Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 419
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 602(7897): 529-533, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35140402

RESUMO

Type A GABA (γ-aminobutyric acid) receptors represent a diverse population in the mammalian brain, forming pentamers from combinations of α-, ß-, γ-, δ-, ε-, ρ-, θ- and π-subunits1. αß, α4ßδ, α6ßδ and α5ßγ receptors favour extrasynaptic localization, and mediate an essential persistent (tonic) inhibitory conductance in many regions of the mammalian brain1,2. Mutations of these receptors in humans are linked to epilepsy and insomnia3,4. Altered extrasynaptic receptor function is implicated in insomnia, stroke and Angelman and Fragile X syndromes1,5, and drugs targeting these receptors are used to treat postpartum depression6. Tonic GABAergic responses are moderated to avoid excessive suppression of neuronal communication, and can exhibit high sensitivity to Zn2+ blockade, in contrast to synapse-preferring α1ßγ, α2ßγ and α3ßγ receptor responses5,7-12. Here, to resolve these distinctive features, we determined structures of the predominantly extrasynaptic αß GABAA receptor class. An inhibited state bound by both the lethal paralysing agent α-cobratoxin13 and Zn2+ was used in comparisons with GABA-Zn2+ and GABA-bound structures. Zn2+ nullifies the GABA response by non-competitively plugging the extracellular end of the pore to block chloride conductance. In the absence of Zn2+, the GABA signalling response initially follows the canonical route until it reaches the pore. In contrast to synaptic GABAA receptors, expansion of the midway pore activation gate is limited and it remains closed, reflecting the intrinsic low efficacy that characterizes the extrasynaptic receptor. Overall, this study explains distinct traits adopted by αß receptors that adapt them to a role in tonic signalling.


Assuntos
Agonistas de Receptores de GABA-A , Antagonistas de Receptores de GABA-A , Receptores de GABA-A , Animais , Proteínas Neurotóxicas de Elapídeos , Agonistas de Receptores de GABA-A/farmacologia , Antagonistas de Receptores de GABA-A/farmacologia , Humanos , Mamíferos/metabolismo , Inibição Neural/fisiologia , Neurônios/metabolismo , Receptores de GABA-A/metabolismo , Sinapses/metabolismo , Zinco , Ácido gama-Aminobutírico/metabolismo
2.
Mar Drugs ; 19(2)2021 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-33669933

RESUMO

Among the brain tumors, glioma is the most common. In general, different biochemical mechanisms, involving nicotinic acetylcholine receptors (nAChRs) and the arachidonic acid cascade are involved in oncogenesis. Although the engagement of the latter in survival and proliferation of rat C6 glioma has been shown, there are practically no data about the presence and the role of nAChRs in C6 cells. In this work we studied the effects of nAChR antagonists, marine snail α-conotoxins and snake α-cobratoxin, on the survival and proliferation of C6 glioma cells. The effects of the lipoxygenase and cyclooxygenase inhibitors either alone or together with α-conotoxins and α-cobratoxin were studied in parallel. It was found that α-conotoxins and α-cobratoxin promoted the proliferation of C6 glioma cells, while nicotine had practically no effect at concentrations below 1 µL/mL. Nordihydroguaiaretic acid, a nonspecific lipoxygenase inhibitor, and baicalein, a 12-lipoxygenase inhibitor, exerted antiproliferative and cytotoxic effects on C6 cells. nAChR inhibitors weaken this effect after 24 h cultivation but produced no effects at longer times. Quantitative real-time polymerase chain reaction showed that mRNA for α4, α7, ß2 and ß4 subunits of nAChR were expressed in C6 glioma cells. This is the first indication for involvement of nAChRs in mechanisms of glioma cell proliferation.


Assuntos
Proteínas Neurotóxicas de Elapídeos/farmacologia , Conotoxinas/farmacologia , Glioma/tratamento farmacológico , Antagonistas Nicotínicos/farmacologia , Animais , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Inibidores de Ciclo-Oxigenase/farmacologia , Glioma/patologia , Inibidores de Lipoxigenase/farmacologia , Nicotina/farmacologia , Ratos , Receptores Nicotínicos/efeitos dos fármacos , Receptores Nicotínicos/metabolismo , Fatores de Tempo
3.
Mar Drugs ; 18(4)2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32272633

RESUMO

Several biochemical mechanisms, including the arachidonic acid cascade and activation of nicotinic acetylcholine receptors (nAChRs), are involved in increased tumor survival. Combined application of inhibitors acting on these two pathways may result in a more pronounced antitumor effect. Here, we show that baicalein (selective 12-lipoxygenase inhibitor), nordihydroguaiaretic acid (non-selective lipoxygenase inhibitor), and indomethacin (non-selective cyclooxygenase inhibitor) are cytotoxic to Ehrlich carcinoma cells in vitro. Marine snail α-conotoxins PnIA, RgIA and ArIB11L16D, blockers of α3ß2/α6ß2, α9α10 and α7 nAChR subtypes, respectively, as well as α-cobratoxin, a blocker of α7 and muscle subtype nAChRs, exhibit low cytotoxicity, but enhance the antitumor effect of baicalein 1.4-fold after 24 h and that of nordihydroguaiaretic acid 1.8-3.9-fold after 48 h of cell cultivation. α-Conotoxin MII, a blocker of α6-containing and α3ß2 nAChR subtypes, increases the cytotoxic effect of indomethacin 1.9-fold after 48 h of cultivation. In vivo, baicalein, α-conotoxins MII and PnIA inhibit Ehrlich carcinoma growth and increase mouse survival; these effects are greatly enhanced by the combined application of α-conotoxin MII with indomethacin or conotoxin PnIA with baicalein. Thus, we show, for the first time, antitumor synergism of α-conotoxins and arachidonic acid cascade inhibitors.


Assuntos
Carcinoma de Ehrlich/tratamento farmacológico , Sobrevivência Celular/efeitos dos fármacos , Conotoxinas/farmacologia , Inibidores de Ciclo-Oxigenase/farmacologia , Inibidores de Lipoxigenase/farmacologia , Antagonistas Nicotínicos/farmacologia , Animais , Ácido Araquidônico/antagonistas & inibidores , Carcinoma/tratamento farmacológico , Proteínas Neurotóxicas de Elapídeos/farmacologia , Sinergismo Farmacológico , Flavanonas/farmacologia , Indometacina/farmacologia , Masoprocol/farmacologia , Camundongos , Receptores Nicotínicos
4.
Mol Pain ; 13: 1744806917720336, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28758541

RESUMO

Cobra neurotoxin, a short-chain peptide isolated from snake venom of Naja naja atra, showed both a central analgesic effect and a hyperalgesic effect in mice tests. In order to explore mechanisms, a hypothesis is put forward that cobra neurotoxin takes effect through adenosine receptor pathway. The central effects of cobra neurotoxin were evaluated using the hot plate test (a model of acute pain) and the spinal cord injury (a model of central pain) in mice and using A1 receptor antagonist (DPCPX) and A2A receptor antagonist (ZM241385); behaviors were scored and signal molecules such as reactive oxygen species and adenosine triphosphate levels and mitogen-activated protein kinases/extracellular signal-regulated protein kinase expression were measured. Low dose of cobra neurotoxin (25 µg/kg) had analgesic effects which were inhibited by DPCPX, while high dose of cobra neurotoxin (100 µg/kg) had hyperalgesic effects which were blocked by ZM241385. Cobra neurotoxin reduced reactive oxygen species and increased adenosine triphosphate in brain tissues, and extracellular signal-regulated protein kinase expression was markedly inhibited by cobra neurotoxin. Cobra neurotoxin may take effect through mitogen-activated protein kinases/extracellular signal-regulated protein kinase pathway inhibition by activating adenosine A1Rs and cause changes of reactive oxygen species and adenosine triphosphate through feedback mechanisms. Overdose cobra neurotoxin further activates the adenosine A2ARs to generate pain sensitization. This research proposes a new central analgesic mechanism of cobra neurotoxin and discloses dual regulation of pain.


Assuntos
Analgésicos/uso terapêutico , Proteínas Neurotóxicas de Elapídeos/uso terapêutico , Hiperalgesia/metabolismo , Receptor A1 de Adenosina/metabolismo , Receptores A2 de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Analgésicos/farmacologia , Animais , Comportamento Animal , Encéfalo/metabolismo , Proteínas Neurotóxicas de Elapídeos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Hiperalgesia/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Fosforilação/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia
5.
J Biol Chem ; 290(37): 22747-58, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26221036

RESUMO

Ionotropic receptors of γ-aminobutyric acid (GABAAR) regulate neuronal inhibition and are targeted by benzodiazepines and general anesthetics. We show that a fluorescent derivative of α-cobratoxin (α-Ctx), belonging to the family of three-finger toxins from snake venoms, specifically stained the α1ß3γ2 receptor; and at 10 µm α-Ctx completely blocked GABA-induced currents in this receptor expressed in Xenopus oocytes (IC50 = 236 nm) and less potently inhibited α1ß2γ2 ≈ α2ß2γ2 > α5ß2γ2 > α2ß3γ2 and α1ß3δ GABAARs. The α1ß3γ2 receptor was also inhibited by some other three-finger toxins, long α-neurotoxin Ls III and nonconventional toxin WTX. α-Conotoxin ImI displayed inhibitory activity as well. Electrophysiology experiments showed mixed competitive and noncompetitive α-Ctx action. Fluorescent α-Ctx, however, could be displaced by muscimol indicating that most of the α-Ctx-binding sites overlap with the orthosteric sites at the ß/α subunit interface. Modeling and molecular dynamic studies indicated that α-Ctx or α-bungarotoxin seem to interact with GABAAR in a way similar to their interaction with the acetylcholine-binding protein or the ligand-binding domain of nicotinic receptors. This was supported by mutagenesis studies and experiments with α-conotoxin ImI and a chimeric Naja oxiana α-neurotoxin indicating that the major role in α-Ctx binding to GABAAR is played by the tip of its central loop II accommodating under loop C of the receptors.


Assuntos
Proteínas Neurotóxicas de Elapídeos , Conotoxinas , Simulação de Dinâmica Molecular , Receptores de GABA-A/química , Receptores de GABA-A/metabolismo , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Proteínas Neurotóxicas de Elapídeos/química , Proteínas Neurotóxicas de Elapídeos/farmacologia , Conotoxinas/química , Conotoxinas/farmacologia , Elapidae , Camundongos , Estrutura Secundária de Proteína , Receptores de GABA-A/genética
6.
Analyst ; 141(14): 4495-501, 2016 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-27175860

RESUMO

Neurotoxin (NT), a short-chain α-neurotoxin, is the main neurotoxic protein identified from the venom of Naja naja atra. As an effective drug for the analgesis of advanced cancer patients, NT lasts longer than morphine and does not cause addiction. However, achieving a sensitive and high-resolution measurement of NT is difficult because of the extra-low content of NT in vivo. Therefore, developing a novel method to quantify NT is essential to study its pharmacokinetics in vivo. Although NT contains four primary amine groups that could react with the thiourea in fluorescein isothiocyanate (FITC), we developed a simple and reproducible single-label fluorescent derivatization method for NT which is related to the reaction of N-terminal α-amino of NT alone under optimized derivatization conditions. Furthermore, neurotoxin labelled with fluorescein isothiocyanate (NT-FITC) was prepared by high-performance liquid chromatography (HPLC) with a purity value higher than 99.29% and identified by MALDI-TOF/TOF-MS. Finally, NT-FITC could be detected at 0.8 nmol L(-1) in rat plasma using capillary electrophoresis coupled with laser induced fluorescence detection (CE-LIF). In this paper, the established method robustly and reliably quantified NT labelled with FITC via intravenous and intramuscular administrations in vivo. In addition, this work fully demonstrated the pharmacokinetic characteristics of NT in vivo, which could reduce the risk of drug accumulation, optimize therapies, and provide sufficient evidence for the rational use of NT in clinical and research laboratories.


Assuntos
Analgésicos/análise , Proteínas Neurotóxicas de Elapídeos/análise , Eletroforese Capilar , Espectrometria de Fluorescência , Analgésicos/farmacocinética , Animais , Proteínas Neurotóxicas de Elapídeos/farmacocinética , Feminino , Fluoresceína , Fluoresceína-5-Isotiocianato/farmacocinética , Humanos , Lasers , Masculino , Espectrometria de Massas , Camundongos Endogâmicos ICR , Ratos Sprague-Dawley
7.
J Biochem Mol Toxicol ; 30(2): 59-70, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26293154

RESUMO

Snake venom three finger toxins (3FTxs) are a non-enzymatic family of venom proteins abundantly found in elapids. We have purified a 7579.5 ± 0.591 Da 3FTx named as Nk-3FTx from the venom of Naja kaouthia of North East India origin. The primary structure was determined by a combination of N-terminal sequencing and electrospray ionization liquid chromatography-mass spectrometry/mass spectrometry. Biochemical and biological characterization reveal that it is nontoxic to human cell lines and exhibit mild anticoagulant activity when tested on citrated human plasma. Nk-3FTx was found to affect the compound action potential (CAP) and nerve conduction velocity of isolated toad sciatic nerve. This is the first report of a non-conventional 3FTx from Naja kaouthia venom that reduces CAP for its neurotoxic effect. Further studies can be carried out to understand the mechanism of action and to explore its potential therapeutic application.


Assuntos
Proteínas Neurotóxicas de Elapídeos/química , Venenos Elapídicos/química , Elapidae , Potenciais de Ação/efeitos dos fármacos , Animais , Bufonidae , Linhagem Celular , Proteínas Neurotóxicas de Elapídeos/isolamento & purificação , Proteínas Neurotóxicas de Elapídeos/farmacologia , Venenos Elapídicos/farmacologia , Humanos , Camundongos , Condução Nervosa/efeitos dos fármacos , Nervo Isquiático/efeitos dos fármacos , Mordeduras de Serpentes
8.
Dokl Biochem Biophys ; 468(1): 193-6, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27417718

RESUMO

With the use of surface plasmon resonance (SPR) it was shown that ws-Lynx1, a water-soluble analog of the three-finger membrane-bound protein Lynx1, that modulates the activity of brain nicotinic acetylcholine receptors (nAChRs), interacts with the acetylcholine-binding protein (AChBP) with high affinity, K D = 62 nM. This result agrees with the earlier demonstrated competition of ws-Lynx1 with radioiodinated α-bungarotoxin for binding to AChBP. For the first time it was shown that ws-Lynx1 binds to GLIC, prokaryotic Cys-loop receptor (K D = 1.3 µM). On the contrary, SPR revealed that α-cobratoxin, a three-finger protein from cobra venom, does not bind to GLIC. Obtained results indicate that SPR is a promising method for analysis of topography of ws-Lynx1 binding sites using its mutants and those of AChBP and GLIC.


Assuntos
Proteínas de Bactérias/metabolismo , Encéfalo/metabolismo , Proteínas Neurotóxicas de Elapídeos/metabolismo , Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Animais , Aplysia , Proteínas de Bactérias/química , Sítios de Ligação , Linhagem Celular , Linhagem Celular Tumoral , Cianobactérias , Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/química , Drosophila melanogaster , Venenos Elapídicos/química , Venenos Elapídicos/metabolismo , Elapidae , Escherichia coli , Células HEK293 , Humanos , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Modelos Moleculares , Estrutura Secundária de Proteína , Ressonância de Plasmônio de Superfície , Receptor Nicotínico de Acetilcolina alfa7/química
10.
Dokl Biochem Biophys ; 464: 294-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26518551
11.
Biochem J ; 454(2): 303-310, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23800261

RESUMO

To identify high-affinity interactions between long-chain α-neurotoxins and nicotinic receptors, we determined the crystal structure of the complex between α-btx (α-bungarotoxin) and a pentameric ligand-binding domain constructed from the human α7 AChR (acetylcholine receptor) and AChBP (acetylcholine-binding protein). The complex buries ~2000 Ų (1 Å=0.1 nm) of surface area, within which Arg³6 and Phe³² from finger II of α-btx form a π-cation stack that aligns edge-to-face with the conserved Tyr¹84 from loop-C of α7, while Asp³° of α-btx forms a hydrogen bond with the hydroxy group of Tyr¹84. These inter-residue interactions diverge from those in a 4.2 Å structure of α-ctx (α-cobratoxin) bound to AChBP, but are similar to those in a 1.94 Å structure of α-btx bound to the monomeric α1 extracellular domain, although compared with the monomer-bound complex, the α-btx backbone exhibits a large shift relative to the protein surface. Mutational analyses show that replacing Tyr¹84 with a threonine residue abolishes high-affinity α-btx binding, whereas replacing with a phenylalanine residue maintains high affinity. Comparison of the α-btx complex with that coupled to the agonist epibatidine reveals structural rearrangements within the binding pocket and throughout each subunit. The overall findings highlight structural principles by which α-neurotoxins interact with nicotinic receptors.


Assuntos
Bungarotoxinas/metabolismo , Proteínas de Transporte/metabolismo , Modelos Moleculares , Neurotoxinas/metabolismo , Receptores Nicotínicos/metabolismo , Proteínas de Répteis/metabolismo , Substituição de Aminoácidos , Animais , Sítios de Ligação , Compostos Bicíclicos Heterocíclicos com Pontes/química , Compostos Bicíclicos Heterocíclicos com Pontes/metabolismo , Bungarotoxinas/química , Bungarus , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas Neurotóxicas de Elapídeos/química , Proteínas Neurotóxicas de Elapídeos/metabolismo , Humanos , Ligantes , Lymnaea , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Neurotoxinas/química , Agonistas Nicotínicos/química , Agonistas Nicotínicos/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Piridinas/química , Piridinas/metabolismo , Receptores Nicotínicos/química , Receptores Nicotínicos/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Répteis/química , Receptor Nicotínico de Acetilcolina alfa7
12.
Toxicon ; 239: 107613, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38218383

RESUMO

Three-finger toxins (3FTxs) have traditionally been obtained via venom fractionation of whole venoms from snakes. This method often yields functional toxins, but it can be difficult to obtain pure isoforms, as it is challenging to separate the many different toxins with similar physicochemical properties that generally exist in many venoms. This issue can be circumvented via the use of recombinant expression. However, achieving the correct disulfide bond formation in recombinant toxins is challenging and requires extensive optimization of expression and purification methods to enhance stability and functionality. In this study, we investigated the expression of α-cobratoxin, a well-characterized 3FTx from the monocled cobra (Naja kaouthia), in three different expression systems, namely Escherichia coli BL21 (DE3) cells with the csCyDisCo plasmid, Escherichia coli SHuffle cells, and Komagataella phaffii (formerly known as Pichia pastoris). While none of the tested systems yielded α-cobratoxin identical to the variant isolated from whole venom, the His6-tagged α-cobratoxin expressed in K. phaffii exhibited a comparable secondary structure according to circular dichroism spectra and similar binding properties to the α7 subunit of the nicotinic acetylcholine receptor. The findings presented here illustrate the advantages and limitations of the different expression systems and can help guide researchers who wish to express 3FTxs.


Assuntos
Proteínas Neurotóxicas de Elapídeos , Receptores Nicotínicos , Toxinas Biológicas , Escherichia coli/genética , Escherichia coli/metabolismo , Toxinas Três Dedos , Proteínas Neurotóxicas de Elapídeos/química , Proteínas Neurotóxicas de Elapídeos/metabolismo , Receptores Nicotínicos/metabolismo , Peçonhas , Venenos Elapídicos/química
13.
J Biol Chem ; 287(9): 6725-34, 2012 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-22223648

RESUMO

In Naja kaouthia cobra venom, we have earlier discovered a covalent dimeric form of α-cobratoxin (αCT-αCT) with two intermolecular disulfides, but we could not determine their positions. Here, we report the αCT-αCT crystal structure at 1.94 Å where intermolecular disulfides are identified between Cys(3) in one protomer and Cys(20) of the second, and vice versa. All remaining intramolecular disulfides, including the additional bridge between Cys(26) and Cys(30) in the central loops II, have the same positions as in monomeric α-cobratoxin. The three-finger fold is essentially preserved in each protomer, but the arrangement of the αCT-αCT dimer differs from those of noncovalent crystallographic dimers of three-finger toxins (TFT) or from the κ-bungarotoxin solution structure. Selective reduction of Cys(26)-Cys(30) in one protomer does not affect the activity against the α7 nicotinic acetylcholine receptor (nAChR), whereas its reduction in both protomers almost prevents α7 nAChR recognition. On the contrary, reduction of one or both Cys(26)-Cys(30) disulfides in αCT-αCT considerably potentiates inhibition of the α3ß2 nAChR by the toxin. The heteromeric dimer of α-cobratoxin and cytotoxin has an activity similar to that of αCT-αCT against the α7 nAChR and is more active against α3ß2 nAChRs. Our results demonstrate that at least one Cys(26)-Cys(30) disulfide in covalent TFT dimers, similar to the monomeric TFTs, is essential for their recognition by α7 nAChR, although it is less important for interaction of covalent TFT dimers with the α3ß2 nAChR.


Assuntos
Proteínas Neurotóxicas de Elapídeos/química , Dissulfetos/química , Receptores Nicotínicos/química , Alquilação , Sítios de Ligação , Proteínas Neurotóxicas de Elapídeos/metabolismo , Cristalografia por Raios X , Dimerização , Dissulfetos/metabolismo , Modelos Químicos , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ensaio Radioligante , Receptores Nicotínicos/metabolismo , Receptor Nicotínico de Acetilcolina alfa7
14.
Anal Chem ; 85(10): 5219-25, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23581651

RESUMO

Cobra venom (Naja kaouthia) contains a toxin called α-cobratoxin (α-Cbtx). This toxin is a natural protein containing 71 amino acids (MW 7821 Da) with a reported analgesic potency greater than morphine. In 2007, in USA, this substance was found in the barns of a thoroughbred trainer and since then till date, the lack of a detection of this molecule has remained a recurring problem for the horseracing industry worldwide. To solve this problem, the first method for the detection of α-cobratoxin in equine plasma has now been developed. Plasma sample (3 mL) was treated with ammonium sulfate at the isoelectric point of α-Cbtx, and the pellet was dissolved in a phosphate buffer and mixed with methanol for precipitation. The supernatant was then concentrated prior to its extraction on WCX SPE cartridges. The eluate was concentrated with two consecutive filtration steps before the trypsin digestion. The samples were analyzed using a LC-MS/MS Q Exactive instrument at 70,000 resolution on the product ions of the doubly charged precursor of the target peptide ((24)TWCDAFCSIR(33)). The method was validated (n = 18) at 5 µg/L (640 pmol/L) according to the Association of Official Racing Chemists (AORC) requirements. The lower limit of detection was 1 µg/L (130 pmol/L). The present method has made it possible for us to confirm the presence of α-Cbtx in a horse plasma sample 24 h post the administration of α-Cbtx. Thus, the present method provides the first sensitive, specific, and reliable analytical method to confirm the presence of α-Cbtx in equine plasma.


Assuntos
Analgésicos/sangue , Análise Química do Sangue/métodos , Proteínas Neurotóxicas de Elapídeos/sangue , Dopagem Esportivo/prevenção & controle , Cavalos , Sequência de Aminoácidos , Analgésicos/química , Analgésicos/isolamento & purificação , Analgésicos/metabolismo , Métodos Analíticos de Preparação de Amostras , Animais , Cromatografia Líquida , Proteínas Neurotóxicas de Elapídeos/química , Proteínas Neurotóxicas de Elapídeos/isolamento & purificação , Proteínas Neurotóxicas de Elapídeos/metabolismo , Dados de Sequência Molecular , Proteólise , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem , Tripsina/metabolismo
15.
BMC Complement Altern Med ; 13: 86, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23587180

RESUMO

BACKGROUND: Neurotoxin-Nna (NT), an analgesic peptide separated from the venom of Naja naja atra, has reported to have an exceptional specificity to block transmission of the nerve impulse by binding to the α- subunit of the nicotinic acetylcholine receptor in the membrane. However, little information is available on the anti-inflammatory effects of NT. Therefore, the anti-inflammatory activity of Neurotoxin-Nna was investigated in this study. METHODS: The anti-inflammatory effects of NT were evaluated by measuring its influence on several crucial factors in inflammatory pathways, including total antioxidant activity, antinociceptive effects in vivo, nuclear factor kappa B (NF-κB), polymorphonuclear cells (PMN), inducible nitric oxide synthase (iNOS), adhesion molecule (ICAM-1) and tactile hyperalgesia. RESULTS: NT treatment decreased the levels of tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1ß). NT treatment decreased the total antioxidant status (TAOS) and reduced CFA-induced tactile hyperalgesia in a dose-dependent manner. NT significantly inhibited regulation of NF-kappaB activation and the production of IL-1ß, TNF-α, iNOS and CAM-1. Moreover, NT suppressed infiltration of PMN. CONCLUSIONS: Our results showed that NT reduced CFA-induced tactile hyperalgesia through inhibition inflammatory pathways in experimental inflammatory rats.


Assuntos
Anti-Inflamatórios/administração & dosagem , Proteínas Neurotóxicas de Elapídeos/administração & dosagem , Venenos Elapídicos/química , Elapidae , Hiperalgesia/tratamento farmacológico , Peptídeos/administração & dosagem , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Proteínas Neurotóxicas de Elapídeos/química , Proteínas Neurotóxicas de Elapídeos/isolamento & purificação , Feminino , Humanos , Hiperalgesia/genética , Hiperalgesia/imunologia , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Masculino , NF-kappa B/genética , NF-kappa B/imunologia , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/imunologia , Peptídeos/química , Peptídeos/isolamento & purificação , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
16.
Drug Dev Ind Pharm ; 39(11): 1618-24, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24087853

RESUMO

CONTEXT: Neurotoxin (NT), an analgesic peptide which was separated from the venom of Naja naja atra, is endowed an exceptional specificity of action that blocks transmission of the nerve impulse by binding to the acetylcholine receptor in the membrane. However, it has limited permeability across the blood-brain barrier (BBB). OBJECTIVE: The purpose of this study was to encapsulate NT within polylactic acid (PLA) nanoparticles (NPs) modified with chitosan (NT-PLA-cNPs) and to evaluate their brain pharmacokinetic behaviors after intranasal (i.n.) administration using a microdialysis technique in free-moving rats. METHODS: NT-PLA-cNPs (NT labeled with fluorescein isothiocyanate) were prepared and characterized. Then, NT-PLA-cNPs were i.n. administered to rats and the fluorescence intensity in the periaqueductal gray (PAG) was monitored for up to 480 min, with NT-PLA-NPs and NT solution as control groups. RESULTS: The NPs prepared were spherical with a homogenous size distribution. The mean particle size, zeta potential, and entrapment efficiency were 140.5 ± 5.4 nm, +33.71 ± 3.24 mV, and 83.51 ± 2.65%, respectively. The brain transport results showed that Tmax of NT-PLA-cNPs was equal with that of NT-PLA-NPs after i.n. administration (150 min). The Cmax and AUC(0-8 h) of each group followed the following order: NT-PLA-cNPs > NT-PLA-NPs. The corresponding absolute bioavailability (Fabs) of NT-PLA-cNPs was about 151% with NT-PLA-NPs as reference preparations. CONCLUSION: These results suggest that NPs modified with chitosan have better brain targeting efficiency and are a promising approach for i.n. delivery of large hydrophilic peptides and proteins in improving the treatment of central nervous system (CNS) disorders.


Assuntos
Analgésicos não Narcóticos/farmacocinética , Barreira Hematoencefálica/metabolismo , Quitosana/química , Proteínas Neurotóxicas de Elapídeos/farmacocinética , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Substância Cinzenta Periaquedutal/metabolismo , Administração Intranasal , Analgésicos não Narcóticos/administração & dosagem , Analgésicos não Narcóticos/farmacologia , Animais , Disponibilidade Biológica , Barreira Hematoencefálica/efeitos dos fármacos , Proteínas Neurotóxicas de Elapídeos/administração & dosagem , Proteínas Neurotóxicas de Elapídeos/farmacologia , Composição de Medicamentos , Corantes Fluorescentes/química , Meia-Vida , Ácido Láctico/química , Masculino , Microdiálise , Nanopartículas/administração & dosagem , Nanopartículas/ultraestrutura , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Substância Cinzenta Periaquedutal/efeitos dos fármacos , Poliésteres , Polímeros/química , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Propriedades de Superfície , Distribuição Tecidual
17.
Anal Bioanal Chem ; 402(9): 2737-48, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22349324

RESUMO

The ammodytoxins (Atxs) are neurotoxic phospholipases which occur in Vipera ammodytes ammodytes (Vaa) snake venom. There are three Atx isoforms, A, B, and C, which differ in only five amino acid positions at the C-terminus but differ substantially in their toxicity. The objective of this study was to establish an analytical method for unambiguous identification of all three isoforms and to use the method to assess a procedure for purification of the most toxic phospholipase, AtxA, from the venom. Isolation procedure for AtxA consisted of isolation of Atx-cross-reactive material (proteins recognized by anti-Atx antibodies), by use of an affinity column, then cation exchange on CIM (Convective Interaction Media) disks. The purification procedure was monitored by means of reversed-phase chromatography (RPC) and mass spectrometry (MS). Although previous cation exchange of the pure isoforms enabled separate elution of AtxA from B and C, separation of AtxA from Atxs mixture was not accomplished. RPC was not able to separate the Atx isoforms, whereas an MS based approach proved to be more powerful. Peptides resulting from tryptic digestion of Atxs which enable differentiation between the three isoforms were successfully detected and their sequences were confirmed by post-source decay (PSD) fragmentation. Separation of Atx isoforms by ion-exchange chromatography is most presumably prevented by Atxs heterodimer formation. The tendency of Atxs to form homodimers and heterodimers of similar stability was confirmed by molecular modeling.


Assuntos
Cromatografia/métodos , Proteínas Neurotóxicas de Elapídeos/química , Proteínas Neurotóxicas de Elapídeos/isolamento & purificação , Fosfolipases/química , Fosfolipases/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Venenos de Víboras/química , Sequência de Aminoácidos , Animais , Proteínas Neurotóxicas de Elapídeos/toxicidade , Isoenzimas/química , Isoenzimas/isolamento & purificação , Isoenzimas/toxicidade , Modelos Moleculares , Dados de Sequência Molecular , Fosfolipases/toxicidade , Venenos de Víboras/toxicidade , Viperidae
18.
Protein Sci ; 31(5): e4296, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35481650

RESUMO

Each year, thousands of people fall victim to envenomings caused by cobras. These incidents often result in death due to paralysis caused by α-neurotoxins from the three-finger toxin (3FTx) family, which are abundant in elapid venoms. Due to their small size, 3FTxs are among the snake toxins that are most poorly neutralized by current antivenoms, which are based on polyclonal antibodies of equine or ovine origin. While antivenoms have saved countless lives since their development in the late 18th century, an opportunity now exists to improve snakebite envenoming therapy via the application of new biotechnological methods, particularly by developing monoclonal antibodies against poorly neutralized α-neurotoxins. Here, we describe the use of phage-displayed synthetic antibody libraries and the development and characterization of six synthetic antibodies built on a human IgG framework and developed against α-cobratoxin - the most abundant long-chain α-neurotoxin from Naja kaouthia venom. The synthetic antibodies exhibited sub-nanomolar affinities to α-cobratoxin and neutralized the curare-mimetic effect of the toxin in vitro. These results demonstrate that phage display technology based on synthetic repertoires can be used to rapidly develop human antibodies with drug-grade potencies as inhibitors of venom toxins.


Assuntos
Proteínas Neurotóxicas de Elapídeos , Naja naja , Animais , Antivenenos/farmacologia , Proteínas Neurotóxicas de Elapídeos/farmacologia , Cavalos , Humanos , Naja naja/metabolismo , Neurotoxinas/química , Neurotoxinas/metabolismo , Ovinos
19.
J Biol Chem ; 285(11): 8302-15, 2010 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-20071329

RESUMO

Snake venoms are a mixture of pharmacologically active proteins and polypeptides that have led to the development of molecular probes and therapeutic agents. Here, we describe the structural and functional characterization of a novel neurotoxin, haditoxin, from the venom of Ophiophagus hannah (King cobra). Haditoxin exhibited novel pharmacology with antagonism toward muscle (alphabetagammadelta) and neuronal (alpha(7), alpha(3)beta(2), and alpha(4)beta(2)) nicotinic acetylcholine receptors (nAChRs) with highest affinity for alpha(7)-nAChRs. The high resolution (1.5 A) crystal structure revealed haditoxin to be a homodimer, like kappa-neurotoxins, which target neuronal alpha(3)beta(2)- and alpha(4)beta(2)-nAChRs. Interestingly however, the monomeric subunits of haditoxin were composed of a three-finger protein fold typical of curaremimetic short-chain alpha-neurotoxins. Biochemical studies confirmed that it existed as a non-covalent dimer species in solution. Its structural similarity to short-chain alpha-neurotoxins and kappa-neurotoxins notwithstanding, haditoxin exhibited unique blockade of alpha(7)-nAChRs (IC(50) 180 nm), which is recognized by neither short-chain alpha-neurotoxins nor kappa-neurotoxins. This is the first report of a dimeric short-chain alpha-neurotoxin interacting with neuronal alpha(7)-nAChRs as well as the first homodimeric three-finger toxin to interact with muscle nAChRs.


Assuntos
Proteínas Neurotóxicas de Elapídeos/química , Venenos Elapídicos/química , Elapidae , Antagonistas Nicotínicos/química , Receptores Nicotínicos/fisiologia , Sequência de Aminoácidos , Animais , Galinhas , Proteínas Neurotóxicas de Elapídeos/genética , Proteínas Neurotóxicas de Elapídeos/farmacologia , Cristalografia por Raios X , Diafragma/efeitos dos fármacos , Diafragma/fisiologia , Dimerização , Venenos Elapídicos/genética , Venenos Elapídicos/farmacologia , Biblioteca Gênica , Humanos , Camundongos , Dados de Sequência Molecular , Músculo Liso/efeitos dos fármacos , Músculo Liso/fisiologia , Antagonistas Nicotínicos/farmacologia , Oócitos/fisiologia , Técnicas de Patch-Clamp , Conformação Proteica , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Xenopus , Receptor Nicotínico de Acetilcolina alfa7
20.
Proteins ; 79(1): 142-52, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21058296

RESUMO

Based on the crystal structure of the extracellular domain (ECD) of the mouse nicotinic acetylcholine receptor (nAChR) alpha1 subunit bound to α-bungarotoxin (α-Btx) we have generated in silico models of the human nAChR α1 bound to α-Btx and α-cobratoxin (α-Cbtx), both in the presence and in the absence of the N-linked carbohydrate chain. To gain further insight into the structural role of glycosylation molecular dynamics (MD) simulations were carried out in explicit solvent so as to compare the conformational dynamics of the binding interface between nAChR α1 and the two toxins. An interesting observation during the course of the MD simulations is the strengthening of the receptor-toxin interaction in the presence of the carbohydrate chain, mediated through a shift in the position of the sugars towards the bound toxin. Critical protein-sugar interactions implicate residues Ser187 and Trp184 of nAChR and Thr6, Ser9, and Thr15 of α-Btx, as well as Thr6 and Pro7 of α-Cbtx. Analysis of the predicted residue-specific intermolecular interactions is intended to inspire biophysical studies on the functional role of glycosylation in the gating mechanism.


Assuntos
Bungarotoxinas/química , Proteínas Neurotóxicas de Elapídeos/química , Receptores Nicotínicos/química , Animais , Glicosilação , Humanos , Camundongos , Simulação de Dinâmica Molecular , Neurotoxinas/química , Ligação Proteica , Estrutura Terciária de Proteína , Homologia Estrutural de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA