Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 662
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Circ Res ; 135(3): 453-469, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38899461

RESUMO

BACKGROUND: Cardiac fibroblast activation contributes to adverse remodeling, fibrosis, and dysfunction in the pressure-overloaded heart. Although early fibroblast TGF-ß (transforming growth factor-ß)/Smad (small mother against decapentaplegic)-3 activation protects the pressure-overloaded heart by preserving the matrix, sustained TGF-ß activation is deleterious, accentuating fibrosis and dysfunction. Thus, endogenous mechanisms that negatively regulate the TGF-ß response in fibroblasts may be required to protect from progressive fibrosis and adverse remodeling. We hypothesized that Smad7, an inhibitory Smad that restrains TGF-ß signaling, may be induced in the pressure-overloaded myocardium and may regulate fibrosis, remodeling, and dysfunction. METHODS: The effects of myofibroblast-specific Smad7 loss were studied in a mouse model of transverse aortic constriction, using echocardiography, histological analysis, and molecular analysis. Proteomic studies in S7KO (Smad7 knockout) and overexpressing cells were used to identify fibroblast-derived mediators modulated by Smad7. In vitro experiments using cultured cardiac fibroblasts, fibroblasts populating collagen lattices, and isolated macrophages were used to dissect the molecular signals responsible for the effects of Smad7. RESULTS: Following pressure overload, Smad7 was upregulated in cardiac myofibroblasts. TGF-ß and angiotensin II stimulated fibroblast Smad7 upregulation via Smad3, whereas GDF15 (growth differentiation factor 15) induced Smad7 through GFRAL (glial cell line-derived neurotrophic factor family receptor α-like). MFS7KO (myofibroblast-specific S7KO) mice had increased mortality, accentuated systolic dysfunction and dilative remodeling, and accelerated diastolic dysfunction in response to transverse aortic constriction. Increased dysfunction in MFS7KO hearts was associated with accentuated fibrosis and increased MMP (matrix metalloproteinase)-2 activity and collagen denaturation. Secretomic analysis showed that Smad7 loss accentuates secretion of structural collagens and matricellular proteins and markedly increases MMP2 secretion. In contrast, Smad7 overexpression reduced MMP2 levels. In fibroblasts populating collagen lattices, the effects of Smad7 on fibroblast-induced collagen denaturation and pad contraction were partly mediated via MMP2 downregulation. Surprisingly, MFS7KO mice also exhibited significant macrophage expansion caused by paracrine actions of Smad7 null fibroblasts that stimulate macrophage proliferation and fibrogenic activation. Macrophage activation involved the combined effects of the fibroblast-derived matricellular proteins CD5L (CD5 antigen-like), SPARC (secreted protein acidic and rich in cysteine), CTGF (connective tissue growth factor), ECM1 (extracellular matrix protein 1), and TGFBI (TGFB induced). CONCLUSIONS: The antifibrotic effects of Smad7 in the pressure-overloaded heart protect from dysfunction and involve not only reduction in collagen deposition but also suppression of MMP2-mediated matrix denaturation and paracrine effects that suppress macrophage activation through inhibition of matricellular proteins.


Assuntos
Fibrose , Camundongos Knockout , Miofibroblastos , Proteína Smad7 , Remodelação Ventricular , Animais , Proteína Smad7/metabolismo , Proteína Smad7/genética , Camundongos , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Células Cultivadas , Camundongos Endogâmicos C57BL , Fator de Crescimento Transformador beta/metabolismo , Masculino , Fibroblastos/metabolismo , Fibroblastos/patologia , Transdução de Sinais , Miocárdio/metabolismo , Miocárdio/patologia
2.
J Biol Chem ; 300(7): 107462, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38876303

RESUMO

Intracellular signaling by the pleiotropic cytokine transforming growth factor-ß (TGF-ß) is inhibited by Smad7 in a feedback control mechanism. The activity of Smad7 is tightly regulated by multiple post-translational modifications. Using resin-assisted capture and metabolic labeling methods, we show here that Smad7 is S-palmitoylated in mammary epithelial cell models that are widely studied because of their strong responses to TGF-ß and their biological relevance to mammary development and tumor progression. S-palmitoylation of Smad7 is mediated by zDHHC17, a member of a family of 23 S-acyltransferase enzymes. Moreover, we identified four cysteine residues (Cys202, Cys225, Cys415, and Cys417) in Smad7 as palmitoylation acceptor sites. S-palmitoylation of Smad7 on Cys415 and Cys417 promoted the translocation of Smad7 from the nucleus to the cytoplasm, enhanced the stability of the Smad7 protein, and enforced its inhibitory effect on TGF-ß-induced Smad transcriptional response. Thus, our findings reveal a new post-translational modification of Smad7, and highlight an important role of S-palmitoylation to enhance inhibition of TGF-ß/Smad signaling by Smad7.


Assuntos
Aciltransferases , Lipoilação , Transdução de Sinais , Proteína Smad7 , Fator de Crescimento Transformador beta , Proteína Smad7/metabolismo , Proteína Smad7/genética , Humanos , Aciltransferases/metabolismo , Aciltransferases/genética , Fator de Crescimento Transformador beta/metabolismo , Células HEK293 , Processamento de Proteína Pós-Traducional , Animais , Núcleo Celular/metabolismo , Cisteína/metabolismo
3.
FASEB J ; 38(4): e23491, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38363556

RESUMO

According to recent research, metabolic-associated fatty liver disease (MAFLD) has emerged as an important underlying etiology of hepatocellular carcinoma (HCC). However, the molecular mechanism of MAFLD-HCC is still unclear. Tumor necrosis factor receptor-associated factor 2 (TRAF2) is the key molecule to mediate the signal of inflammatory NF-κB pathway. This study aims to investigate the potential dysregulation of TRAF2 and its biological function in MAFLD-HCC. Huh7 TRAF2-/- demonstrated increased tumor formation ability compared to huh7 TRAF2+/+ when stimulated with transforming growth factor-ß (TGF-ß). The decisive role of TGF-ß in the development of MAFLD-HCC was confirmed through the specific depletion of TGF-ß receptor II gene in the hepatocytes (Tgfbr2ΔHep) of mice. In TRAF2-/- cells treated with TGF-ß, both the glycolysis rate and lipid synthesis were enhanced. We proved the signal of the mechanistic target of rapamycin complex 1 (mTORC1) could be activated in the presence of TGF-ß, and was enhanced in TRAF2-/- cells. The coimmunoprecipitation (co-IP) experiments revealed that TRAF2 fortified the Smurf2-mediated ubiquitination degradation of AXIN1. Hence, TRAF2 depletion resulted in increased Smad7 degradation induced by AXIN1, thus promoting the TGF-ß signal. We also discovered that PLX-4720 could bind with AXIN1 and restrained the tumor proliferation of TRAF2-/- in mice fed with high-fat diet (HFD). Our findings indicate that TRAF2 plays a significant role in the pathogenesis of MAFLD-HCC. The reduction of TRAF2 expression leads to the enhancement of the TGF-ß-mTORC1 pathway by facilitating AXIN1-mediated Smad7 degradation.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Carcinoma Hepatocelular/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator 2 Associado a Receptor de TNF/genética , Fator 2 Associado a Receptor de TNF/metabolismo , Neoplasias Hepáticas/metabolismo , Hepatócitos/metabolismo , Proteína Smad7/genética , Proteína Smad7/metabolismo
4.
Cancer Sci ; 115(3): 974-988, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38287200

RESUMO

Gastric cancer (GC) is a highly aggressive malignancy with limited treatment options for advanced-stage patients. Recent studies have highlighted the role of circular RNA (circRNA) as a novel regulator of cancer progression in various malignancies. However, the underlying mechanisms by which circRNA contributes to the development and progression of GC remain poorly understood. In this study, we utilized microarrays and real-time quantitative polymerase chain reaction (qRT-PCR) to identify and validate a downregulated circRNA, hsa_circ_0003251 (referred to as circWNK1), in paired GC and normal tissues. Through a series of in vitro and in vivo gain-of-function and loss-of-function assays, we demonstrated that circWNK1 exerts inhibitory effects on the proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of GC cells. Additionally, we discovered that circWNK1 acts as a competitive endogenous RNA (ceRNA) for SMAD7 by sequestering miR-21-3p. Our findings were supported by comprehensive biological information analysis, as well as RNA pull-down, luciferase reporter gene, and western blot assays. Notably, the downregulation of circWNK1 in GC cells resulted in reduced SMAD7 expression, subsequently activating the TGF-ß signaling pathway. Collectively, our study reveals that circWNK1 functions as a tumor suppressor in GC by regulating the miR-21-3p/SMAD7-mediated TGF-ß signaling pathway. Furthermore, circWNK1 holds promise as a potential biomarker for the diagnosis and treatment of GC.


Assuntos
MicroRNAs , Neoplasias Gástricas , Humanos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Proteína Smad7/genética , Proteína Smad7/metabolismo , Neoplasias Gástricas/patologia , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
5.
Mol Med ; 30(1): 99, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982366

RESUMO

BACKGROUND: Enhanced glycolysis is a crucial metabolic event that drives the development of liver fibrosis, but the molecular mechanisms have not been fully understood. Lactate is the endproduct of glycolysis, which has recently been identified as a bioactive metabolite binding to G-protein-coupled receptor 81 (GPR81). We then questioned whether GPR81 is implicated in the development of liver fibrosis. METHODS: The level of GPR81 was determined in mice with carbon tetrachloride (CCl4)-induced liver fibrosis and in transforming growth factor beta 1 (TGF-ß1)-activated hepatic stellate cells (HSCs) LX-2. To investigate the significance of GPR81 in liver fibrosis, wild-type (WT) and GPR81 knockout (KO) mice were exposed to CCl4, and then the degree of liver fibrosis was determined. In addition, the GPR81 agonist 3,5-dihydroxybenzoic acid (DHBA) was supplemented in CCl4-challenged mice and TGF-ß1-activated LX-2 cells to further investigate the pathological roles of GPR81 on HSCs activation. RESULTS: CCl4 exposure or TGF-ß1 stimulation significantly upregulated the expression of GPR81, while deletion of GPR81 alleviated CCl4-induced elevation of aminotransferase, production of pro-inflammatory cytokines, and deposition of collagen. Consistently, the production of TGF-ß1, the expression of alpha-smooth muscle actin (α-SMA) and collagen I (COL1A1), as well as the elevation of hydroxyproline were suppressed in GPR81 deficient mice. Supplementation with DHBA enhanced CCl4-induced liver fibrogenesis in WT mice but not in GPR81 KO mice. DHBA also promoted TGF-ß1-induced LX-2 activation. Mechanistically, GPR81 suppressed cAMP/CREB and then inhibited the expression of Smad7, a negative regulator of Smad3, which resulted in increased phosphorylation of Smad3 and enhanced activation of HSCs. CONCLUSION: GPR81 might be a detrimental factor that promotes the development of liver fibrosis by regulating CREB/Smad7 pathway.


Assuntos
Tetracloreto de Carbono , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Células Estreladas do Fígado , Cirrose Hepática , Camundongos Knockout , Receptores Acoplados a Proteínas G , Transdução de Sinais , Proteína Smad7 , Animais , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/genética , Cirrose Hepática/patologia , Cirrose Hepática/etiologia , Cirrose Hepática/induzido quimicamente , Camundongos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Células Estreladas do Fígado/metabolismo , Proteína Smad7/metabolismo , Proteína Smad7/genética , Fator de Crescimento Transformador beta1/metabolismo , Masculino , Humanos , Linhagem Celular , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Deleção de Genes
6.
Mol Med ; 30(1): 126, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39152406

RESUMO

BACKGROUND: Bone marrow mesenchymal stem cells (BMMSCs) are commonly used for cell transplantation to treat refractory diseases. However, the presence of inflammatory factors, such as tumour necrosis factor-alpha (TNF-α), at the transplantation site severely compromises the stemness of BMMSCs, thereby reducing the therapeutic effect of cell transplantation. Aspirin (AS) is a drug that has been in use for over a century and has a wide range of effects, including the regulation of cell proliferation, multidirectional differentiation, and immunomodulatory properties of stem cells. However, it is still unclear whether AS can delay the damaging effects of TNF-α on BMMSC stemness. METHODS: This study investigated the effects of AS and TNF-α on BMMSC stemness and the molecular mechanisms using colony formation assay, western blot, qRT-PCR, and overexpression or knockdown of YAP and SMAD7. RESULTS: The results demonstrated that TNF-α inhibited cell proliferation, the expression of stemness, osteogenic and chondrogenic differentiation markers of BMMSCs. Treatment with AS was shown to mitigate the TNF-α-induced damage to BMMSC stemness. Mechanistic studies revealed that AS may reverse the damage caused by TNF-α on BMMSC stemness by upregulating YAP and inhibiting the expression of SMAD7. CONCLUSION: AS can attenuate the damaging effects of TNF-α on BMMSC stemness by regulating the YAP-SMAD7 axis. These findings are expected to promote the application of AS to improve the efficacy of stem cell therapy.


Assuntos
Aspirina , Diferenciação Celular , Proliferação de Células , Células-Tronco Mesenquimais , Proteína Smad7 , Fator de Necrose Tumoral alfa , Proteínas de Sinalização YAP , Fator de Necrose Tumoral alfa/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Proteína Smad7/metabolismo , Proteína Smad7/genética , Aspirina/farmacologia , Proliferação de Células/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proteínas de Sinalização YAP/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Humanos , Células Cultivadas , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Osteogênese/efeitos dos fármacos , Camundongos
7.
Eur J Immunol ; 53(11): e2350460, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37611637

RESUMO

Transforming growth factor (TGF)-ß1, a member of the TGF-ß superfamily, is produced by many immune and nonimmune cells and has pleiotropic effects on both innate and adaptive immunity, especially in the control of T-cell differentiation and function. Consistently, loss of TGF-ß1 function is associated with exacerbated T-cell-dependent inflammatory responses that culminate in pathological processes in allergic and immune-mediated diseases. In this review, we highlight the roles of TGF-ß1 in immunity, focusing mainly on its ability to promote differentiation of regulatory T cells, T helper (Th)-17, and Th9 cells, thus contributing to amplifying or restricting T-cell responses in health and human diseases (e.g., inflammatory bowel diseases, type 1 diabetes, asthma, and MS). In addition, we discuss the involvement of Smad7, an inhibitor of TGF-ß1 signaling, in immune-mediated disorders (e.g., psoriasis, rheumatoid arthritis, MS, and inflammatory bowel diseases), as well as the discordant results of clinical trials with mongersen, an oral pharmaceutical compound containing a Smad7 antisense oligonucleotide, in patients with Crohn's disease. Further work is needed to ascertain the reasons for such a discrepancy as well as to identify better candidates for treatment with Smad7 inhibitors.


Assuntos
Doença de Crohn , Doenças Inflamatórias Intestinais , Humanos , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , Proteína Smad7/genética , Proteína Smad7/metabolismo , Proteína Smad7/uso terapêutico , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
8.
BMC Biotechnol ; 24(1): 40, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849776

RESUMO

BACKGROUND: This study compared the differences of microvesicles (MVs) and microvesicles-delivering Smad7 (Smad7-MVs) on macrophage M1 polarization and fibroblast differentiation in a model of Peyronie's disease (PD). METHODS: Overexpression of Smad7 in rat BMSCs was obtained by pCMV5-Smad7 transfection. MVs were collected from rat BMSCs using ultracentrifugation. In cells, 100 µg/mL of MVs or Smad7-MVs were used to treat the 100 ng/mL of lipopolysaccharide (LPS)-induced RAW264.7 cells or 10 ng/mL of recombinant transforming growth factor-ß1 (TGF-ß1)-induced fibroblasts. The pro-inflammatory cytokines and markers of M1 macrophages were measured in RAW264.7 cells, and the migration and markers of fibroblast differentiation were measured in fibroblasts. In rats, 50 µg of MVs or Smad7-MVs were used to treat the TGF-ß1-induced animals. The pathology of tunica albuginea (TA), the markers of M1 macrophages and fibroblast differentiation in the TA were measured. RESULTS: The MVs or Smad7-MVs treatment suppressed the LPS-induced macrophage M1 polarization and TGF-ß1-induced fibroblast differentiation. Moreover, the Smad7-MVs treatment decreased the fibroblast differentiation compared with the MVs treatment. In the TGF-ß1-induced TA of rats, MVs or Smad7-MVs treatment ameliorated the TA fibrosis by suppressing the macrophage M1 polarization and fibroblast differentiation. There was no significance on the M1-polarized macrophages between the MVs treatment and the Smad7-MVs treatment. Meanwhile, the Smad7-MVs treatment had an edge in terms of suppressing the fibroblast differentiation in the TGF-ß1-induced PD model compared with the MVs treatment. CONCLUSIONS: This study demonstrated that Smad7-MVs treatment had advantages over MVs treatment in suppressing of fibroblast differentiation in a model of PD.


Assuntos
Diferenciação Celular , Micropartículas Derivadas de Células , Modelos Animais de Doenças , Fibroblastos , Macrófagos , Induração Peniana , Proteína Smad7 , Fator de Crescimento Transformador beta1 , Animais , Induração Peniana/metabolismo , Induração Peniana/tratamento farmacológico , Diferenciação Celular/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Ratos , Masculino , Proteína Smad7/metabolismo , Proteína Smad7/genética , Camundongos , Micropartículas Derivadas de Células/metabolismo , Células RAW 264.7 , Fator de Crescimento Transformador beta1/metabolismo , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Ratos Sprague-Dawley , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia
9.
Int Arch Allergy Immunol ; 185(7): 704-717, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38484719

RESUMO

INTRODUCTION: The NLR family pyrin domain containing 3 (NLRP3)-mediated pyroptosis was positively correlated with the allergic rhinitis progression and was reported to be regulated by SMAD family member 7 (Smad7). Bioinformatics analysis revealed that Smad7 might be targeted by miR-96-5p, and miR-96-5p might be targeted by long noncoding RNA zinc finger antisense 1 (ZFAS1). However, the effects and regulatory mechanisms of the ZFAS1/miR-96-5p/Smad7 functional axis in allergic rhinitis have not been investigated. METHODS: Human nasal mucosa epithelial cell line RPMI 2650 and C57BL/6 mice were obtained for in vitro and in vivo studies. Dual-luciferase reporter assay and RNA immunoprecipitation were implemented for detecting molecular interactions. Cell counting kit-8 and flow cytometry were used for measuring cell viability and pyroptosis. ELISA was obtained for monitoring cytokine secretion. RT-qPCR and Western blot were examined for determining RNA and protein expression. RESULTS: In vitro studies revealed that ZFAS1 was downregulated in interleukin (IL)-13-treated RPMI 2650 cells, while overexpression of ZFAS1 enhanced cell viability and inhibited NLRP3-mediated pyroptosis and inflammatory response. ZFAS1 directly inhibited miR-96-5p to suppress NLRP3-mediated pyroptosis in IL-13-treated RPMI 2650 cells. MiR-96-5p bound to the 3'-untranslated region of Smad7 and knockdown of Smad7 significantly reversed the effects of miR-96-5p depletion. Moreover, in vivo experiments further confirmed the findings of in vitro studies and showed ZFAS1 overexpression or miR-96-5p inhibition alleviated allergic rhinitis in vivo. CONCLUSION: ZFAS1 downregulated the expression of miR-96-5p to upregulate Smad7 level, which subsequently inhibited NLRP3-mediated pyroptosis and inflammatory response to ameliorate allergic rhinitis.


Assuntos
MicroRNAs , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , RNA Longo não Codificante , Rinite Alérgica , Transdução de Sinais , Proteína Smad7 , Animais , Humanos , Camundongos , Linhagem Celular , Modelos Animais de Doenças , Inflamassomos/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Piroptose/genética , Rinite Alérgica/metabolismo , Rinite Alérgica/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteína Smad7/genética , Proteína Smad7/metabolismo
10.
BMC Cardiovasc Disord ; 24(1): 221, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654161

RESUMO

In this study, we sought to investigate the mechanisms of action of miR-195-5p in the osteogenic differentiation of vascular smooth muscle cells (VSMCs), and thereby provide novel insights and a reference for the targeted therapy of arterial media calcification. VSMC differentiation was induced using sodium ß-glycerophosphate, and we investigated the effects of transfecting cells with miR-195-5p mimics, vectors overexpressing Smad7, and the Wnt/ß-catenin pathway inhibitor (KYA1797K) on VSMC differentiation by determining cell viability and apoptosis, and the mRNA and protein expression of factors associated with osteogenic differentiation and the Wnt/ß-catenin pathway. The results revealed that miR-195-5p mimics enhanced the osteogenic differentiation of VSMCs induced by ß-glycerophosphate, whereas the overexpression of Smad7 reversed this phenomenon. In addition, KYA1797K was found to promote the effects of Smad7 overexpression. In conclusion, by targeting, Smad7, miR-195-5p promotes the Wnt/ß-catenin pathway. and thus the osteogenic differentiation of VSMCs. These findings will provide a reference for elucidating the mechanisms whereby miR-195-5p regulates osteogenic differentiation.


Assuntos
Diferenciação Celular , MicroRNAs , Músculo Liso Vascular , Miócitos de Músculo Liso , Osteogênese , Proteína Smad7 , Via de Sinalização Wnt , Animais , Apoptose , beta Catenina/metabolismo , beta Catenina/genética , Células Cultivadas , Regulação da Expressão Gênica , Glicerofosfatos/farmacologia , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Osteogênese/genética , Proteína Smad7/metabolismo , Proteína Smad7/genética , Ratos
11.
Nucleic Acids Res ; 50(18): 10526-10543, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36134711

RESUMO

Transforming growth factor ß (TGF-ß) superfamily proteins are potent regulators of cellular development and differentiation. Nodal/Activin/TGF-ß and BMP ligands are both present in the intra- and extracellular milieu during early development, and cross-talk between these two branches of developmental signaling is currently the subject of intense research focus. Here, we show that the Nodal induced lncRNA-Smad7 regulates cell fate determination via repression of BMP signaling in mouse embryonic stem cells (mESCs). Depletion of lncRNA-Smad7 dramatically impairs cardiomyocyte differentiation in mESCs. Moreover, lncRNA-Smad7 represses Bmp2 expression through binding with the Bmp2 promoter region via (CA)12-repeats that forms an R-loop. Importantly, Bmp2 knockdown rescues defects in cardiomyocyte differentiation induced by lncRNA-Smad7 knockdown. Hence, lncRNA-Smad7 antagonizes BMP signaling in mESCs, and similarly regulates cell fate determination between osteocyte and myocyte formation in C2C12 mouse myoblasts. Moreover, lncRNA-Smad7 associates with hnRNPK in mESCs and hnRNPK binds at the Bmp2 promoter, potentially contributing to Bmp2 expression repression. The antagonistic effects between Nodal/TGF-ß and BMP signaling via lncRNA-Smad7 described in this work provides a framework for understanding cell fate determination in early development.


Assuntos
RNA Longo não Codificante , Proteína Smad7/metabolismo , Ativinas/metabolismo , Ativinas/farmacologia , Animais , Diferenciação Celular , Ligantes , Camundongos , RNA Longo não Codificante/metabolismo , Proteína Smad7/genética , Proteína Smad7/farmacologia , Fator de Crescimento Transformador beta/metabolismo
12.
Am J Physiol Cell Physiol ; 324(2): C222-C235, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36622073

RESUMO

This study investigates the mechanism by which microRNA (miR)-30e-3p reduces coronary microembolism (CME)-induced cardiomyocyte pyroptosis and inflammation. Cardiac function tests, histological staining, and transmission electron microscopy were performed on CME-model rats injected with adeno-associated viral vectors. Cardiomyocytes were transfected 24 h before a cellular model of pyroptosis was established via treatment with 1 µg/mL lipopolysaccharide (LPS) for 4 h and 5 mM ATP for 30 min. Pyroptosis, inflammation, and Wnt/ß-catenin signaling in cardiomyocytes were detected. Dual-luciferase reporter assays and/or RNA pull-down assays were performed to verify the binding of miR-30e-3p to HDAC2 mRNA or HDAC2 to the SMAD7 promoter. Chromatin immunoprecipitation was used to assess the level of H3K27 acetylation at the SMAD7 promoter. miR-30e-3p and SMAD7 expression levels were downregulated and HDAC2 expression was upregulated with CME. The overexpression of miR-30e-3p restored cardiac functions in CME-model rats and reduced serum cTnI, IL-18, and IL-1ß levels, microinfarcts, inflammatory cell infiltration, apoptosis, collagen content, and GSDMD-N, cleaved caspase-1, and NLRP3 expression in the myocardium, but these effects were reversed by SMAD7 knockdown. The overexpression of miR-30e-3p or knockdown of HDAC2 reduced LDH, IL-18, and IL-1ß secretion, propidium iodide intake, and GSDMD-N, NLRP3, cleaved caspase-1, Wnt3a, Wnt5a, and ß-catenin expression in the cardiomyocyte model. miR-30e-3p inhibited the expression of HDAC2 by binding HDAC2 mRNA. HDAC2 repressed the expression of SMAD7 by catalyzing H3K27 deacetylation at the SMAD7 promoter. miR-30e-3p, by binding HDAC2 to promote SMAD7 expression, reduces CME-induced cardiomyocyte pyroptosis and inflammation.


Assuntos
MicroRNAs , Miócitos Cardíacos , Ratos , Animais , Miócitos Cardíacos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Interleucina-18/metabolismo , beta Catenina/metabolismo , Piroptose/genética , Inflamação , RNA Mensageiro , Caspases/metabolismo , Proteína Smad7/genética , Proteína Smad7/metabolismo , Histona Desacetilase 2/genética
13.
Cancer Sci ; 114(1): 91-104, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36056599

RESUMO

Cell division cycle associated 7 (CDCA7) is a copy number amplification gene that contributes to the metastasis and invasion of tumors, including esophageal squamous cell carcinoma (ESCC). This present study aimed at clarifying whether high expression of CDCA7 promotes the metastasis and invasion of ESCC cell lines and exploring the underlying mechanisms implicated in epithelial-mesenchymal transition (EMT) of ESCC. The role of CDCA7 in the regulation of ESCC metastasis and invasion was evaluated using ESCC cell lines. Expression of EMT-related markers including E-cadherin, N-cadherin, Vimentin, Snail, and Slug, transforming growth factor ß (TGF-ß) signaling pathway including Smad2/3, p-Smad2/3, Smad4, and Smad7 were detected in CDCA7 knockdown and overexpressed cell lines. Dual-luciferase reporter assay and rescue assay were used to explore the underlying mechanisms that CDCA7 contributed to the metastasis and invasion of ESCC. High CDCA7 expression significantly promoted the metastasis and invasion of ESCC cell lines both in vivo and in vitro. Additionally, the expression of CDCA7 positively correlated with the expression of N-cadherin, Vimentin, Snail, Slug, TGF-ß signaling pathway and negatively correlated with the expression of E-cadherin. Furthermore, CDCA7 transcriptionally regulated the expression of Smad4 and Smad7. Knockdown of CDCA7 inhibited the TGF-ß signaling pathway and therefore inhibited EMT. Our data indicated that CDCA7 was heavily involved in EMT by regulating the expression of Smad4 and Smad7 in TGF-ß signaling pathway. CDCA7 might be a new therapeutic target in the suppression of metastasis and invasion of ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , Fator de Crescimento Transformador beta/metabolismo , Vimentina/genética , Vimentina/metabolismo , Neoplasias Esofágicas/patologia , Transição Epitelial-Mesenquimal/genética , Linhagem Celular Tumoral , Caderinas/genética , Caderinas/metabolismo , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Proteína Smad4/genética , Proteína Smad4/metabolismo , Proteínas Nucleares/genética , Proteína Smad7/genética , Proteína Smad7/metabolismo
14.
J Neuroinflammation ; 20(1): 175, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37507781

RESUMO

BACKGROUND: Postoperative cognitive dysfunction (POCD) is a common neurological complication following anesthesia and surgery. Increasing evidence has demonstrated that neuroinflammation caused by systemic inflammatory responses during the perioperative period is a key factor in the occurrence of POCD. In addition, SMAD family member 7 (Smad7) has been confirmed to play vital roles in the pathogenesis and treatment of inflammatory diseases, such as inflammatory bowel disease. However, whether Smad7 participates in the regulatory process of neuroinflammation and apoptosis in the development of POCD is still unknown. METHODS: In this study, a POCD mouse model was constructed by unilateral nephrectomy under anesthesia, and cognitive function was assessed using the fear conditioning test and open field test. The expression of Smad7 at the mRNA and protein levels in the hippocampus 3 days after surgery was examined by qRT-PCR, western blot and immunofluorescence assays. Furthermore, to identify whether the elevation of Smad7 in the hippocampus after unilateral nephrectomy contributes to cognitive impairment, the expression of Smad7 in the hippocampal CA1 region was downregulated by crossing Smad7fl/fl conditional mutant mice and CaMKIIα-Cre line T29-1 transgenic mice or stereotaxic injection of shRNA-Smad7. Inflammation and apoptosis in the hippocampus were assessed by measuring the mRNA levels of typical inflammatory cytokines, including TNF-α, IL-1ß, IL-6, CCL2, CXCL1, and CXCL2, and the protein levels of apoptotic proteins, including Bax and Bcl2. In addition, apoptosis in the hippocampus postoperation was investigated by a terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining assay. Finally, western blotting was used to explore how Smad7 mediates inflammation and apoptosis postoperation. RESULTS: The results unequivocally revealed that elevated Smad7 in the hippocampal CA1 region significantly inhibited TGF-ß signal transduction by blocking Smad2/3 phosphorylation, which enhanced neuroinflammation and apoptosis in the hippocampus and further led to learning and memory impairment after surgery. CONCLUSIONS: Our results revealed that Smad7 contributes to cognitive impairment after surgery by enhancing neuroinflammation and apoptosis in the hippocampus and might serve as a promising therapeutic target for the treatment of memory impairment after anesthesia surgery.


Assuntos
Anestesia , Disfunção Cognitiva , Hipocampo , Complicações Cognitivas Pós-Operatórias , Animais , Camundongos , Anestesia/efeitos adversos , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Hipocampo/metabolismo , Inflamação/metabolismo , Transtornos da Memória/metabolismo , Camundongos Endogâmicos C57BL , Doenças Neuroinflamatórias , Complicações Cognitivas Pós-Operatórias/etiologia , Complicações Cognitivas Pós-Operatórias/genética , Complicações Cognitivas Pós-Operatórias/metabolismo , RNA Mensageiro/metabolismo , Proteína Smad7/genética
15.
FASEB J ; 36(7): e22400, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35695814

RESUMO

Smad7 restrains TGF-ß responses, and has been suggested to exert both pro- and anti-inflammatory actions that may involve effects on macrophages. Myocardial infarction triggers a macrophage-driven inflammatory response that not only plays a central role in cardiac repair, but also contributes to adverse remodeling and fibrosis. We hypothesized that macrophage Smad7 expression may regulate inflammation and fibrosis in the infarcted heart through suppression of TGF-ß responses, or via TGF-independent actions. In a mouse model of myocardial infarction, infiltration with Smad7+ macrophages peaked 7 days after coronary occlusion. Myeloid cell-specific Smad7 loss in mice had no effects on homeostatic functions and did not affect baseline macrophage gene expression. RNA-seq predicted that Smad7 may promote TREM1-mediated inflammation in infarct macrophages. However, these alterations in the transcriptional profile of macrophages were associated with a modest and transient reduction in infarct myofibroblast infiltration, and did not affect dysfunction, chamber dilation, scar remodeling, collagen deposition, and macrophage recruitment. In vitro, RNA-seq and PCR arrays showed that TGF-ß has profound effects on macrophage profile, attenuating pro-inflammatory cytokine/chemokine expression, modulating synthesis of matrix remodeling genes, inducing genes associated with sphingosine-1 phosphate activation and integrin signaling, and inhibiting cholesterol biosynthesis genes. However, Smad7 loss did not significantly affect TGF-ß-mediated macrophage responses, modulating synthesis of only a small fraction of TGF-ß-induced genes, including Itga5, Olfml3, and Fabp7. Our findings suggest a limited role for macrophage Smad7 in regulation of post-infarction inflammation and repair, and demonstrate that the anti-inflammatory effects of TGF-ß in macrophages are not restrained by endogenous Smad7 induction.


Assuntos
Infarto do Miocárdio , Proteína Smad7/metabolismo , Animais , Fibrose , Inflamação , Macrófagos/metabolismo , Camundongos , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Fenótipo , Proteína Smad7/genética , Fator de Crescimento Transformador beta/metabolismo
16.
Clin Exp Rheumatol ; 41(7): 1396-1408, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36377587

RESUMO

OBJECTIVES: SMADs play one of the key roles in the TGFß signalling pathway. Therefore, through their involvement in the immune response as well as in the fibrosis process, these proteins appear to take on one of the essential functions in the pathogenesis of autoimmune connective tissue diseases such as RA. This study aimed to investigate the association of selected SNPs in SMAD2/4/7 with RA risk in the Caucasian population and disease course in RA patients. METHODS: The study was conducted on 647 patients with established RA and 496 unrelated healthy controls (HCs). All patients fulfilled the American College of Rheumatology Diagnostic classification criteria for RA (ACR 1987). The analysis has been conducted using TaqMan genotyping assay. Transcript-inferred pathogenicity score (TraP-score) has been evaluated by TrapScore. PredictSNP.2 has been used to predict the effect of amino acid substitutions. RESULTS: The present study revealed in SMAD4 a significantly higher frequency of AG rs12456284 (under codominant model OR=0.62 p=0.027 and overdominant model OR=0.59 p=0.016) and GA rs10502913 (under codominant model OR=0.65 p=0.050 and overdominant OR=0.64 p=0.033) genotypes in healthy subjects in comparison to RA patients. Additionally, very strong LD has been noted between these two genetic variants (D'=0.95 r2=0.90). Moreover, bioinformatic analysis classified rs12456284 as deleterious change with 94% prediction accuracy. SMAD2 rs1792666 and SMAD7 rs3736242 showed to have the highest association with disease course. SMAD4 rs10502913, SMAD7 rs3736242, and SMAD7 rs4464148 were associated with the concentration of creatinine. CONCLUSIONS: Our results suggested that rs12456284 and rs10502913 in SMAD4 may have a potential protective effect against RA. Particularly, SMAD2 rs1792666 and SMAD7 rs3736242 seem to be significantly associated with diseases course in RA patients in the Caucasian population.


Assuntos
Artrite Reumatoide , Doenças Autoimunes , Proteína Smad2 , Humanos , Artrite Reumatoide/diagnóstico , Artrite Reumatoide/genética , Progressão da Doença , Genótipo , Polimorfismo de Nucleotídeo Único , Proteína Smad2/genética , Proteína Smad4/genética , Proteína Smad7/genética
17.
Exp Cell Res ; 411(1): 112972, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34914964

RESUMO

Calcification of the bicuspid aortic valve (BAV) involves differential expression of various RNA genes, which is achieved through complex regulatory networks that are controlled in part by transcription factors and microRNAs. We previously found that miR-195-5p regulates the osteogenic differentiation of valvular interstitial cells (VICs) by targeting the TGF-ß pathway. However, the transcriptional regulation of miR-195-5p in calcified BAV patients is not yet clear. In this study, stenotic aortic valve tissues from patients with BAVs and tricuspid aortic valves (TAVs) were collected. Candidate transcription factors of miR-195-5p were predicted by bioinformatics analysis and tested in diseased valves and in male porcine VICs. SP2 gene expression and the corresponding protein levels in BAV were significantly lower than those in TAV, and a low SP2 expression level environment in VICs resulted in remarkable increases in RNA expression levels of RUNX2, BMP2, collagen 1, MMP2, and MMP9 and the corresponding proteins. ChIP assays revealed that SP2 directly bound to the transcription promoter region of miR-195-5p. Cotransfection of SP2 shRNA and a miR-195-5p mimic in porcine VICs demonstrated that SP2 repressed SMAD7 expression via miR-195-5p, while knockdown of SP2 increased the mRNA expression of SMAD7 and the corresponding protein and attenuated Smad 2/3 expression. Immunofluorescence staining of diseased valves confirmed that the functional proteins of osteogenesis differentiation, including RUNX2, BMP2, collagen 1, and osteocalcin, were overexpressed in BAVs. In Conclusion, the transcription factor Sp2 is expressed at low levels in VICs from BAV patients, which has a negative impact on miR-195-5p expression by binding its promoter region and partially promotes calcification through a SMAD-dependent pathway.


Assuntos
Doença da Válvula Aórtica Bicúspide/patologia , Calcinose/patologia , Osteoblastos/patologia , Proteína Smad7/metabolismo , Fator de Transcrição Sp2/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Valva Tricúspide/patologia , Animais , Doença da Válvula Aórtica Bicúspide/genética , Doença da Válvula Aórtica Bicúspide/metabolismo , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Calcinose/genética , Calcinose/metabolismo , Diferenciação Celular , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Feminino , Humanos , Masculino , MicroRNAs , Pessoa de Meia-Idade , Osteoblastos/metabolismo , Osteogênese , Proteína Smad7/genética , Fator de Transcrição Sp2/genética , Suínos , Fator de Crescimento Transformador beta1/genética , Valva Tricúspide/metabolismo
18.
Respirology ; 28(9): 869-880, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37376985

RESUMO

BACKGROUND AND OBJECTIVE: Recent advancements in immunotherapy led to the development of Chimeric antigen receptor (CAR) T-cell therapy. CAR-T cell therapy in non-small cell lung cancer (NSCLC) is hindered by overexpression of transforming growth factor (TGFß) in the cancer cells that have a negative regulatory role on T-cells activity. This study characterized CAR-T with overexpression of mothers against decapentaplegic homologue 7 (SMAD), a negative regulator of TGFß downstream signalling. METHODS: We have generated three types of CAR-T: epidermal growth factor receptor (EGFR)-CAR-T, EGFR-dominant-negative TGFbeta receptor 2 (DNR)-CAR-T, and EGFR-SMAD7-CAR-T by transducing human T-cells with the lentivirus constructs. We characterized the proliferation, expression of proinflammatory cytokines, activation profile, and lysis capacity in co-cultures with A549 lung carcinoma cells with and without TGFß neutralizing antibodies. We also tested the therapeutic potential of EGFR-SMAD7-CAR-T in the A549 cells tumour-bearing mice model. RESULTS: Both EGFR-DNR-CAR-T and EGFR-SMAD7-CAR-T demonstrated a higher proliferation rate and lysis capacity to A549 than traditional EGFR-CAR-T. Neutralization of TGFß by the antibodies resulted in increased performance of EGFR-CAR-T. In vivo, both EGFR-DNR-CAR-T and EGFR-SMAD7-CAR-T resulted in complete tumour resorption by day 20, whereas conventional CAR-T only has a partial effect. CONCLUSION: We demonstrated the high efficacy and resistance to negative TGFß regulation of EGFR-SMAD7-CAR-T comparable with EGFR-DNR-CAR-T and without the systemic effect of TGFß inhibition.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Receptores de Antígenos Quiméricos , Humanos , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/terapia , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/patologia , Receptores de Antígenos Quiméricos/metabolismo , Receptores ErbB/metabolismo , Linfócitos T/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Linhagem Celular Tumoral , Proteína Smad7/genética , Proteína Smad7/metabolismo
19.
Clin Exp Pharmacol Physiol ; 50(9): 711-718, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36905209

RESUMO

The prognosis of multiple myeloma (MM) patients combined with renal insufficiency is poor. Renal fibrosis is an important pathological cause for MM patients combined with renal insufficiency. It is reported that epithelial-mesenchymal transition (EMT) of renal proximal tubular epithelial cells is an important mechanism in renal fibrosis. We speculated that EMT might play an important role in the renal insufficiency of MM with unclear mechanism. MM cells derived exosomes could affect the function of targeted cells by delivering microRNAs (miRNAs). Literature has shown that the expression of miR-21 is closely related to EMT. In this research, we found that co-culture of HK-2 cells (human renal proximal tubular epithelial cells) and exosomes derived from MM cells promoted the EMT of HK-2 cells, resulting in the down-regulation of epithelial-related marker (E-cadherin), and up-regulation of stroma-related marker (Vimentin). Meanwhile, the expression of SMAD7, one of the downstream targets in the TGF-ß signalling pathway, was suppressed and the expression of TGF-ß was increased. After transfecting the inhibitor of miR-21 in MM cells, the expression of miR-21 in exosomes secreted by MM cells was significantly decreased, and the co-culture of these treated exosomes and HK-2 cells inhibited the EMT of HK-2 cells. In conclusion, these findings showed that exosomal miR-21 derived from MM cells could promote renal EMT through targeting TGF-ß/SMAD7 signalling pathway.


Assuntos
Nefropatias , MicroRNAs , Mieloma Múltiplo , Insuficiência Renal , Humanos , Transição Epitelial-Mesenquimal , Mieloma Múltiplo/genética , Linhagem Celular , MicroRNAs/genética , MicroRNAs/metabolismo , Nefropatias/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fibrose , Fator de Crescimento Transformador beta1/metabolismo , Proteína Smad7/genética , Proteína Smad7/metabolismo
20.
Crit Rev Biochem Mol Biol ; 55(6): 691-715, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33081543

RESUMO

Transforming growth factor ß (TGF-ß) family members play an extensive role in cellular communication that orchestrates both early development and adult tissue homeostasis. Aberrant TGF-ß family signaling is associated with a pathological outcome in numerous diseases, and in-depth understanding of molecular and cellular processes could result in therapeutic benefit for patients. Canonical TGF-ß signaling is mediated by receptor-regulated SMADs (R-SMADs), a single co-mediator SMAD (Co-SMAD), and inhibitory SMADs (I-SMADs). SMAD7, one of the I-SMADs, is an essential negative regulator of the pleiotropic TGF-ß and bone morphogenetic protein (BMP) signaling pathways. In a negative feedback loop, SMAD7 inhibits TGF-ß signaling by providing competition for TGF-ß type-1 receptor (TßRI), blocking phosphorylation and activation of SMAD2. Moreover, SMAD7 recruits E3 ubiquitin SMURF ligases to the type I receptor to promote ubiquitin-mediated proteasomal degradation. In addition to its role in TGF-ß and BMP signaling, SMAD7 is regulated by and implicated in a variety of other signaling pathways and functions as a mediator of crosstalk. This review is focused on SMAD7, its function in TGF-ß and BMP signaling, and its role as a downstream integrator and crosstalk mediator. This crucial signaling molecule is tightly regulated by various mechanisms. We provide an overview of the ways by which SMAD7 is regulated, including noncoding RNAs (ncRNAs) and post-translational modifications (PTMs). Finally, we discuss its role in diseases, such as cancer, fibrosis, and inflammatory bowel disease (IBD).


Assuntos
Proteína Smad7/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Humanos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Proteína Smad7/genética , Fator de Crescimento Transformador beta/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA