Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 413(12): 3329-3337, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33712917

RESUMO

A new biosensing method is presented to detect gene mutation by integrating the MutS protein from bacteria with a fiber optic particle plasmon resonance (FOPPR) sensing system. In this method, the MutS protein is conjugated with gold nanoparticles (AuNPs) deposited on an optical fiber core surface. The target double-stranded DNA containing an A and C mismatched base pair in a sample can be captured by the MutS protein, causing increased absorption of green light launching into the fiber and hence a decrease in transmitted light intensity through the fiber. As the signal change is enhanced through consecutive total internal reflections along the fiber, the limit of detection for an AC mismatch heteroduplex DNA can be as low as 0.49 nM. Because a microfluidic chip is used to contain the optical fiber, the narrow channel width allows an analysis time as short as 15 min. Furthermore, the label-free and real-time nature of the FOPPR sensing system enables determination of binding affinity and kinetics between MutS and single-base mismatched DNA. The method has been validated using a heterozygous PCR sample from a patient to determine the allelic fraction. The obtained allelic fraction of 0.474 reasonably agrees with the expected allelic fraction of 0.5. Therefore, the MutS-functionalized FOPPR sensor may potentially provide a convenient quantitative tool to detect single nucleotide polymorphisms in biological samples with a short analysis time at the point-of-care sites.


Assuntos
Técnicas Biossensoriais/instrumentação , Proteínas MutS/química , Fibras Ópticas , Polimorfismo de Nucleotídeo Único , Ressonância de Plasmônio de Superfície/instrumentação , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/normas , Ouro/química , Humanos , Limite de Detecção , Nanopartículas Metálicas/química , Mutação Puntual , Padrões de Referência , Talassemia beta/genética
2.
Anal Chem ; 91(13): 8532-8539, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31136154

RESUMO

Ideal-filter capillary electrophoresis (IFCE) allows selection of protein binders from oligonucleotide libraries in a single step of partitioning in which protein-bound and unbound oligonucleotides move in the opposite directions. In IFCE, the unbound oligonucleotide does not reach the detector, imposing a problem for finding the equilibrium constant ( Kd) and rate constant ( koff) of protein-oligonucleotide complex dissociation. We report a double-passage approach that allows finding Kd and koff under the IFCE conditions, i.e. near-physiological pH and ionic strength. First, a plug of the protein-oligonucleotide equilibrium mixture passes to the detector in a pressure-driven flow, allowing for both the complex and free oligonucleotide to be detected as a single first peak. Second, the pressure is turned off and the voltage is applied to reverse the migration of only the complex which is detected as the second peak. The experiment is repeated with a lower voltage consequently resulting in longer travel time of the complex to the detector, greater extent of complex dissociation, and the decreased area of the second peak. Finally, the peak areas are used to calculate the values of Kd and koff. Here we explain theoretical and practical aspects of the double-passage approach, prove its validity quantitatively, and, demonstrate its application to determine Kd and koff for an affinity complex between a protein and its DNA aptamer. The double-passage approach for finding Kd and koff of protein-oligonucleotide complexes under the IFCE conditions is a perfect complement for IFCE-based selection of protein binders from oligonucleotide libraries.


Assuntos
Aptâmeros de Nucleotídeos/química , Eletroforese Capilar/métodos , Proteínas de Fluorescência Verde/química , Proteínas MutS/química , Oligonucleotídeos/química , Entropia , Cinética
3.
Molecules ; 24(13)2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31288414

RESUMO

Due to their sedentary lifestyle, plants are constantly exposed to different stress stimuli. Stress comes in variety of forms where factors like radiation, free radicals, "replication errors, polymerase slippage", and chemical mutagens result in genotoxic or cytotoxic damage. In order to face "the base oxidation or DNA replication stress", plants have developed many sophisticated mechanisms. One of them is the DNA mismatch repair (MMR) pathway. The main part of the MMR is the MutS homologue (MSH) protein family. The genome of Arabidopsis thaliana encodes at least seven homologues of the MSH family: AtMSH1, AtMSH2, AtMSH3, AtMSH4, AtMSH5, AtMSH6, and AtMSH7. Despite their importance, the functions of AtMSH homologs have not been investigated. In this work, bioinformatics tools were used to obtain a better understanding of MSH-mediated DNA repair mechanisms in Arabidopsis thaliana and to understand the additional biological roles of AtMSH family members. In silico analysis, including phylogeny tracking, prediction of 3D structure, interactome analysis, and docking site prediction, suggested interactions with proteins were important for physiological development of A. thaliana. The MSH homologs extensively interacted with both TIL1 and TIL2 (DNA polymerase epsilon catalytic subunit), proteins involved in cell fate determination during plant embryogenesis and involved in flowering time repression. Additionally, interactions with the RECQ protein family (helicase enzymes) and proteins of nucleotide excision repair pathway were detected. Taken together, the results presented here confirm the important role of AtMSH proteins in mismatch repair and suggest important new physiological roles.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Simulação de Acoplamento Molecular , Proteínas MutS/metabolismo , Proteínas de Arabidopsis/química , Sítios de Ligação , Simulação por Computador , Dano ao DNA , Reparo de Erro de Pareamento de DNA , Reparo do DNA , Replicação do DNA , Proteínas MutS/química , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA