopia Eletrônica de Transmissão , Miócitos Cardíacos/efeitos dos fármacos , Cadeias Pesadas de Miosina/análise , Reação em Cadeia da Polimerase , RNA Mensageiro/análise , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Resultado do TratamentoRESUMO
The present study tested the hypotheses that i) transforming growth factor beta 1 (TGF-β1) enhances differentiation of rat bone marrow mesenchymal stem cells (MSCs) towards the cardiomyogenic phenotype and ii) intramyocardial implantation of the TGF-β1-treated MSCs improves cardiac function in heart failure rats. MSCs were treated with different concentrations of TGF-β1 for 72 h, and then morphological characteristics, surface antigens and mRNA expression of several transcription factors were assessed. Intramyocardial implantation of these TGF-β1-treated MSCs to infarcted heart was also investigated. MSCs were initially spindle-shaped with irregular processes. On day 28 after TGF-β1 treatment, MSCs showed fusiform shape, orientating parallel with one another, and were connected with adjoining cells forming myotube-like structures. Immunofluorescence revealed the expression of cardiomyocyte-specific proteins, α-sarcomeric actin and troponin T, in these cells. The mRNA expression of GATA4 and Nkx2.5 genes was slightly increased on day 7, enhanced on day 14 and decreased on day 28 while α-MHC gene was not expressed on day 7, but expressed slightly on day 14 and enhanced on day 28. Transmission electron microscopy showed that the induced cells had myofilaments, z line-like substances, desmosomes, and gap junctions, in contrast with control cells. Furthermore, intramyocardial implantation of TGF-β1-treated MSCs to infarcted heart reduced scar area and increased the number of muscle cells. This structure regeneration was concomitant with the improvement of cardiac function, evidenced by decreased left ventricular end-diastolic pressure, increased left ventricular systolic pressure and increased maximal positive pressure development rate. Taken together, these results indicate that intramyocardial implantation of differentiated MSCs enhanced by TGF-β1 improved cardiac function in heart failure rats.