Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.317
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(8): 1889-1906.e24, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38503281

RESUMO

Nucleoli are multicomponent condensates defined by coexisting sub-phases. We identified distinct intrinsically disordered regions (IDRs), including acidic (D/E) tracts and K-blocks interspersed by E-rich regions, as defining features of nucleolar proteins. We show that the localization preferences of nucleolar proteins are determined by their IDRs and the types of RNA or DNA binding domains they encompass. In vitro reconstitutions and studies in cells showed how condensation, which combines binding and complex coacervation of nucleolar components, contributes to nucleolar organization. D/E tracts of nucleolar proteins contribute to lowering the pH of co-condensates formed with nucleolar RNAs in vitro. In cells, this sets up a pH gradient between nucleoli and the nucleoplasm. By contrast, juxta-nucleolar bodies, which have different macromolecular compositions, featuring protein IDRs with very different charge profiles, have pH values that are equivalent to or higher than the nucleoplasm. Our findings show that distinct compositional specificities generate distinct physicochemical properties for condensates.


Assuntos
Nucléolo Celular , Proteínas Nucleares , Força Próton-Motriz , Nucléolo Celular/química , Núcleo Celular/química , Proteínas Nucleares/química , RNA/metabolismo , Separação de Fases , Proteínas Intrinsicamente Desordenadas/química , Animais , Xenopus laevis , Oócitos/química , Oócitos/citologia
2.
Cell ; 183(3): 802-817.e24, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33053319

RESUMO

Mammalian SWI/SNF complexes are ATP-dependent chromatin remodeling complexes that regulate genomic architecture. Here, we present a structural model of the endogenously purified human canonical BAF complex bound to the nucleosome, generated using cryoelectron microscopy (cryo-EM), cross-linking mass spectrometry, and homology modeling. BAF complexes bilaterally engage the nucleosome H2A/H2B acidic patch regions through the SMARCB1 C-terminal α-helix and the SMARCA4/2 C-terminal SnAc/post-SnAc regions, with disease-associated mutations in either causing attenuated chromatin remodeling activities. Further, we define changes in BAF complex architecture upon nucleosome engagement and compare the structural model of endogenous BAF to those of related SWI/SNF-family complexes. Finally, we assign and experimentally interrogate cancer-associated hot-spot mutations localizing within the endogenous human BAF complex, identifying those that disrupt BAF subunit-subunit and subunit-nucleosome interfaces in the nucleosome-bound conformation. Taken together, this integrative structural approach provides important biophysical foundations for understanding the mechanisms of BAF complex function in normal and disease states.


Assuntos
Doença , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Montagem e Desmontagem da Cromatina , Microscopia Crioeletrônica , DNA Helicases/química , DNA Helicases/genética , DNA Helicases/metabolismo , Doença/genética , Humanos , Mutação de Sentido Incorreto/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleossomos/metabolismo , Ligação Proteica , Domínios Proteicos , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/metabolismo , Homologia Estrutural de Proteína , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Cell ; 182(2): 297-316.e27, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32619424

RESUMO

The most aggressive B cell lymphomas frequently manifest extranodal distribution and carry somatic mutations in the poorly characterized gene TBL1XR1. Here, we show that TBL1XR1 mutations skew the humoral immune response toward generating abnormal immature memory B cells (MB), while impairing plasma cell differentiation. At the molecular level, TBL1XR1 mutants co-opt SMRT/HDAC3 repressor complexes toward binding the MB cell transcription factor (TF) BACH2 at the expense of the germinal center (GC) TF BCL6, leading to pre-memory transcriptional reprogramming and cell-fate bias. Upon antigen recall, TBL1XR1 mutant MB cells fail to differentiate into plasma cells and instead preferentially reenter new GC reactions, providing evidence for a cyclic reentry lymphomagenesis mechanism. Ultimately, TBL1XR1 alterations lead to a striking extranodal immunoblastic lymphoma phenotype that mimics the human disease. Both human and murine lymphomas feature expanded MB-like cell populations, consistent with a MB-cell origin and delineating an unforeseen pathway for malignant transformation of the immune system.


Assuntos
Memória Imunológica/fisiologia , Linfoma Difuso de Grandes Células B/patologia , Proteínas Nucleares/genética , Células Precursoras de Linfócitos B/imunologia , Receptores Citoplasmáticos e Nucleares/genética , Proteínas Repressoras/genética , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Cromatina/química , Cromatina/metabolismo , Centro Germinativo/citologia , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Histona Desacetilases/metabolismo , Humanos , Linfoma Difuso de Grandes Células B/imunologia , Linfoma Difuso de Grandes Células B/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutagênese Sítio-Dirigida , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Correpressor 2 de Receptor Nuclear/química , Correpressor 2 de Receptor Nuclear/metabolismo , Células Precursoras de Linfócitos B/citologia , Células Precursoras de Linfócitos B/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-bcl-6/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-6/genética , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Transcrição Gênica
4.
Annu Rev Biochem ; 87: 323-350, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29668306

RESUMO

X chromosome regulation represents a prime example of an epigenetic phenomenon where coordinated regulation of a whole chromosome is required. In flies, this is achieved by transcriptional upregulation of X chromosomal genes in males to equalize the gene dosage differences in females. Chromatin-bound proteins and long noncoding RNAs (lncRNAs) constituting a ribonucleoprotein complex known as the male-specific lethal (MSL) complex or the dosage compensation complex mediate this process. MSL complex members decorate the male X chromosome, and their absence leads to male lethality. The male X chromosome is also enriched with histone H4 lysine 16 acetylation (H4K16ac), indicating that the chromatin compaction status of the X chromosome also plays an important role in transcriptional activation. How the X chromosome is specifically targeted and how dosage compensation is mechanistically achieved are central questions for the field. Here, we review recent advances, which reveal a complex interplay among lncRNAs, the chromatin landscape, transcription, and chromosome conformation that fine-tune X chromosome gene expression.


Assuntos
Mecanismo Genético de Compensação de Dose , Cromossomo X/genética , Animais , Cromatina/genética , Cromatina/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Epigênese Genética , Feminino , Genes Ligados ao Cromossomo X , Código das Histonas/genética , Humanos , Masculino , Modelos Genéticos , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Cromossomo X/metabolismo
5.
Cell ; 174(5): 1106-1116.e9, 2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30100181

RESUMO

The SET1/MLL family of histone methyltransferases is conserved in eukaryotes and regulates transcription by catalyzing histone H3K4 mono-, di-, and tri-methylation. These enzymes form a common five-subunit catalytic core whose assembly is critical for their basal and regulated enzymatic activities through unknown mechanisms. Here, we present the crystal structure of the intact yeast COMPASS histone methyltransferase catalytic module consisting of Swd1, Swd3, Bre2, Sdc1, and Set1. The complex is organized by Swd1, whose conserved C-terminal tail not only nucleates Swd3 and a Bre2-Sdc1 subcomplex, but also joins Set1 to construct a regulatory pocket next to the catalytic site. This inter-subunit pocket is targeted by a previously unrecognized enzyme-modulating motif in Swd3 and features a doorstop-style mechanism dictating substrate selectivity among SET1/MLL family members. By spatially mapping the functional components of COMPASS, our results provide a structural framework for understanding the multifaceted functions and regulation of the H3K4 methyltransferase family.


Assuntos
Proteínas Fúngicas/química , Histona-Lisina N-Metiltransferase/química , Histonas/química , Kluyveromyces/química , Proteínas de Saccharomyces cerevisiae/química , Sequência de Aminoácidos , Animais , Domínio Catalítico , Linhagem Celular , Cristalografia por Raios X , Proteínas de Ligação a DNA/química , Humanos , Insetos , Metilação , Proteínas Nucleares/química , Domínios Proteicos , Saccharomyces cerevisiae/química , Alinhamento de Sequência , Especificidade por Substrato , Fatores de Transcrição/química
6.
Cell ; 173(1): 221-233.e12, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29551271

RESUMO

Tandem zinc finger (ZF) proteins are the largest and most rapidly diverging family of DNA-binding transcription regulators in mammals. ZFP568 represses a transcript of placental-specific insulin like growth factor 2 (Igf2-P0) in mice. ZFP568 binds a 24-base pair sequence-specific element upstream of Igf2-P0 via the eleven-ZF array. Both DNA and protein conformations deviate from the conventional one finger-three bases recognition, with individual ZFs contacting 2, 3, or 4 bases and recognizing thymine on the opposite strand. These interactions arise from a shortened minor groove caused by an AT-rich stretch, suggesting adaptability of ZF arrays to sequence variations. Despite conservation in mammals, mutations at Igf2 and ZFP568 reduce their binding affinity in chimpanzee and humans. Our studies provide important insights into the evolutionary and structural dynamics of ZF-DNA interactions that play a key role in mammalian development and evolution.


Assuntos
DNA/metabolismo , Proteínas Nucleares/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação , Proteínas de Transporte/química , Proteínas de Transporte/classificação , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , DNA/química , Humanos , Fator de Crescimento Insulin-Like II/química , Fator de Crescimento Insulin-Like II/genética , Fator de Crescimento Insulin-Like II/metabolismo , Camundongos , Simulação de Dinâmica Molecular , Proteínas Nucleares/química , Proteínas Nucleares/classificação , Proteínas Nucleares/genética , Conformação de Ácido Nucleico , Pan troglodytes , Filogenia , Polimorfismo de Nucleotídeo Único , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Alinhamento de Sequência
7.
Cell ; 171(1): 32-33, 2017 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-28938121

RESUMO

A hallmark of Huntington's disease is the presence of intracellular aggregates of mutant huntingtin, the pathological significance of which has long been debated. Using cryo-electron tomography, Bauerlein et al. reveal the fibrillary structure of huntingtin aggregates in situ and show that huntingtin fibrils interact with the endoplasmic reticulum, distorting its morphology and dynamics.


Assuntos
Proteína Huntingtina , Proteínas do Tecido Nervoso/química , Animais , Retículo Endoplasmático , Humanos , Doença de Huntington , Proteínas Nucleares/química
8.
Cell ; 171(1): 163-178.e19, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28844694

RESUMO

Alterations in transcriptional regulators can orchestrate oncogenic gene expression programs in cancer. Here, we show that the BRG1/BRM-associated factor (BAF) chromatin remodeling complex, which is mutated in over 20% of human tumors, interacts with EWSR1, a member of a family of proteins with prion-like domains (PrLD) that are frequent partners in oncogenic fusions with transcription factors. In Ewing sarcoma, we find that the BAF complex is recruited by the EWS-FLI1 fusion protein to tumor-specific enhancers and contributes to target gene activation. This process is a neomorphic property of EWS-FLI1 compared to wild-type FLI1 and depends on tyrosine residues that are necessary for phase transitions of the EWSR1 prion-like domain. Furthermore, fusion of short fragments of EWSR1 to FLI1 is sufficient to recapitulate BAF complex retargeting and EWS-FLI1 activities. Our studies thus demonstrate that the physical properties of prion-like domains can retarget critical chromatin regulatory complexes to establish and maintain oncogenic gene expression programs.


Assuntos
Proteínas de Ligação a Calmodulina/química , Proteínas de Ligação a Calmodulina/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Proteína Proto-Oncogênica c-fli-1/metabolismo , Proteína EWS de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Sarcoma de Ewing/genética , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Repetições de Microssatélites , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas Priônicas/metabolismo , Domínios Proteicos , Sarcoma de Ewing/patologia
9.
Annu Rev Biochem ; 85: 375-404, 2016 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-27145840

RESUMO

Inactivation of the transcription factor p53, through either direct mutation or aberrations in one of its many regulatory pathways, is a hallmark of virtually every tumor. In recent years, screening for p53 activators and a better understanding of the molecular mechanisms of oncogenic perturbations of p53 function have opened up a host of novel avenues for therapeutic intervention in cancer: from the structure-guided design of chemical chaperones to restore the function of conformationally unstable p53 cancer mutants, to the development of potent antagonists of the negative regulators MDM2 and MDMX and other modulators of the p53 pathway for the treatment of cancers with wild-type p53. Some of these compounds have now moved from proof-of-concept studies into clinical trials, with prospects for further, personalized anticancer medicines. We trace the structural evolution of the p53 pathway, from germ-line surveillance in simple multicellular organisms to its pluripotential role in humans.


Assuntos
Antineoplásicos Alquilantes/uso terapêutico , Regulação Neoplásica da Expressão Gênica , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Proteína Supressora de Tumor p53/agonistas , Animais , Antineoplásicos Alquilantes/síntese química , Proteínas de Ciclo Celular , Ensaios Clínicos como Assunto , Desenho de Fármacos , Humanos , Simulação de Acoplamento Molecular , Mutação , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Multimerização Proteica , Estrutura Secundária de Proteína , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-mdm2/química , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
10.
Cell ; 167(4): 1028-1040.e15, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27881301

RESUMO

Kinetochores, multisubunit protein assemblies, connect chromosomes to spindle microtubules to promote chromosome segregation. The 10-subunit KMN assembly (comprising KNL1, MIS12, and NDC80 complexes, designated KNL1C, MIS12C, and NDC80C) binds microtubules and regulates mitotic checkpoint function through NDC80C and KNL1C, respectively. MIS12C, on the other hand, connects the KMN to the chromosome-proximal domain of the kinetochore through a direct interaction with CENP-C. The structural basis for this crucial bridging function of MIS12C is unknown. Here, we report crystal structures of human MIS12C associated with a fragment of CENP-C and unveil the role of Aurora B kinase in the regulation of this interaction. The structure of MIS12:CENP-C complements previously determined high-resolution structures of functional regions of NDC80C and KNL1C and allows us to build a near-complete structural model of the KMN assembly. Our work illuminates the structural organization of essential chromosome segregation machinery that is conserved in most eukaryotes.


Assuntos
Proteínas Cromossômicas não Histona/química , Cristalografia por Raios X , Cinetocoros/química , Complexos Multiproteicos/química , Animais , Aurora Quinase B/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas do Citoesqueleto , Humanos , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Químicos , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo
11.
Mol Cell ; 83(22): 4017-4031.e9, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37820732

RESUMO

The MCM motor of the replicative helicase is loaded onto origin DNA as an inactive double hexamer before replication initiation. Recruitment of activators GINS and Cdc45 upon S-phase transition promotes the assembly of two active CMG helicases. Although work with yeast established the mechanism for origin activation, how CMG is formed in higher eukaryotes is poorly understood. Metazoan Downstream neighbor of Son (DONSON) has recently been shown to deliver GINS to MCM during CMG assembly. What impact this has on the MCM double hexamer is unknown. Here, we used cryoelectron microscopy (cryo-EM) on proteins isolated from replicating Xenopus egg extracts to identify a double CMG complex bridged by a DONSON dimer. We find that tethering elements mediating complex formation are essential for replication. DONSON reconfigures the MCM motors in the double CMG, and primordial dwarfism patients' mutations disrupting DONSON dimerization affect GINS and MCM engagement in human cells and DNA synthesis in Xenopus egg extracts.


Assuntos
Proteínas de Ciclo Celular , DNA Helicases , Proteínas Nucleares , Animais , Humanos , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Microscopia Crioeletrônica , DNA/genética , DNA/metabolismo , DNA Helicases/metabolismo , Replicação do DNA , Proteínas de Manutenção de Minicromossomo/genética , Proteínas de Manutenção de Minicromossomo/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Ativação Enzimática
12.
Cell ; 163(3): 734-45, 2015 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-26456112

RESUMO

The mechanisms by which intrinsically disordered proteins engage in rapid and highly selective binding is a subject of considerable interest and represents a central paradigm to nuclear pore complex (NPC) function, where nuclear transport receptors (NTRs) move through the NPC by binding disordered phenylalanine-glycine-rich nucleoporins (FG-Nups). Combining single-molecule fluorescence, molecular simulations, and nuclear magnetic resonance, we show that a rapidly fluctuating FG-Nup populates an ensemble of conformations that are prone to bind NTRs with near diffusion-limited on rates, as shown by stopped-flow kinetic measurements. This is achieved using multiple, minimalistic, low-affinity binding motifs that are in rapid exchange when engaging with the NTR, allowing the FG-Nup to maintain an unexpectedly high plasticity in its bound state. We propose that these exceptional physical characteristics enable a rapid and specific transport mechanism in the physiological context, a notion supported by single molecule in-cell assays on intact NPCs.


Assuntos
Transporte Ativo do Núcleo Celular , Complexo de Proteínas Formadoras de Poros Nucleares/química , Proteínas Nucleares/química , Cristalografia por Raios X , Transferência Ressonante de Energia de Fluorescência , Humanos , Carioferinas/química , Carioferinas/metabolismo , Modelos Moleculares , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae
13.
Cell ; 163(3): 583-93, 2015 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-26496605

RESUMO

LINE-1 retrotransposons are fast-evolving mobile genetic entities that play roles in gene regulation, pathological conditions, and evolution. Here, we show that the primate LINE-1 5'UTR contains a primate-specific open reading frame (ORF) in the antisense orientation that we named ORF0. The gene product of this ORF localizes to promyelocytic leukemia-adjacent nuclear bodies. ORF0 is present in more than 3,000 loci across human and chimpanzee genomes and has a promoter and a conserved strong Kozak sequence that supports translation. By virtue of containing two splice donor sites, ORF0 can also form fusion proteins with proximal exons. ORF0 transcripts are readily detected in induced pluripotent stem (iPS) cells from both primate species. Capped and polyadenylated ORF0 mRNAs are present in the cytoplasm, and endogenous ORF0 peptides are identified upon proteomic analysis. Finally, ORF0 enhances LINE-1 mobility. Taken together, these results suggest a role for ORF0 in retrotransposon-mediated diversity.


Assuntos
Pan troglodytes/genética , Retroelementos , Regiões 5' não Traduzidas , Sequência de Aminoácidos , Animais , Sequência de Bases , Citoplasma/genética , Humanos , Elementos Nucleotídeos Longos e Dispersos , Dados de Sequência Molecular , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Fases de Leitura Aberta , Processamento Pós-Transcricional do RNA , RNA Antissenso/genética , RNA Mensageiro/química , RNA Mensageiro/genética , Ribossomos/metabolismo , Alinhamento de Sequência
14.
Cell ; 162(5): 1029-38, 2015 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-26317469

RESUMO

The exosome regulates the processing, degradation, and surveillance of a plethora of RNA species. However, little is known about how the exosome recognizes and is recruited to its diverse substrates. We report the identification of adaptor proteins that recruit the exosome-associated helicase, Mtr4, to unique RNA substrates. Nop53, the yeast homolog of the tumor suppressor PICT1, targets Mtr4 to pre-ribosomal particles for exosome-mediated processing, while a second adaptor Utp18 recruits Mtr4 to cleaved rRNA fragments destined for degradation by the exosome. Both Nop53 and Utp18 contain the same consensus motif, through which they dock to the "arch" domain of Mtr4 and target it to specific substrates. These findings show that the exosome employs a general mechanism of recruitment to defined substrates and that this process is regulated through adaptor proteins.


Assuntos
RNA Helicases DEAD-box/metabolismo , Exossomos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Ribossômicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Animais , Ascomicetos/química , Ascomicetos/classificação , Ascomicetos/genética , RNA Helicases DEAD-box/química , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Nucleares/química , Conformação de Ácido Nucleico , RNA Fúngico/química , RNA Fúngico/metabolismo , RNA Ribossômico/química , RNA Ribossômico/metabolismo , Proteínas Ribossômicas/química , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Alinhamento de Sequência
15.
Cell ; 163(7): 1692-701, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26687357

RESUMO

Vesicular nucleo-cytoplasmic transport is becoming recognized as a general cellular mechanism for translocation of large cargoes across the nuclear envelope. Cargo is recruited, enveloped at the inner nuclear membrane (INM), and delivered by membrane fusion at the outer nuclear membrane. To understand the structural underpinning for this trafficking, we investigated nuclear egress of progeny herpesvirus capsids where capsid envelopment is mediated by two viral proteins, forming the nuclear egress complex (NEC). Using a multi-modal imaging approach, we visualized the NEC in situ forming coated vesicles of defined size. Cellular electron cryo-tomography revealed a protein layer showing two distinct hexagonal lattices at its membrane-proximal and membrane-distant faces, respectively. NEC coat architecture was determined by combining this information with integrative modeling using small-angle X-ray scattering data. The molecular arrangement of the NEC establishes the basic mechanism for budding and scission of tailored vesicles at the INM.


Assuntos
Transporte Ativo do Núcleo Celular , Capsídeo/metabolismo , Membrana Nuclear/metabolismo , Membrana Nuclear/ultraestrutura , Vesículas Transportadoras/ultraestrutura , Animais , Capsídeo/ultraestrutura , Chlorocebus aethiops , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Herpesvirus Humano 1/metabolismo , Herpesvirus Suídeo 1/metabolismo , Membrana Nuclear/química , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Dímeros de Pirimidina , Espalhamento a Baixo Ângulo , Vesículas Transportadoras/metabolismo , Células Vero , Proteínas Virais/química , Proteínas Virais/metabolismo
16.
Cell ; 163(5): 1252-1266, 2015 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-26548954

RESUMO

In meiosis, telomeres attach to the inner nuclear membrane (INM) and drive the chromosome movement required for homolog pairing and recombination. Here, we address the question of how telomeres are structurally adapted for the meiotic task. We identify a multi-subunit meiotic telomere-complex, TERB1/2-MAJIN, which takes over telomeric DNA from the shelterin complex in mouse germ cells. TERB1/2-MAJIN initially assembles on the INM sequestered by its putative transmembrane subunit MAJIN. In early meiosis, telomere attachment is achieved by the formation of a chimeric complex of TERB1/2-MAJIN and shelterin. The chimeric complex matures during prophase into DNA-bound TERB1/2-MAJIN by releasing shelterin, forming a direct link between telomeric DNA and the INM. These hierarchical processes, termed "telomere cap exchange," are regulated by CDK-dependent phosphorylation and the DNA-binding activity of MAJIN. Further, we uncover a positive feedback between telomere attachment and chromosome movement, revealing a comprehensive regulatory network underlying meiosis-specific telomere function in mammals.


Assuntos
Proteínas de Membrana/metabolismo , Membrana Nuclear/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Telômero/metabolismo , Sequência de Aminoácidos , Animais , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Humanos , Masculino , Meiose , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/genética , Dados de Sequência Molecular , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Alinhamento de Sequência , Proteínas de Ligação a Telômeros/química , Proteínas de Ligação a Telômeros/genética , Testículo/metabolismo
17.
Nature ; 629(8010): 219-227, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38570683

RESUMO

The Integrator complex can terminate RNA polymerase II (Pol II) in the promoter-proximal region of genes. Previous work has shed light on how Integrator binds to the paused elongation complex consisting of Pol II, the DRB sensitivity-inducing factor (DSIF) and the negative elongation factor (NELF) and how it cleaves the nascent RNA transcript1, but has not explained how Integrator removes Pol II from the DNA template. Here we present three cryo-electron microscopy structures of the complete Integrator-PP2A complex in different functional states. The structure of the pre-termination complex reveals a previously unresolved, scorpion-tail-shaped INTS10-INTS13-INTS14-INTS15 module that may use its 'sting' to open the DSIF DNA clamp and facilitate termination. The structure of the post-termination complex shows that the previously unresolved subunit INTS3 and associated sensor of single-stranded DNA complex (SOSS) factors prevent Pol II rebinding to Integrator after termination. The structure of the free Integrator-PP2A complex in an inactive closed conformation2 reveals that INTS6 blocks the PP2A phosphatase active site. These results lead to a model for how Integrator terminates Pol II transcription in three steps that involve major rearrangements.


Assuntos
Microscopia Crioeletrônica , Modelos Moleculares , Proteína Fosfatase 2 , RNA Polimerase II , RNA Polimerase II/metabolismo , RNA Polimerase II/química , RNA Polimerase II/ultraestrutura , Proteína Fosfatase 2/metabolismo , Proteína Fosfatase 2/química , Proteína Fosfatase 2/ultraestrutura , Terminação da Transcrição Genética , Humanos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/química , Ligação Proteica , Fatores de Elongação da Transcrição/metabolismo , Fatores de Elongação da Transcrição/química , Proteínas Nucleares/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/ultraestrutura , Subunidades Proteicas/metabolismo , Subunidades Proteicas/química
18.
Nature ; 631(8021): 663-669, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38961290

RESUMO

The Warburg effect is a hallmark of cancer that refers to the preference of cancer cells to metabolize glucose anaerobically rather than aerobically1,2. This results in substantial accumulation of lacate, the end product of anaerobic glycolysis, in cancer cells3. However, how cancer metabolism affects chemotherapy response and DNA repair in general remains incompletely understood. Here we report that lactate-driven lactylation of NBS1 promotes homologous recombination (HR)-mediated DNA repair. Lactylation of NBS1 at lysine 388 (K388) is essential for MRE11-RAD50-NBS1 (MRN) complex formation and the accumulation of HR repair proteins at the sites of DNA double-strand breaks. Furthermore, we identify TIP60 as the NBS1 lysine lactyltransferase and the 'writer' of NBS1 K388 lactylation, and HDAC3 as the NBS1 de-lactylase. High levels of NBS1 K388 lactylation predict poor patient outcome of neoadjuvant chemotherapy, and lactate reduction using either genetic depletion of lactate dehydrogenase A (LDHA) or stiripentol, a lactate dehydrogenase A inhibitor used clinically for anti-epileptic treatment, inhibited NBS1 K388 lactylation, decreased DNA repair efficacy and overcame resistance to chemotherapy. In summary, our work identifies NBS1 lactylation as a critical mechanism for genome stability that contributes to chemotherapy resistance and identifies inhibition of lactate production as a promising therapeutic cancer strategy.


Assuntos
Proteínas de Ciclo Celular , Resistencia a Medicamentos Antineoplásicos , Ácido Láctico , Proteínas Nucleares , Reparo de DNA por Recombinação , Animais , Feminino , Humanos , Masculino , Camundongos , Hidrolases Anidrido Ácido/metabolismo , Anaerobiose , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Instabilidade Genômica , Ácido Láctico/metabolismo , Lisina/química , Lisina/metabolismo , Lisina Acetiltransferase 5/metabolismo , Lisina Acetiltransferase 5/genética , Proteína Homóloga a MRE11/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/genética , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Organoides , Glicólise , Terapia Neoadjuvante , L-Lactato Desidrogenase/antagonistas & inibidores , L-Lactato Desidrogenase/deficiência , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Anticonvulsivantes/farmacologia
19.
Cell ; 159(3): 558-71, 2014 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-25417107

RESUMO

The recognition of modified histones by "reader" proteins constitutes a key mechanism regulating gene expression in the chromatin context. Compared with the great variety of readers for histone methylation, few protein modules that recognize histone acetylation are known. Here, we show that the AF9 YEATS domain binds strongly to histone H3K9 acetylation and, to a lesser extent, H3K27 and H3K18 acetylation. Crystal structural studies revealed that AF9 YEATS adopts an eight-stranded immunoglobin fold and utilizes a serine-lined aromatic "sandwiching" cage for acetyllysine readout, representing a novel recognition mechanism that is distinct from that of known acetyllysine readers. ChIP-seq experiments revealed a strong colocalization of AF9 and H3K9 acetylation genome-wide, which is important for the chromatin recruitment of the H3K79 methyltransferase DOT1L. Together, our studies identified the evolutionarily conserved YEATS domain as a novel acetyllysine-binding module and established a direct link between histone acetylation and DOT1L-mediated H3K79 methylation in transcription control.


Assuntos
Código das Histonas , Metiltransferases/química , Metiltransferases/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Acetilação , Sequência de Aminoácidos , Regulação da Expressão Gênica , Histona Acetiltransferases/química , Histona Acetiltransferases/metabolismo , Histona-Lisina N-Metiltransferase , Histonas/metabolismo , Humanos , Metilação , Modelos Moleculares , Dados de Sequência Molecular , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Transcrição Gênica
20.
Mol Cell ; 81(6): 1231-1245.e8, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33503405

RESUMO

ATR checkpoint signaling is crucial for cellular responses to DNA replication impediments. Using an optogenetic platform, we show that TopBP1, the main activator of ATR, self-assembles extensively to yield micrometer-sized condensates. These opto-TopBP1 condensates are functional entities organized in tightly packed clusters of spherical nano-particles. TopBP1 condensates are reversible, occasionally fuse, and co-localize with TopBP1 partner proteins. We provide evidence that TopBP1 condensation is a molecular switch that amplifies ATR activity to phosphorylate checkpoint kinase 1 (Chk1) and slow down replication forks. Single amino acid substitutions of key residues in the intrinsically disordered ATR activation domain disrupt TopBP1 condensation and consequently ATR/Chk1 signaling. In physiologic salt concentration and pH, purified TopBP1 undergoes liquid-liquid phase separation in vitro. We propose that the actuation mechanism of ATR signaling is the assembly of TopBP1 condensates driven by highly regulated multivalent and cooperative interactions.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Transporte , Núcleo Celular , Proteínas de Ligação a DNA , Mutação de Sentido Incorreto , Proteínas Nucleares , Transdução de Sinais , Substituição de Aminoácidos , Animais , Proteínas Mutadas de Ataxia Telangiectasia/química , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Núcleo Celular/química , Núcleo Celular/genética , Núcleo Celular/metabolismo , Quinase 1 do Ponto de Checagem/química , Quinase 1 do Ponto de Checagem/genética , Quinase 1 do Ponto de Checagem/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células HeLa , Humanos , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Células Sf9 , Spodoptera
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA