Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 617(7959): 194-199, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37100907

RESUMO

Circadian rhythms influence many behaviours and diseases1,2. They arise from oscillations in gene expression caused by repressor proteins that directly inhibit transcription of their own genes. The fly circadian clock offers a valuable model for studying these processes, wherein Timeless (Tim) plays a critical role in mediating nuclear entry of the transcriptional repressor Period (Per) and the photoreceptor Cryptochrome (Cry) entrains the clock by triggering Tim degradation in light2,3. Here, through cryogenic electron microscopy of the Cry-Tim complex, we show how a light-sensing cryptochrome recognizes its target. Cry engages a continuous core of amino-terminal Tim armadillo repeats, resembling how photolyases recognize damaged DNA, and binds a C-terminal Tim helix, reminiscent of the interactions between light-insensitive cryptochromes and their partners in mammals. The structure highlights how the Cry flavin cofactor undergoes conformational changes that couple to large-scale rearrangements at the molecular interface, and how a phosphorylated segment in Tim may impact clock period by regulating the binding of Importin-α and the nuclear import of Tim-Per4,5. Moreover, the structure reveals that the N terminus of Tim inserts into the restructured Cry pocket to replace the autoinhibitory C-terminal tail released by light, thereby providing a possible explanation for how the long-short Tim polymorphism adapts flies to different climates6,7.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Criptocromos , Proteínas de Drosophila , Drosophila melanogaster , Animais , Relógios Circadianos/fisiologia , Relógios Circadianos/efeitos da radiação , Ritmo Circadiano/fisiologia , Ritmo Circadiano/efeitos da radiação , Criptocromos/química , Criptocromos/metabolismo , Criptocromos/ultraestrutura , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/efeitos da radiação , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/ultraestrutura , Luz , Mamíferos/metabolismo , Microscopia Crioeletrônica , Transporte Ativo do Núcleo Celular/efeitos da radiação , alfa Carioferinas/metabolismo
2.
Nature ; 607(7918): 399-406, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35768513

RESUMO

Small interfering RNAs (siRNAs) are the key components for RNA interference (RNAi), a conserved RNA-silencing mechanism in many eukaryotes1,2. In Drosophila, an RNase III enzyme Dicer-2 (Dcr-2), aided by its cofactor Loquacious-PD (Loqs-PD), has an important role in generating 21 bp siRNA duplexes from long double-stranded RNAs (dsRNAs)3,4. ATP hydrolysis by the helicase domain of Dcr-2 is critical to the successful processing of a long dsRNA into consecutive siRNA duplexes5,6. Here we report the cryo-electron microscopy structures of Dcr-2-Loqs-PD in the apo state and in multiple states in which it is processing a 50 bp dsRNA substrate. The structures elucidated interactions between Dcr-2 and Loqs-PD, and substantial conformational changes of Dcr-2 during a dsRNA-processing cycle. The N-terminal helicase and domain of unknown function 283 (DUF283) domains undergo conformational changes after initial dsRNA binding, forming an ATP-binding pocket and a 5'-phosphate-binding pocket. The overall conformation of Dcr-2-Loqs-PD is relatively rigid during translocating along the dsRNA in the presence of ATP, whereas the interactions between the DUF283 and RIIIDb domains prevent non-specific cleavage during translocation by blocking the access of dsRNA to the RNase active centre. Additional ATP-dependent conformational changes are required to form an active dicing state and precisely cleave the dsRNA into a 21 bp siRNA duplex as confirmed by the structure in the post-dicing state. Collectively, this study revealed the molecular mechanism for the full cycle of ATP-dependent dsRNA processing by Dcr-2-Loqs-PD.


Assuntos
Microscopia Crioeletrônica , Proteínas de Drosophila , Drosophila melanogaster , RNA Helicases , RNA de Cadeia Dupla , RNA Interferente Pequeno , Proteínas de Ligação a RNA , Ribonuclease III , Trifosfato de Adenosina , Animais , Sítios de Ligação , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/ultraestrutura , Fosfatos/metabolismo , Conformação Proteica , RNA Helicases/química , RNA Helicases/metabolismo , RNA Helicases/ultraestrutura , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/metabolismo , RNA de Cadeia Dupla/ultraestrutura , RNA Interferente Pequeno/química , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/ultraestrutura , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/ultraestrutura , Ribonuclease III/química , Ribonuclease III/metabolismo , Ribonuclease III/ultraestrutura
3.
Nature ; 607(7918): 393-398, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35768503

RESUMO

In flies, Argonaute2 (Ago2) and small interfering RNA (siRNA) form an RNA-induced silencing complex to repress viral transcripts1. The RNase III enzyme Dicer-2 associates with its partner protein R2D2 and cleaves long double-stranded RNAs to produce 21-nucleotide siRNA duplexes, which are then loaded into Ago2 in a defined orientation2-5. Here we report cryo-electron microscopy structures of the Dicer-2-R2D2 and Dicer-2-R2D2-siRNA complexes. R2D2 interacts with the helicase domain and the central linker of Dicer-2 to inhibit the promiscuous processing of microRNA precursors by Dicer-2. Notably, our structure represents the strand-selection state in the siRNA-loading process, and reveals that R2D2 asymmetrically recognizes the end of the siRNA duplex with the higher base-pairing stability, and the other end is exposed to the solvent and is accessible by Ago2. Our findings explain how R2D2 senses the thermodynamic asymmetry of the siRNA and facilitates the siRNA loading into Ago2 in a defined orientation, thereby determining which strand of the siRNA duplex is used by Ago2 as the guide strand for target silencing.


Assuntos
Microscopia Crioeletrônica , Proteínas de Drosophila , RNA Helicases , RNA de Cadeia Dupla , RNA Interferente Pequeno , Proteínas de Ligação a RNA , Ribonuclease III , Animais , Proteínas Argonautas/metabolismo , Pareamento de Bases , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/ultraestrutura , Drosophila melanogaster/química , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , MicroRNAs/metabolismo , Multimerização Proteica , RNA Helicases/química , RNA Helicases/metabolismo , RNA Helicases/ultraestrutura , Interferência de RNA , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/metabolismo , RNA de Cadeia Dupla/ultraestrutura , RNA Interferente Pequeno/química , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/ultraestrutura , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/ultraestrutura , Complexo de Inativação Induzido por RNA/metabolismo , Ribonuclease III/química , Ribonuclease III/metabolismo , Ribonuclease III/ultraestrutura
4.
Proc Natl Acad Sci U S A ; 120(22): e2301725120, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37216550

RESUMO

Understanding of the evolution of metazoans from their unicellular ancestors is a fundamental question in biology. In contrast to fungi which utilize the Mon1-Ccz1 dimeric complex to activate the small GTPase RAB7A, metazoans rely on the Mon1-Ccz1-RMC1 trimeric complex. Here, we report a near-atomic resolution cryogenic-electron microscopy structure of the Drosophila Mon1-Ccz1-RMC1 complex. RMC1 acts as a scaffolding subunit and binds to both Mon1 and Ccz1 on the surface opposite to the RAB7A-binding site, with many of the RMC1-contacting residues from Mon1 and Ccz1 unique to metazoans, explaining the binding specificity. Significantly, the assembly of RMC1 with Mon1-Ccz1 is required for cellular RAB7A activation, autophagic functions and organismal development in zebrafish. Our studies offer a molecular explanation for the different degree of subunit conservation across species, and provide an excellent example of how metazoan-specific proteins take over existing functions in unicellular organisms.


Assuntos
Proteínas de Drosophila , Proteínas rab de Ligação ao GTP , Animais , Microscopia Crioeletrônica , Proteínas rab de Ligação ao GTP/metabolismo , Peixe-Zebra/metabolismo , Drosophila , Proteínas de Drosophila/ultraestrutura
5.
EMBO J ; 40(12): e107608, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34018214

RESUMO

The TRAPP complexes are nucleotide exchange factors that play essential roles in membrane traffic and autophagy. TRAPPII activates Rab11, and TRAPPIII activates Rab1, with the two complexes sharing a core of small subunits that affect nucleotide exchange but being distinguished by specific large subunits that are essential for activity in vivo. Crystal structures of core subunits have revealed the mechanism of Rab activation, but how the core and the large subunits assemble to form the complexes is unknown. We report a cryo-EM structure of the entire Drosophila TRAPPIII complex. The TRAPPIII-specific subunits TRAPPC8 and TRAPPC11 hold the catalytic core like a pair of tongs, with TRAPPC12 and TRAPPC13 positioned at the joint between them. TRAPPC2 and TRAPPC2L link the core to the two large arms, with the interfaces containing residues affected by disease-causing mutations. The TRAPPC8 arm is positioned such that it would contact Rab1 that is bound to the core, indicating how the arm could determine the specificity of the complex. A lower resolution structure of TRAPPII shows a similar architecture and suggests that the TRAPP complexes evolved from a single ur-TRAPP.


Assuntos
Proteínas de Drosophila/química , Proteínas de Transporte Vesicular/química , Proteínas rab1 de Ligação ao GTP/química , Microscopia Crioeletrônica , Proteínas de Drosophila/ultraestrutura , Fatores de Troca do Nucleotídeo Guanina/química , Guanosina Difosfato/química , Guanosina Trifosfato/química , Conformação Proteica , Proteínas de Transporte Vesicular/ultraestrutura , Proteínas rab1 de Ligação ao GTP/ultraestrutura
6.
Genes Dev ; 31(17): 1784-1794, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28982761

RESUMO

Morphogen gradients direct the spatial patterning of developing embryos; however, the mechanisms by which these gradients are interpreted remain elusive. Here we used lattice light-sheet microscopy to perform in vivo single-molecule imaging in early Drosophila melanogaster embryos of the transcription factor Bicoid that forms a gradient and initiates patterning along the anteroposterior axis. In contrast to canonical models, we observed that Bicoid binds to DNA with a rapid off rate throughout the embryo such that its average occupancy at target loci is on-rate-dependent. We further observed Bicoid forming transient "hubs" of locally high density that facilitate binding as factor levels drop, including in the posterior, where we observed Bicoid binding despite vanishingly low protein levels. We propose that localized modulation of transcription factor on rates via clustering provides a general mechanism to facilitate binding to low-affinity targets and that this may be a prevalent feature of other developmental transcription factors.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Proteínas de Homeodomínio/metabolismo , Transativadores/metabolismo , Animais , Padronização Corporal/fisiologia , Cromatina/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/ultraestrutura , Drosophila melanogaster/metabolismo , Embrião não Mamífero , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/ultraestrutura , Proteínas Nucleares , Ligação Proteica , Imagem Individual de Molécula , Transativadores/química , Transativadores/ultraestrutura , Fatores de Transcrição/metabolismo
7.
PLoS Genet ; 17(4): e1009500, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33798193

RESUMO

Localization of oskar mRNA includes two distinct phases: transport from nurse cells to the oocyte, a process typically accompanied by cortical anchoring in the oocyte, followed by posterior localization within the oocyte. Signals within the oskar 3' UTR directing transport are individually weak, a feature previously hypothesized to facilitate exchange between the different localization machineries. We show that alteration of the SL2a stem-loop structure containing the oskar transport and anchoring signal (TAS) removes an inhibitory effect such that in vitro binding by the RNA transport factor, Egalitarian, is elevated as is in vivo transport from the nurse cells into the oocyte. Cortical anchoring within the oocyte is also enhanced, interfering with posterior localization. We also show that mutation of Staufen recognized structures (SRSs), predicted binding sites for Staufen, disrupts posterior localization of oskar mRNA just as in staufen mutants. Two SRSs in SL2a, one overlapping the Egalitarian binding site, are inferred to mediate Staufen-dependent inhibition of TAS anchoring activity, thereby promoting posterior localization. The other three SRSs in the oskar 3' UTR are also required for posterior localization, including two located distant from any known transport signal. Staufen, thus, plays multiple roles in localization of oskar mRNA.


Assuntos
Proteínas de Drosophila/genética , Oócitos/crescimento & desenvolvimento , Proteínas de Ligação a RNA/genética , Animais , Proteínas de Drosophila/ultraestrutura , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Sequências Repetidas Invertidas/genética , Mutação/genética , Proteínas de Ligação a RNA/ultraestrutura
8.
Nature ; 547(7661): 118-122, 2017 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-28658211

RESUMO

Mechanosensory transduction for senses such as proprioception, touch, balance, acceleration, hearing and pain relies on mechanotransduction channels, which convert mechanical stimuli into electrical signals in specialized sensory cells. How force gates mechanotransduction channels is a central question in the field, for which there are two major models. One is the membrane-tension model: force applied to the membrane generates a change in membrane tension that is sufficient to gate the channel, as in the bacterial MscL channel and certain eukaryotic potassium channels. The other is the tether model: force is transmitted via a tether to gate the channel. The transient receptor potential (TRP) channel NOMPC is important for mechanosensation-related behaviours such as locomotion, touch and sound sensation across different species including Caenorhabditis elegans, Drosophila and zebrafish. NOMPC is the founding member of the TRPN subfamily, and is thought to be gated by tethering of its ankyrin repeat domain to microtubules of the cytoskeleton. Thus, a goal of studying NOMPC is to reveal the underlying mechanism of force-induced gating, which could serve as a paradigm of the tether model. NOMPC fulfils all the criteria that apply to mechanotransduction channels and has 29 ankyrin repeats, the largest number among TRP channels. A key question is how the long ankyrin repeat domain is organized as a tether that can trigger channel gating. Here we present a de novo atomic structure of Drosophila NOMPC determined by single-particle electron cryo-microscopy. Structural analysis suggests that the ankyrin repeat domain of NOMPC resembles a helical spring, suggesting its role of linking mechanical displacement of the cytoskeleton to the opening of the channel. The NOMPC architecture underscores the basis of translating mechanical force into an electrical signal within a cell.


Assuntos
Microscopia Crioeletrônica , Proteínas de Drosophila/ultraestrutura , Canais de Potencial de Receptor Transitório/ultraestrutura , Animais , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Lipídeos , Mecanotransdução Celular , Modelos Moleculares , Movimento , Domínios Proteicos , Canais de Potencial de Receptor Transitório/química , Canais de Potencial de Receptor Transitório/metabolismo
9.
Nucleic Acids Res ; 49(15): 8866-8885, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34329466

RESUMO

A key regulatory process during Drosophila development is the localized suppression of the hunchback mRNA translation at the posterior, which gives rise to a hunchback gradient governing the formation of the anterior-posterior body axis. This suppression is achieved by a concerted action of Brain Tumour (Brat), Pumilio (Pum) and Nanos. Each protein is necessary for proper Drosophila development. The RNA contacts have been elucidated for the proteins individually in several atomic-resolution structures. However, the interplay of all three proteins during RNA suppression remains a long-standing open question. Here, we characterize the quaternary complex of the RNA-binding domains of Brat, Pum and Nanos with hunchback mRNA by combining NMR spectroscopy, SANS/SAXS, XL/MS with MD simulations and ITC assays. The quaternary hunchback mRNA suppression complex comprising the RNA binding domains is flexible with unoccupied nucleotides functioning as a flexible linker between the Brat and Pum-Nanos moieties of the complex. Moreover, the presence of the Pum-HD/Nanos-ZnF complex has no effect on the equilibrium RNA binding affinity of the Brat RNA binding domain. This is in accordance with previous studies, which showed that Brat can suppress mRNA independently and is distributed uniformly throughout the embryo.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Desenvolvimento Embrionário/genética , Proteínas de Ligação a RNA/genética , Fatores de Transcrição/genética , Animais , Padronização Corporal/genética , Proteínas de Ligação a DNA/ultraestrutura , Proteínas de Drosophila/ultraestrutura , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Complexos Multiproteicos/genética , Complexos Multiproteicos/ultraestrutura , Ressonância Magnética Nuclear Biomolecular , Estrutura Quaternária de Proteína , Proteínas com Motivo de Reconhecimento de RNA/genética , Proteínas com Motivo de Reconhecimento de RNA/ultraestrutura , Proteínas de Ligação a RNA/ultraestrutura , Espalhamento a Baixo Ângulo , Fatores de Transcrição/ultraestrutura , Difração de Raios X
10.
J Biol Chem ; 294(38): 14119-14134, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31366733

RESUMO

The successful assembly and regulation of the kinetochore are critical for the equal and accurate segregation of genetic material during the cell cycle. CENP-C (centromere protein C), a conserved inner kinetochore component, has been broadly characterized as a scaffolding protein and is required for the recruitment of multiple kinetochore proteins to the centromere. At its C terminus, CENP-C harbors a conserved cupin domain that has an established role in protein dimerization. Although the crystal structure of the Saccharomyces cerevisiae Mif2CENP-C cupin domain has been determined, centromeric organization and kinetochore composition vary greatly between S. cerevisiae (point centromere) and other eukaryotes (regional centromere). Therefore, whether the structural and functional role of the cupin domain is conserved throughout evolution requires investigation. Here, we report the crystal structures of the Schizosaccharomyces pombe and Drosophila melanogaster CENP-C cupin domains at 2.52 and 1.81 Å resolutions, respectively. Although the central jelly roll architecture is conserved among the three determined CENP-C cupin domain structures, the cupin domains from organisms with regional centromeres contain additional structural features that aid in dimerization. Moreover, we found that the S. pombe Cnp3CENP-C jelly roll fold harbors an inner binding pocket that is used to recruit the meiosis-specific protein Moa1. In summary, our results unveil the evolutionarily conserved and unique features of the CENP-C cupin domain and uncover the mechanism by which it functions as a recruitment factor.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/ultraestrutura , Animais , Proteínas de Ciclo Celular/metabolismo , Centrômero/metabolismo , Proteína Centromérica A/metabolismo , Cristalografia por Raios X/métodos , Proteínas de Ligação a DNA/metabolismo , Dimerização , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/ultraestrutura , Drosophila melanogaster/metabolismo , Histonas/metabolismo , Cinetocoros/metabolismo , Cinetocoros/ultraestrutura , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo
11.
Nucleic Acids Res ; 45(6): 3068-3085, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-27940556

RESUMO

Drosophila telomeres are sequence-independent structures maintained by transposition to chromosome ends of three specialized retroelements rather than by telomerase activity. Fly telomeres are protected by the terminin complex that includes the HOAP, HipHop, Moi and Ver proteins. These are fast evolving, non-conserved proteins that localize and function exclusively at telomeres, protecting them from fusion events. We have previously suggested that terminin is the functional analogue of shelterin, the multi-protein complex that protects human telomeres. Here, we use electrophoretic mobility shift assay (EMSA) and atomic force microscopy (AFM) to show that Ver preferentially binds single-stranded DNA (ssDNA) with no sequence specificity. We also show that Moi and Ver form a complex in vivo. Although these two proteins are mutually dependent for their localization at telomeres, Moi neither binds ssDNA nor facilitates Ver binding to ssDNA. Consistent with these results, we found that Ver-depleted telomeres form RPA and γH2AX foci, like the human telomeres lacking the ssDNA-binding POT1 protein. Collectively, our findings suggest that Drosophila telomeres possess a ssDNA overhang like the other eukaryotes, and that the terminin complex is architecturally and functionally similar to shelterin.


Assuntos
Dano ao DNA , DNA de Cadeia Simples/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Telômero/metabolismo , Animais , Proteínas Cromossômicas não Histona/fisiologia , Reparo do DNA , DNA de Cadeia Simples/ultraestrutura , Drosophila/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/fisiologia , Proteínas de Drosophila/ultraestrutura , Microscopia de Força Atômica , Domínios Proteicos , Multimerização Proteica , Proteína de Replicação A/metabolismo , Proteínas de Ligação a Telômeros/química , Proteínas de Ligação a Telômeros/ultraestrutura
12.
Biochem Biophys Res Commun ; 491(3): 609-613, 2017 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-28760339

RESUMO

Ran-binding protein 3 (RanBP3) is a primarily nuclear Ran-binding protein that functions as an accessory factor in the Ran GTPase system. RanBP3 associates with Ran-specific nucleotide exchange factor RCC1 and enhances its catalytic activity towards Ran. RanBP3 also promotes CRM1-mediated nuclear export as well as CRM1-independent nuclear export of ß-catenin, Smad2, and Smad3. Nuclear import of RanBP3 is dependent on the nuclear import adaptor protein importin-α and, RanBP3 is imported more efficiently by importin-α3 than by other members of the importin-α family. Protein kinase signaling pathways control nucleocytoplasmic transport through phosphorylation of RanBP3 at Ser58, immediately C-terminal to the nuclear localization signal (NLS) in the N-terminal region of RanBP3. Here we report the crystal structure of human importin-α3 bound to an N-terminal fragment of human RanBP3 containing the NLS sequence that is necessary and sufficient for nuclear import. The structure reveals that RanBP3 binds to importin-α3 residues that are strictly conserved in all seven isoforms of human importin-α at the major NLS-binding site, indicating that the region of importin-α outside the NLS-binding site, possibly the autoinhibotory importin-ß1-binding domain, may be the key determinant for the preferential binding of RanBP3 to importin-α3. Computational docking simulation indicates that phosphorylation of RanBP3 at Ser58 could potentially stabilize the association of RanBP3 with importin-α through interactions between the phosphate moiety of phospho-Ser58 of RanBP3 and a cluster of basic residues (Arg96 and Lys97 in importin-α3) on armadillo repeat 1 of importin-α.


Assuntos
Proteínas de Drosophila/química , Proteínas de Drosophila/ultraestrutura , Modelos Químicos , Simulação de Acoplamento Molecular , Sinais de Localização Nuclear/química , Proteínas Nucleares/química , Proteínas Nucleares/ultraestrutura , Proteínas de Transporte Nucleocitoplasmático/química , Proteínas de Transporte Nucleocitoplasmático/ultraestrutura , alfa Carioferinas/química , alfa Carioferinas/ultraestrutura , Sítios de Ligação , Cristalografia , Ligação Proteica , Conformação Proteica
13.
PLoS Comput Biol ; 12(10): e1005051, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27716844

RESUMO

RASSF enzymes act as key apoptosis activators and tumor suppressors, being downregulated in many human cancers, although their exact regulatory roles remain unknown. A key downstream event in the RASSF pathway is the regulation of MST kinases, which are main effectors of RASSF-induced apoptosis. The regulation of MST1/2 includes both homo- and heterodimerization, mediated by helical SARAH domains, though the underlying molecular interaction mechanism is unclear. Here, we study the interactions between RASSF1A, RASSF5, and MST2 SARAH domains by using both atomistic molecular simulation techniques and experiments. We construct and study models of MST2 homodimers and MST2-RASSF SARAH heterodimers, and we identify the factors that control their high molecular stability. In addition, we also analyze both computationally and experimentally the interactions of MST2 SARAH domains with a series of synthetic peptides particularly designed to bind to it, and hope that our approach can be used to address some of the challenging problems in designing new anti-cancer drugs.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/ultraestrutura , Inibidor de Quinase Dependente de Ciclina p15/química , Inibidor de Quinase Dependente de Ciclina p15/ultraestrutura , Proteínas de Drosophila/química , Proteínas de Drosophila/ultraestrutura , Simulação de Acoplamento Molecular , Sítios de Ligação , Dimerização , Ativação Enzimática , Ligação Proteica , Conformação Proteica , Domínios Proteicos
14.
Methods ; 88: 11-9, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25839410

RESUMO

Structured illumination microscopy (SIM) allows imaging of fluorescently labelled biological samples with a spatial resolution improved by a factor of approximately two compared to traditional optical microscopy techniques. The cost of this resolution improvement is the need to capture a number of raw images of the sample to reconstruct a single SIM image, increasing sample light exposure and limiting the ability of the technique to capture dynamic processes. In this paper we describe image acquisition and reconstruction techniques that allow fast super-resolution imaging within optically thick specimens. By exploiting overlaps between SIM information passbands we are able to generate optically sectioned, super-resolution images from an image sequence acquired in a single focal plane. We consider how single plane super-resolution images may be obtained using 2D and 3D SIM illumination patterns, and compare the resulting images to those obtained using conventional 2D SIM reconstruction methods. By combining a single plane reconstruction algorithm with hardware for high-speed switching between illumination patterns and rapid acquisition of fluorescence images, we demonstrate high speed super-resolution imaging inside biological organisms.


Assuntos
Algoritmos , Aumento da Imagem , Processamento de Imagem Assistida por Computador , Microscopia de Fluorescência/métodos , Animais , Caderinas/ultraestrutura , Drosophila/ultraestrutura , Proteínas de Drosophila/ultraestrutura , Embrião não Mamífero/ultraestrutura , Epiderme/ultraestrutura , Limite de Detecção , Tubulina (Proteína)/ultraestrutura
15.
J Cell Biol ; 178(2): 309-22, 2007 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-17620409

RESUMO

Epidermal growth factor receptor pathway substrate clone 15 (Eps15) is a protein implicated in endocytosis, endosomal protein sorting, and cytoskeletal organization. Its role is, however, still unclear, because of reasons including limitations of dominant-negative experiments and apparent redundancy with other endocytic proteins. We generated Drosophila eps15-null mutants and show that Eps15 is required for proper synaptic bouton development and normal levels of synaptic vesicle (SV) endocytosis. Consistent with a role in SV endocytosis, Eps15 moves from the center of synaptic boutons to the periphery in response to synaptic activity. The endocytic protein, Dap160/intersectin, is a major binding partner of Eps15, and eps15 mutants phenotypically resemble dap160 mutants. Analyses of eps15 dap160 double mutants suggest that Eps15 functions in concert with Dap160 during SV endocytosis. Based on these data, we hypothesize that Eps15 and Dap160 promote the efficiency of endocytosis from the plasma membrane by maintaining high concentrations of multiple endocytic proteins, including dynamin, at synapses.


Assuntos
Proteínas de Drosophila/fisiologia , Proteínas de Membrana/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Sinapses/fisiologia , Vesículas Sinápticas/fisiologia , Proteínas de Transporte Vesicular/fisiologia , Animais , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/ultraestrutura , Endocitose/fisiologia , Imuno-Histoquímica , Larva/crescimento & desenvolvimento , Larva/ultraestrutura , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/ultraestrutura , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/ultraestrutura , Sinapses/ultraestrutura , Vesículas Sinápticas/ultraestrutura , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/ultraestrutura
16.
Nature ; 439(7078): 875-8, 2006 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-16382238

RESUMO

Kinesins are microtubule-based motor proteins that power intracellular transport. Most kinesin motors, exemplified by Kinesin-1, move towards the microtubule plus end, and the structural changes that govern this directional preference have been described. By contrast, the nature and timing of the structural changes underlying the minus-end-directed motility of Kinesin-14 motors (such as Drosophila Ncd) are less well understood. Using cryo-electron microscopy, here we demonstrate that a coiled-coil mechanical element of microtubule-bound Ncd rotates approximately 70 degrees towards the minus end upon ATP binding. Extending or shortening this coiled coil increases or decreases velocity, respectively, without affecting ATPase activity. An unusual Ncd mutant that lacks directional preference shows unstable nucleotide-dependent conformations of its coiled coil, underscoring the role of this mechanical element in motility. These results show that the force-producing conformational change in Ncd occurs on ATP binding, as in other kinesins, but involves the swing of a lever-arm mechanical element similar to that described for myosins.


Assuntos
Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Cinesinas/química , Cinesinas/metabolismo , Rotação , Trifosfato de Adenosina/metabolismo , Animais , Microscopia Crioeletrônica , Proteínas de Drosophila/genética , Proteínas de Drosophila/ultraestrutura , Cinesinas/genética , Cinesinas/ultraestrutura , Microtúbulos/metabolismo , Modelos Biológicos , Modelos Moleculares , Mutação/genética , Conformação Proteica , Relação Estrutura-Atividade
17.
EMBO J ; 26(24): 4956-65, 2007 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-18034162

RESUMO

SAGA/TFTC-type multiprotein complexes play important roles in the regulation of transcription. We have investigated the importance of the nuclear positioning of a gene, its transcription and the consequent export of the nascent mRNA. We show that E(y)2 is a subunit of the SAGA/TFTC-type histone acetyl transferase complex in Drosophila and that E(y)2 concentrates at the nuclear periphery. We demonstrate an interaction between E(y)2 and the nuclear pore complex (NPC) and show that SAGA/TFTC also contacts the NPC at the nuclear periphery. E(y)2 forms also a complex with X-linked male sterile 2 (Xmas-2) to regulate mRNA transport both in normal conditions and after heat shock. Importantly, E(y)2 and Xmas-2 knockdown decreases the contact between the heat-shock protein 70 (hsp70) gene loci and the nuclear envelope before and after activation and interferes with transcription. Thus, E(y)2 and Xmas-2 together with SAGA/TFTC function in the anchoring of a subset of transcription sites to the NPCs to achieve efficient transcription and mRNA export.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Complexos Multiproteicos/metabolismo , Poro Nuclear/metabolismo , Transporte de RNA/fisiologia , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Animais , Linhagem Celular , Núcleo Celular/metabolismo , Cromossomos/metabolismo , Microscopia Crioeletrônica , Proteínas de Drosophila/genética , Proteínas de Drosophila/ultraestrutura , Drosophila melanogaster/genética , Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Imuno-Histoquímica , Masculino , Complexos Multiproteicos/química , Membrana Nuclear/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Interferência de RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/ultraestrutura , Técnicas do Sistema de Duplo-Híbrido
18.
J Cell Biol ; 175(1): 25-31, 2006 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-17015621

RESUMO

Kinesin is a superfamily of motor proteins that uses the energy of adenosine triphosphate hydrolysis to move and generate force along microtubules. A notable exception to this general description is found in the kinesin-13 family that actively depolymerizes microtubules rather than actively moving along them. This depolymerization activity is important in mitosis during chromosome segregation. It is still not fully clear by which mechanism kinesin-13s depolymerize microtubules. To address this issue, we used electron microscopy to investigate the interaction of kinesin-13s with microtubules. Surprisingly, we found that proteins of the kinesin-13 family form rings and spirals around microtubules. This is the first report of this type of oligomeric structure for any kinesin protein. These rings may allow kinesin-13s to stay at the ends of microtubules during depolymerization.


Assuntos
Cinesinas/ultraestrutura , Microtúbulos/ultraestrutura , Trifosfato de Adenosina/metabolismo , Animais , Cricetinae , Drosophila/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/fisiologia , Proteínas de Drosophila/ultraestrutura , Cinesinas/química , Cinesinas/fisiologia , Microtúbulos/química , Microtúbulos/metabolismo , Modelos Moleculares , Conformação Molecular , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/ultraestrutura
19.
Nature ; 433(7024): 382-8, 2005 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-15674283

RESUMO

The actin cytoskeleton is essential for many cellular functions including shape determination, intracellular transport and locomotion. Previous work has identified two factors--the Arp2/3 complex and the formin family of proteins--that nucleate new actin filaments via different mechanisms. Here we show that the Drosophila protein Spire represents a third class of actin nucleation factor. In vitro, Spire nucleates new filaments at a rate that is similar to that of the formin family of proteins but slower than in the activated Arp2/3 complex, and it remains associated with the slow-growing pointed end of the new filament. Spire contains a cluster of four WASP homology 2 (WH2) domains, each of which binds an actin monomer. Maximal nucleation activity requires all four WH2 domains along with an additional actin-binding motif, conserved among Spire proteins. Spire itself is conserved among metazoans and, together with the formin Cappuccino, is required for axis specification in oocytes and embryos, suggesting that multiple actin nucleation factors collaborate to construct essential cytoskeletal structures.


Assuntos
Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Actinas/química , Actinas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas dos Microfilamentos/metabolismo , Actinas/ultraestrutura , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proteínas de Drosophila/química , Proteínas de Drosophila/ultraestrutura , Drosophila melanogaster/citologia , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/ultraestrutura , Dados de Sequência Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína
20.
FEBS J ; 288(9): 2930-2955, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33175445

RESUMO

Activity-regulated cytoskeleton-associated protein (Arc) is a protein interaction hub with diverse roles in intracellular neuronal signaling, and important functions in neuronal synaptic plasticity, memory, and postnatal cortical development. Arc has homology to retroviral Gag protein and is capable of self-assembly into virus-like capsids implicated in the intercellular transfer of RNA. However, the molecular basis of Arc self-association and capsid formation is largely unknown. Here, we identified a 28-amino-acid stretch in the mammalian Arc N-terminal (NT) domain that is necessary and sufficient for self-association. Within this region, we identified a 7-residue oligomerization motif, critical for the formation of virus-like capsids. Purified wild-type Arc formed capsids as shown by transmission and cryo-electron microscopy, whereas mutant Arc with disruption of the oligomerization motif formed homogenous dimers. An atomic-resolution crystal structure of the oligomerization region peptide demonstrated an antiparallel coiled-coil interface, strongly supporting NT-NT domain interactions in Arc oligomerization. The NT coil-coil interaction was also validated in live neurons using fluorescence lifetime FRET imaging, and mutation of the oligomerization motif disrupted Arc-facilitated endocytosis. Furthermore, using single-molecule photobleaching, we show that Arc mRNA greatly enhances higher-order oligomerization in a manner dependent on the oligomerization motif. In conclusion, a helical coil in the Arc NT domain supports self-association above the dimer stage, mRNA-induced oligomerization, and formation of virus-like capsids. DATABASE: The coordinates and structure factors for crystallographic analysis of the oligomerization region were deposited at the Protein Data Bank with the entry code 6YTU.


Assuntos
Motivos de Aminoácidos/genética , Proteínas do Citoesqueleto/ultraestrutura , Proteínas de Drosophila/genética , Proteínas do Tecido Nervoso/ultraestrutura , Neurônios/metabolismo , Conformação Proteica , Animais , Proteínas do Capsídeo/genética , Microscopia Crioeletrônica , Cristalografia por Raios X , Proteínas do Citoesqueleto/genética , Proteínas de Drosophila/ultraestrutura , Humanos , Proteínas do Tecido Nervoso/genética , Plasticidade Neuronal/genética , Domínios Proteicos/genética , RNA/genética , Homologia de Sequência de Aminoácidos , Transdução de Sinais/genética , Vírion/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA