Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Immunol ; 31: 73-106, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23215645

RESUMO

Inflammasomes are cytosolic multiprotein complexes that assemble in response to a variety of infectious and noxious insults. Inflammasomes play a critical role in the initiation of innate immune responses, primarily by serving as platforms for the activation of inflammatory caspase proteases. One such caspase, CASPASE-1 (CASP1), initiates innate immune responses by cleaving pro-IL-1ß and pro-IL-18, leading to their activation and release. CASP1 and another inflammatory caspase termed CASP11 can also initiate a rapid and inflammatory form of cell death termed pyroptosis. Several distinct inflammasomes have been described, each of which contains a unique sensor protein of the NLR (nucleotide-binding domain, leucine-rich repeat-containing) superfamily or the PYHIN (PYRIN and HIN-200 domain-containing) superfamily. Here we describe the surprisingly diverse mechanisms by which NLR/PYHIN proteins sense bacteria and initiate innate immune responses. We conclude that inflammasomes represent a highly adaptable scaffold ideally suited for detecting and initiating rapid innate responses to diverse and rapidly evolving bacteria.


Assuntos
Bactérias/patogenicidade , Inflamassomos/metabolismo , Animais , Bacillus anthracis/patogenicidade , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Proteínas Adaptadoras de Sinalização CARD/fisiologia , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/fisiologia , Flagelos/metabolismo , Flagelos/fisiologia , Humanos , Inflamassomos/genética , Inflamassomos/fisiologia , Legionella pneumophila/patogenicidade , Listeria monocytogenes/patogenicidade , Salmonella typhimurium/patogenicidade
2.
Immunity ; 43(4): 715-26, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26488816

RESUMO

CARD9 is a central component of anti-fungal innate immune signaling via C-type lectin receptors, and several immune-related disorders are associated with CARD9 alterations. Here, we used a rare CARD9 variant that confers protection against inflammatory bowel disease as an entry point to investigating CARD9 regulation. We showed that the protective variant of CARD9, which is C-terminally truncated, acted in a dominant-negative manner for CARD9-mediated cytokine production, indicating an important role for the C terminus in CARD9 signaling. We identified TRIM62 as a CARD9 binding partner and showed that TRIM62 facilitated K27-linked poly-ubiquitination of CARD9. We identified K125 as the ubiquitinated residue on CARD9 and demonstrated that this ubiquitination was essential for CARD9 activity. Furthermore, we showed that similar to Card9-deficient mice, Trim62-deficient mice had increased susceptibility to fungal infection. In this study, we utilized a rare protective allele to uncover a TRIM62-mediated mechanism for regulation of CARD9 activation.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/fisiologia , Candidíase Invasiva/imunologia , Receptores de Angiotensina/fisiologia , Receptores de Endotelina/fisiologia , Ubiquitina-Proteína Ligases/fisiologia , Adjuvantes Imunológicos/farmacologia , Animais , Proteínas Adaptadoras de Sinalização CARD/química , Proteínas Adaptadoras de Sinalização CARD/deficiência , Proteínas Adaptadoras de Sinalização CARD/genética , Candidíase Invasiva/genética , Colite/induzido quimicamente , Colite/genética , Colite/prevenção & controle , Citocinas/biossíntese , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Genes Dominantes , Predisposição Genética para Doença , Células HEK293 , Células HeLa , Humanos , Doenças Inflamatórias Intestinais/genética , Camundongos , Camundongos da Linhagem 129 , Camundongos Knockout , Mapeamento de Interação de Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiologia , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Receptores de Angiotensina/química , Receptores de Angiotensina/deficiência , Receptores de Endotelina/química , Receptores de Endotelina/deficiência , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Organismos Livres de Patógenos Específicos , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases/química , Ubiquitinação
3.
J Allergy Clin Immunol ; 149(2): 708-717, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34271060

RESUMO

BACKGROUND: Low epidermal filaggrin (FLG) is a risk factor for atopic dermatitis (AD) and allergic comorbidity. FLG mutations do not fully explain the variation in epidermal FLG levels, highlighting that other genetic loci may also regulate FLG expression. OBJECTIVE: We sought to identify genetic loci that regulate FLG expression and elucidate their functional and mechanistic consequences. METHODS: A genome-wide association study of quantified skin FLG expression in lesional and baseline non(never)-lesional skin of children with AD in the Mechanisms of Progression of Atopic Dermatitis to Asthma in Children cohort was conducted. Clustered regularly interspaced short palindromic repeat approaches were used to create isogenic human keratinocytes differing only at the identified variant rs11652075, and caspase recruitment domain family member 14 (CARD14)-deficient keratinocytes for subsequent mechanistic studies. RESULTS: The genome-wide association study identified the CARD14 rs11652075 variant to be associated with FLG expression in non(never)-lesional skin of children with AD. Rs11652075 is a CARD14 expression quantitative trait locus in human skin and primary human keratinocytes. The T variant destroys a functional cytosine-phosphate-guanine site, resulting in reduced cytosine-phosphate-guanine methylation at this site (but not neighboring sites) in TT and CT compared with CC primary human keratinocytes and Mechanisms of Progression of Atopic Dermatitis to Asthma in Children children's skin samples, and rs11652075 increases CARD14 expression in an allele-specific fashion. Furthermore, studies in clustered regularly interspaced short palindromic repeat-generated CC and TT isogenic keratinocytes, as well as CARD14-haplosufficient and deficient keratinocytes, reveal that IL-17A regulates FLG expression via CARD14, and that the underlying mechanisms are dependent on the rs11652075 genotype. CONCLUSIONS: Our study identifies CARD14 as a novel regulator of FLG expression in the skin of children with AD. Furthermore, CARD14 regulates skin FLG homeostasis in an rs11652075-dependent fashion.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas Adaptadoras de Sinalização CARD/fisiologia , Proteínas Filagrinas/metabolismo , Guanilato Ciclase/genética , Guanilato Ciclase/fisiologia , Homeostase , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Pele/metabolismo , Estudo de Associação Genômica Ampla , Humanos , Interleucina-17/fisiologia , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
4.
Cell Immunol ; 356: 104179, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32763502

RESUMO

After T cell receptor (TCR) engagement, the CARD11-Bcl10-Malt1 (CBM) complex oligomerizes to transduce NF-κB activating signals. Bcl10 is then degraded to limit NF-κB activation. The cDNA AK057716 (BinCARD-1) was reported to encode a novel CARD protein that interacts with Bcl10 and modestly inhibits NF-κB activation. In a later study, a second isoform, BinCARD-2, was identified. Here, we report that the cDNA AK057716 (BinCARD-1) is an incompletely spliced derivative of the gene product of C9orf89, whereas CARD19 (BinCARD-2) represents the properly spliced isoform, with conservation across diverse species. Immunoblotting revealed expression of CARD19 in T cells, but no evidence of BinCARD-1 expression, and microscopy demonstrated that endogenous CARD19 localizes to mitochondria. Although we confirmed that both BinCARD-1 and CARD19 can inhibit NF-κB activation and promote Bcl10 degradation when transiently overexpressed in HEK293T cells, loss of endogenous CARD19 expression had little effect on Bcl10-dependent NF-κB activation, activation of Malt1 protease function, or Bcl10 degradation after TCR engagement in primary murine CD8 T cells. Together, these data indicate that the only detectable translated product of C9orf89 is the mitochondrial protein CARD19, which does not play a discernible role in TCR-dependent, Bcl10-mediated signal transduction to Malt1 or NF-κB.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/metabolismo , Proteínas Adaptadoras de Sinalização CARD/fisiologia , Receptores de Antígenos de Linfócitos T/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Bases de Dados Genéticas , Regulação da Expressão Gênica/genética , Células HEK293 , Humanos , Células Jurkat , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais/genética
5.
Cell Immunol ; 355: 104158, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32721634

RESUMO

The CBM complex, which is composed of the proteins CARMA1, BCL10, and MALT1, serves multiple pivotal roles as a mediator of T-cell receptor and B-cell receptor-dependent NF-κB induction and lymphocyte activation. CARMA1, BCL10, and MALT1 are each proto-oncoproteins and dysregulation of CBM signaling, as a result of somatic gain-of-function mutation or chromosomal translocation, is a hallmark of multiple lymphoid malignancies including Activated B-cell Diffuse Large B-cell Lymphoma. Moreover, loss-of-function as well as gain-of-function germline mutations in CBM complex proteins have been associated with a range of immune dysregulation syndromes. A wealth of detailed structural information has become available over the past decade through meticulous interrogation of the interactions between CBM components. Here, we review key findings regarding the biochemical nature of these protein-protein interactions which have ultimately led the field to a sophisticated understanding of how these proteins assemble into high-order filamentous CBM complexes. To date, approaches to therapeutic inhibition of the CBM complex for the treatment of lymphoid malignancy and/or auto-immunity have focused on blocking MALT1 protease function. We also review key studies relating to the structural impact of MALT1 protease inhibitors on key protein-protein interactions.


Assuntos
Proteína 10 de Linfoma CCL de Células B/metabolismo , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Guanilato Ciclase/metabolismo , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Proteína 10 de Linfoma CCL de Células B/fisiologia , Linfócitos B/metabolismo , Proteínas Adaptadoras de Sinalização CARD/fisiologia , Guanilato Ciclase/fisiologia , Humanos , Ativação Linfocitária/fisiologia , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/fisiologia , NF-kappa B/metabolismo , Mapas de Interação de Proteínas/fisiologia , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais/imunologia
6.
Mol Biol Rep ; 47(4): 3077-3096, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32124174

RESUMO

Apoptosis associated speck like protein containing CARD (ASC) is widely researched and recognized as an adaptor protein participating in inflammasome assembly and pyroptosis. It contains a bipartite structure comprising of a pyrin and a caspase recruitment domain (CARD) domain. These two domains help ASC function as an adaptor molecule. ASC is encoded by the gene PYCARD. ASC plays pivotal role in various diseases as well as different homeostatic processes. ASC plays a regulatory role in different cancers showing differential regulation with respect to tissue and stage of disease. Besides cancer, ASC also plays a central role in sensing, regulation, and/or disease progression in bacterial infections, viral infections and in varied inflammatory diseases. ASC is expressed in different types of immune and non-immune cells. Its localization pattern also varies with different kinds of stimuli encountered by cell. This review will summarize the literature on the structure cellular and tissue expression, localization and disease association of ASC.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/metabolismo , Proteínas Adaptadoras de Sinalização CARD/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Apoptose , Proteínas de Transporte/metabolismo , Caspase 1/metabolismo , Linhagem Celular , Proteínas do Citoesqueleto/metabolismo , Homeostase , Humanos , Inflamassomos/imunologia , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR
7.
Gut ; 68(7): 1190-1199, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30279238

RESUMO

OBJECTIVE: Loss of the Crohn's disease predisposing NOD2 gene results in an intestinal microenvironment conducive for colonisation by attaching-and-effacing enteropathogens. However, it remains elusive whether it relies on the intracellular recruitment of the serine-threonine kinase RIPK2 by NOD2, a step that is required for its activation of the transcription factor NF-κB. DESIGN: Colonisation resistance was evaluated in wild type and mutant mice, as well as in ex-germ-free (ex-GF) mice which were colonised either with faeces from Ripk2-deficient mice or with bacteria with similar preferences for carbohydrates to those acquired by the pathogen. The severity of the mucosal pathology was quantified at several time points postinfection by using a previously established scoring. The community resilience in response to infection was evaluated by 16S ribosomal RNA gene sequence analysis. The control of pathogen virulence was evaluated by monitoring the secretion of Citrobacter-specific antibody response in the faeces. RESULTS: Primary infection was similarly outcompeted in ex-GF Ripk2-deficient and control mice, demonstrating that the susceptibility to infection resulting from RIPK2 deficiency cannot be solely attributed to specific microbiota community structures. In contrast, delayed clearance of Citrobacter rodentium and exacerbated histopathology were preceded by a weakened propensity of intestinal macrophages to afford innate lymphoid cell activation. This tissue protection unexpectedly required the regenerating family member 3ß by instigating interleukin (IL) 17A-mediated neutrophil recruitment to the intestine and subsequent phosphorylation of signal transducer and activator of transcription 3. CONCLUSIONS: These results unveil a previously unrecognised mechanism that efficiently protects from colonisation by diarrhoeagenic bacteria early in infection.


Assuntos
Doença de Crohn/microbiologia , Doença de Crohn/patologia , Infecções por Enterobacteriaceae/prevenção & controle , Interleucina-17/fisiologia , Infiltração de Neutrófilos/fisiologia , Proteína Adaptadora de Sinalização NOD2/fisiologia , Animais , Proteínas Adaptadoras de Sinalização CARD/fisiologia , Citrobacter rodentium , Modelos Animais de Doenças , Infecções por Enterobacteriaceae/patologia , Mucosa Intestinal/patologia , Camundongos , Proteína Serina-Treonina Quinase 2 de Interação com Receptor , Proteína Serina-Treonina Quinases de Interação com Receptores/fisiologia , Transdução de Sinais
8.
Exp Dermatol ; 28(11): 1244-1251, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31407820

RESUMO

Card9 is a signalling adaptor protein in the downstream of many innate pattern recognition receptors (PRRs) and exerts a significant role in antifungal immunity. To date, Card9 deficiency has been reported to be related to increased susceptibility to many fungal infections. In this study, we established mucormycosis murine model of Rhizopus arrhizus (R. arrhizus) using wild-type (WT) mice and Card9 knockout (Card9-/- ) mice to investigate the antifungal effect of Card9 against R. arrhizus infection. Card9-/- mice were more susceptible to R. arrhizus infection than WT mice, which could be related to the impaired NF-κB pathway activation, local cytokine production and Th cell responses in Card9-/- mice.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/fisiologia , Interações Hospedeiro-Patógeno/imunologia , Mucormicose/imunologia , Rhizopus/fisiologia , Linfócitos T Auxiliares-Indutores/fisiologia , Animais , Citocinas/sangue , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mucormicose/microbiologia , Fator de Transcrição RelA/metabolismo
9.
Ann Hematol ; 98(11): 2497-2506, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31595308

RESUMO

Primary immune thrombocytopenia (ITP) is an acquired autoimmune disease characterized by a low platelet count and consequent increased risk of bleeding. The etiology underlying this condition remains poorly understood. The aim of this study is to evaluate the association of a single nucleotide polymorphism (SNP) rs4077515 in the caspase recruitment domain-containing protein 9 (CARD9) gene with the pathogenesis and therapy of ITP. Two hundred ninety-four patients with ITP and 324 age-matched healthy participants were recruited in this case-control study. Genotyping of CARD9 rs4077515 polymorphism was performed by Sanger sequencing. Our results revealed that a polymorphism rs4077515 in CARD9 gene is associated with decreased risk of susceptibility to and severity of ITP (susceptibility: codominant, AA vs. GG, OR = 0.175, 95% CI = 0.054-0.776, p = 0.001; recessive, GG + AG vs. AA, OR = 6.183, 95% CI = 2.287-16.715, p < 0.001; severity: allele, A vs. G, OR = 0.685, 95% CI = 0.476-0.985, p = 0.041; codominant, AG vs. GG, OR = 0.571, 95% CI = 0.350-0.931, p = 0.025; dominant, AA + AG vs. GG, OR = 0.558, 95% CI = 0.343-0.907, p = 0.019). The existence of the allele A, the mutant AA genotype and the heterozygous AG genotype of CARD9 rs4077515, plays a protective role in ITP. However, CARD9 rs4077515 polymorphism had no effect on corticosteroid sensitivity or refractoriness of ITP.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/genética , Polimorfismo de Nucleotídeo Único , Púrpura Trombocitopênica Idiopática/genética , Corticosteroides/uso terapêutico , Adulto , Alelos , Proteínas Adaptadoras de Sinalização CARD/fisiologia , Estudos de Casos e Controles , Resistência a Medicamentos , Feminino , Frequência do Gene , Predisposição Genética para Doença , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Púrpura Trombocitopênica Idiopática/tratamento farmacológico , Risco
10.
Immunity ; 33(3): 326-39, 2010 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-20870175

RESUMO

T cell activation is positively and negatively regulated by a pair of costimulatory receptors, CD28 and CTLA-4, respectively. Because these receptors share common ligands, CD80 and CD86, the expression and behavior of CTLA-4 is critical for T cell costimulation regulation. However, in vivo blocking of CD28-mediated costimulation by CTLA-4 and its mechanisms still remain elusive. Here, we demonstrate the dynamic behavior of CTLA-4 in its real-time competition with CD28 at the central-supramolecular activation cluster (cSMAC), resulting in the dislocalization of protein kinase C-θ and CARMA1 scaffolding protein. CTLA-4 translocation to the T cell receptor microclusters and the cSMAC is tightly regulated by its ectodomain size, and its accumulation at the cSMAC is required for its inhibitory function. The CTLA-4-mediated suppression was demonstrated by the in vitro anergy induction in regulatory T cells constitutively expressing CTLA-4. These results show the dynamic mechanism of CTLA-4-mediated T cell suppression at the cSMAC.


Assuntos
Antígenos CD/fisiologia , Ativação Linfocitária , Linfócitos T/imunologia , Animais , Proteínas Adaptadoras de Sinalização CARD/fisiologia , Antígenos CD28/fisiologia , Complexo CD3/fisiologia , Antígeno CTLA-4 , Células Cultivadas , Tolerância Imunológica , Isoenzimas/fisiologia , Camundongos , Proteína Quinase C/fisiologia , Proteína Quinase C-theta , Linfócitos T Reguladores/fisiologia
11.
Exp Mol Pathol ; 110: 104286, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31323190

RESUMO

Psoriasis (PS) is a common inflammatory and incurable skin disease affecting 2-3% of the human population. Although genome-wide association studies implicate more than 60 loci, the full complement of genetic factors leading to disease is not known. Rare, highly penetrant, gain-of-function, dominantly acting mutations within the human caspase recruitment domain family, member 14 (CARD14) gene lead to the development of PS and psoriatic arthritis (PSA) (a familial p.G117S and de-novo p.E138A alteration). These residues are conserved in mouse and orthologous Knock-In (KI) mutations within Card14 were created. The Card14tm.1.1Sun allele (G117S) resulted in no clinically or histologically evident phenotype of the skin or joints in young adult or old mice. However, mice carrying the Card14tm2.1Sun mutant allele (E138A) were runted and developed thick, white, scaly skin soon after birth, dying within two weeks or less. The skin hyperplasia and inflammation was remarkable similarity to human PS at the clinical, histological, and transcriptomic levels. For example, the skin was markedly acanthotic and exhibited orthokeratotic hyperkeratosis with minimal inflammation and no pustules and transcripts affecting critical pathways of epidermal differentiation and components of the IL17 axis (IL23, IL17A, IL17C, TNF and IL22) were altered. Similar changes were seen in a set of orthologous microRNAs previously associated with PS suggesting conservation across species. Crossing the Card14tm2.1Sun/WT mice to C57BL/6NJ, FVB/NJ, CBA/J, C3H/HeJ, and 129S1/SvImJ generated progeny with epidermal acanthosis and marked orthokeratotic hyperkeratosis regardless of the hybrid strain. Of these hybrid lines, only the FVB;B6N(129S4) mice survived to 250 days of age or older and has led to recombinant inbred lines homozygous for Card14E138A that are fecund and have scaly skin disease. This implicates that modifiers of PS severity exist in mice, as in the familial forms of the disease in humans.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas Adaptadoras de Sinalização CARD/fisiologia , Mutação com Ganho de Função , Genes Modificadores , Guanilato Ciclase/genética , Guanilato Quinases/fisiologia , Inflamação/genética , Proteínas de Membrana/genética , Psoríase/genética , Dermatopatias/genética , Animais , Feminino , Técnicas de Introdução de Genes , Humanos , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Knockout , Psoríase/patologia , Índice de Gravidade de Doença , Dermatopatias/patologia , Transcriptoma
12.
Proc Natl Acad Sci U S A ; 113(32): E4671-80, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27462105

RESUMO

Inflammasomes are critical sensors that convey cellular stress and pathogen presence to the immune system by activating inflammatory caspases and cytokines such as IL-1ß. The nature of endogenous stress signals that activate inflammasomes remains unclear. Here we show that an inhibitor of the HIV aspartyl protease, Nelfinavir, triggers inflammasome formation and elicits an IL-1R-dependent inflammation in mice. We found that Nelfinavir impaired the maturation of lamin A, a structural component of the nuclear envelope, thereby promoting the release of DNA in the cytosol. Moreover, deficiency of the cytosolic DNA-sensor AIM2 impaired Nelfinavir-mediated inflammasome activation. These findings identify a pharmacologic activator of inflammasome and demonstrate the role of AIM2 in detecting endogenous DNA release upon perturbation of nuclear envelope integrity.


Assuntos
Inflamassomos/efeitos dos fármacos , Nelfinavir/farmacologia , Membrana Nuclear/efeitos dos fármacos , Animais , Proteínas Adaptadoras de Sinalização CARD/fisiologia , Caspase 1/metabolismo , DNA/metabolismo , Inflamassomos/fisiologia , Interleucina-1beta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/fisiologia , Membrana Nuclear/fisiologia , Receptores de Interleucina-1/fisiologia
13.
J Hepatol ; 69(5): 1110-1122, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29958938

RESUMO

BACKGROUND & AIMS: The hepatic injury caused by ischemia/reperfusion (I/R) insult is predominantly determined by the complex interplay of sterile inflammation and liver cell death. Caspase recruitment domain family member 6 (CARD6) was initially shown to play important roles in NF-κB activation. In our preliminary studies, CARD6 downregulation was closely related to hepatic I/R injury in liver transplantation patients and mouse models. Thus, we hypothesized that CARD6 protects against hepatic I/R injury and investigated the underlying molecular mechanisms. METHODS: A partial hepatic I/R operation was performed in hepatocyte-specific Card6 knockout mice (HKO), Card6 transgenic mice with CARD6 overexpression specifically in hepatocytes (HTG), and the corresponding control mice. Hepatic histology, serum aminotransferases, inflammatory cytokines/chemokines, cell death, and inflammatory signaling were examined to assess liver damage. The molecular mechanisms of CARD6 function were explored in vivo and in vitro. RESULTS: Liver injury was alleviated in Card6-HTG mice compared with control mice as shown by decreased cell death, lower serum aminotransferase levels, and reduced inflammation and infiltration, whereas Card6-HKO mice had the opposite phenotype. Mechanistically, phosphorylation of ASK1 and its downstream effectors JNK and p38 were increased in the livers of Card6-HKO mice but repressed in those of Card6-HTG mice. Furthermore, ASK1 knockdown normalized the effect of CARD6 deficiency on the activation of NF-κB, JNK and p38, while ASK1 overexpression abrogated the suppressive effect of CARD6. CARD6 was also shown to interact with ASK1. Mutant CARD6 that lacked the ability to interact with ASK1 could not inhibit ASK1 and failed to protect against hepatic I/R injury. CONCLUSIONS: CARD6 is a novel protective factor against hepatic I/R injury that suppresses inflammation and liver cell death by inhibiting the ASK1 signaling pathway. LAY SUMMARY: The protein CARD6 plays an important role during the process of liver blood flow restriction (ischemia) and restoration (reperfusion). By suppressing the activity of ASK1, CARD6 can protect against hepatocyte injury. Targeting CARD6 is a potential strategy for prevention and treatment of ischemia/reperfusion injury.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/fisiologia , Fígado/irrigação sanguínea , MAP Quinase Quinase Quinase 5/fisiologia , Traumatismo por Reperfusão/prevenção & controle , Animais , Humanos , Inflamação/prevenção & controle , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases JNK Ativadas por Mitógeno/fisiologia , MAP Quinase Quinase Quinase 5/antagonistas & inibidores , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia
14.
Br J Dermatol ; 178(3): 603-613, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-27905098

RESUMO

Neutrophils constitute essential players in inflammatory responses and are the first line of defence against harmful stimuli. However, dysregulation of neutrophil homeostasis can result in excessive inflammation and subsequent tissue damage. Neutrophilic dermatoses are a spectrum of inflammatory disorders characterized by skin lesions resulting from a neutrophil-rich inflammatory infiltrate in the absence of infection. The exact molecular pathophysiology of neutrophilic dermatoses has long been poorly understood. Interestingly, neutrophil-rich cutaneous inflammation is also a cardinal feature of several autoinflammatory diseases with skin involvement, the latter being caused by aberrant innate immune responses. Overactivation of the innate immune system leading to increased production of interleukin-1 family members and 'sterile' neutrophil-rich cutaneous inflammation are features of both inherited autoinflammatory syndromes with skin involvement and an increasing number of neutrophilic dermatoses. Therefore, we propose that autoinflammation may be a cause of neutrophilic dermatoses.


Assuntos
Dermatite/patologia , Neutrófilos/fisiologia , Acne Vulgar/patologia , Artrite Infecciosa/patologia , Doenças Autoimunes/patologia , Síndrome de Behçet/patologia , Proteínas Adaptadoras de Sinalização CARD/fisiologia , Guanilato Ciclase/fisiologia , Hidradenite Supurativa/patologia , Humanos , Inflamassomos/fisiologia , Interleucina-1/fisiologia , Proteínas de Membrana/fisiologia , Psoríase/patologia , Pioderma Gangrenoso/patologia , Síndrome de Sweet/patologia
15.
Mol Cell Biochem ; 445(1-2): 35-43, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29280086

RESUMO

Stringent control of the type I interferon signaling pathways is critical to effective host immune responses, however, the molecular mechanisms that negatively regulate these pathways are still poorly understood. Here, we show that apoptosis speck-like protein (ASC), an adaptor protein of inflammasome complex, can inhibit IFN-ß signaling response by interacting with mitochondrial antiviral signaling protein (MAVS). Importantly, ASC-specific siRNA knockdown enhanced virus-induced type I interferon production, with consequent reduction of virus replication. Taken together, these results suggest that ASC, as a negative regulator of the MAVS-mediated innate immunity, may play an important role in host protection upon virus infection.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Proteínas Adaptadoras de Sinalização CARD/fisiologia , Imunidade Inata/fisiologia , Animais , Proteínas Adaptadoras de Sinalização CARD/genética , Células Cultivadas , Técnicas de Silenciamento de Genes , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Inflamassomos/fisiologia , Interferon beta/genética , Interferon beta/metabolismo , Células MCF-7 , Camundongos , RNA Interferente Pequeno/genética , Transdução de Sinais/fisiologia , Viroses/imunologia , Viroses/prevenção & controle , Replicação Viral/fisiologia
16.
Curr Opin Clin Nutr Metab Care ; 20(4): 243-247, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28399013

RESUMO

PURPOSE OF REVIEW: Inflammatory bowel diseases (IBDs) develop as a result of a combination of genetic predisposition, dysbiosis of the gut microbiota, and environmental influences. Here, we describe an example of how caspase recruitment domain 9 (CARD9), one of the numerous IBD susceptibility genes, participate to colitis susceptibility by shaping gut microbiota to produce tryptophan metabolites. RECENT FINDINGS: Recent study showed that CARD9 mice are more susceptible to colitis as a result of impaired interleukin 22 signaling pathway. Furthermore, aryl hydrocarbon receptor (AhR) ligands from tryptophan metabolism by the gut microbiota participate to intestinal homeostasis by inducing production of interleukin 22 by intestinal immune cells. These data suggest an interaction between CARD9 and the ability of gut microbiota to produce AhR ligands. SUMMARY: The microbiota from CARD9 mice fails to metabolize tryptophan leading to defective AhR activation which contributes to the susceptibility of mice to colitis by decreased interleukin 22 production. These effects were abrogated in the presence of AhR agonist. Reduced production of AhR ligands is also observed in the microbiota from individuals with IBD, particularly in those with CARD9 risk alleles associated with IBD. Correcting impaired microbiota functions, such as ability to produce AhR ligands, is an attractive strategy in IBD.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/genética , Microbioma Gastrointestinal/fisiologia , Doenças Inflamatórias Intestinais/genética , Triptofano/metabolismo , Animais , Proteínas Adaptadoras de Sinalização CARD/fisiologia , Colite/genética , Colite/microbiologia , Predisposição Genética para Doença , Humanos , Doenças Inflamatórias Intestinais/microbiologia , Interleucinas/biossíntese , Camundongos , Camundongos Knockout , Receptores de Hidrocarboneto Arílico/agonistas , Receptores de Hidrocarboneto Arílico/metabolismo , Interleucina 22
17.
Apoptosis ; 20(2): 174-95, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25420757

RESUMO

CARD subfamily is the second largest subfamily in the DD superfamily that plays important roles in regulating various signaling pathways, including but not limited to NF-kB activation signaling, apoptosis signaling and inflammatory signaling. The CARD subfamily contains 33 human CARD-containing proteins, regulating the assembly of many signaling complexes, including apoptosome, inflammsome, nodosome, the CBM complex, PIDDosome, the TRAF2 complex, and the MAVS signalosome, by homotypic CARD-CARD interactions. The mechanism of how CARDs find the right binding partner to form a specific complex remains unclear. This review uses different classification schemes to update the classification of CARD-containing proteins. Combining the classification based on domain structures, functions, associated signaling complexes, and roles would help better understand the structural and function diversity of CARD-containing proteins. This review also summarizes recent structural studies on CARDs. Especially, the CARD-containing complexes can be divided into the homodimeric, heterodimeric, oligomeric, filamentous CARD complexes and the CARD-ubiquitin complex. This review will give an overview of the versatile roles of CARDs in regulating signaling transduction, as well as the therapeutic drugs targeting CARD-containing proteins.


Assuntos
Apoptose , Proteínas Adaptadoras de Sinalização CARD/fisiologia , NF-kappa B/metabolismo , Humanos , Inflamação/metabolismo , Modelos Moleculares , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Secundária de Proteína , Receptores de Morte Celular/fisiologia , Transdução de Sinais
18.
Apoptosis ; 20(2): 124-35, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25398537

RESUMO

Apoptosis is an important process to maintain cellular homeostasis. Deregulated apoptosis has linked to a number of diseases, such as inflammatory diseases, neurodegenerative disorder, and cancers. A major signaling complex in the death receptor signaling pathway leading to apoptosis is death-induced signaling complex (DISC), which is regulated mainly by death effector domain (DED)-containing proteins. There are seven DED-containing proteins in human, including FADD, c-FLIP, caspase-8, caspase-10, DEDD, DEDD2, and PEA-15. The main players in DISC formation employ tandem DEDs for regulating signaling complex formation. The regulatory mechanism of signaling complex formation is important and yet remains unclear. Interestingly, three caspase recruitment domain (CARD)-containing members, which belong to the same DD superfamily as DED-containing proteins, also contains similar tandem CARDs. Recent structural studies have shown that tandem CARDs are essential for the formation of a helical signaling complex. This review summarizes recent structural studies on DED-containing proteins and especially discusses the studies on tandem DEDs and tandem CARDs, which suggest new mechanisms of signaling complex assembly.


Assuntos
Apoptose , Proteínas Adaptadoras de Sinalização CARD/fisiologia , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/fisiologia , Proteínas Adaptadoras de Sinalização CARD/química , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/química , Humanos , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/fisiologia , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Quaternária de Proteína , Transdução de Sinais , Homologia Estrutural de Proteína
19.
Infect Immun ; 82(4): 1606-15, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24470469

RESUMO

Caspase recruitment domain-containing protein 9 (CARD9) is an adaptor molecule signal that is critical for NF-κB activation and is triggered through C-type lectin receptors (CLRs), which are pattern recognition receptors that recognize carbohydrate structures. Previous studies have reported that Cryptococcus neoformans, a fungal pathogen that causes meningoencephalitis in AIDS patients, is recognized through some CLRs, such as mannose receptors or DC-SIGN. However, the role of CARD9 in the host defense against cryptococcal infection remains to be elucidated. In the present study, we analyzed the role of CARD9 in the host defense against pulmonary infection with C. neoformans. CARD9 gene-disrupted (knockout [KO]) mice were highly susceptible to this infection, as shown by the reduced fungal clearance in the infected lungs of CARD9 KO mice, compared to that in wild-type (WT) mice. Gamma interferon (IFN-γ) production was strongly reduced in CARD9 KO mice during the innate-immunity phase of infection. Reduced IFN-γ synthesis was due to impaired accumulation of NK and memory phenotype T cells, which are major sources of IFN-γ innate-immunity-phase production; a reduction in the accumulation of these cells was correlated with reduced CCL4, CCL5, CXCL9, and CXCL10 synthesis. However, differentiation of Th17 cells, but not of Th1 cells, was impaired at the adaptive-immunity phase in CARD9 KO mice compared to WT mice, although there was no significant difference in the infection susceptibility between interleukin 17A (IL-17A) KO and WT mice. These results suggest that CARD9 KO mice are susceptible to C. neoformans infection probably due to the reduced accumulation of IFN-γ-expressing NK and memory phenotype T cells at the early stage of infection.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/fisiologia , Interferon gama/biossíntese , Pneumopatias Fúngicas/microbiologia , Linfócitos T/imunologia , Animais , Quimiocinas/biossíntese , Cryptococcus neoformans/genética , Modelos Animais de Doenças , Imunidade Inata/fisiologia , Pneumopatias Fúngicas/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Th1/citologia , Células Th17/citologia
20.
Tumour Biol ; 35(5): 4131-6, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24443255

RESUMO

Caspase recruitment domain and membrane-associated guanylate kinase-like domain protein 3 (CARMA3) was reported as an oncoprotein overexpressed in several cancers. The expression pattern of CARMA3 and its clinical significance in human bladder cancer have not been well characterized. In the present study, CARMA3 expression was analyzed in 90 archived bladder cancer specimens using immunohistochemistry, and the correlation between CARMA3 expression and clinicopathological parameters was evaluated. We found that CARMA3 was overexpressed in 35 of 90 (38.8%) bladder cancer specimens. Significant association was observed between CARMA3 overexpression with tumor status (p = 0.081) and tumor grade (p = 0.027). To further explore the biological functions of CARMA3 in bladder cancer, we depleted CARMA3 in T24 and 5637 cell lines using small interfering RNA (siRNA). Using cell counting kit-8 (CCK8) assay and colony formation assay, we were able to show that CARMA3 depletion inhibited cell proliferation and colony number. Further study demonstrated that CARMA3 depletion decreased an expression of nuclear factor kappa B (NF-κB) targets cyclin D1 and Bcl-2 expression, as well as IκB phosphorylation. Luciferase reporter assay showed that CARMA3 depletion could downregulate NF-κB reporter activity. In conclusion, CARMA3 is overexpressed in bladder cancer and regulates malignant cell growth and NF-κB signaling, which makes CARMA3 a candidate therapeutic target for bladder cancer.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/fisiologia , Neoplasias da Bexiga Urinária/etiologia , Adulto , Idoso , Proteínas Adaptadoras de Sinalização CARD/análise , Linhagem Celular Tumoral , Proliferação de Células , Ciclina D1/análise , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , NF-kappa B/fisiologia , Transdução de Sinais , Neoplasias da Bexiga Urinária/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA