RESUMO
Cells sense elevated temperatures and mount an adaptive heat shock response that involves changes in gene expression, but the underlying mechanisms, particularly on the level of translation, remain unknown. Here we report that, in budding yeast, the essential translation initiation factor Ded1p undergoes heat-induced phase separation into gel-like condensates. Using ribosome profiling and an in vitro translation assay, we reveal that condensate formation inactivates Ded1p and represses translation of housekeeping mRNAs while promoting translation of stress mRNAs. Testing a variant of Ded1p with altered phase behavior as well as Ded1p homologs from diverse species, we demonstrate that Ded1p condensation is adaptive and fine-tuned to the maximum growth temperature of the respective organism. We conclude that Ded1p condensation is an integral part of an extended heat shock response that selectively represses translation of housekeeping mRNAs to promote survival under conditions of severe heat stress.
Assuntos
RNA Helicases DEAD-box/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Biossíntese de Proteínas/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , RNA Helicases DEAD-box/fisiologia , Expressão Gênica/genética , Genes Essenciais/genética , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico/genética , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologiaRESUMO
The development and survival of all organisms depends on equal partitioning of their genomes during cell division. Accurate chromosome segregation requires selective stabilization of kinetochore-microtubule attachments that come under tension due to opposing pulling forces exerted on sister kinetochores by dynamic microtubule tips. Here, we show that the XMAP215 family member, Stu2, makes a major contribution to kinetochore-microtubule coupling. Stu2 and its human ortholog, ch-TOG, exhibit a conserved interaction with the Ndc80 kinetochore complex that strengthens its attachment to microtubule tips. Strikingly, Stu2 can either stabilize or destabilize kinetochore attachments, depending on the level of kinetochore tension and whether the microtubule tip is assembling or disassembling. These dichotomous effects of Stu2 are independent of its previously studied regulation of microtubule dynamics. Altogether, our results demonstrate how a kinetochore-associated factor can confer opposing, tension-dependent effects to selectively stabilize tension-bearing attachments, providing mechanistic insight into the basis for accuracy during chromosome segregation.
Assuntos
Segregação de Cromossomos , Cinetocoros/fisiologia , Proteínas Associadas aos Microtúbulos/fisiologia , Microtúbulos/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Fenômenos Biomecânicos , Humanos , Proteínas Nucleares/fisiologia , Ligação ProteicaRESUMO
For unicellular organisms, the decision to enter the cell cycle can be viewed most fundamentally as a metabolic problem. A cell must assess its nutritional and metabolic status to ensure it can synthesize sufficient biomass to produce a new daughter cell. The cell must then direct the appropriate metabolic outputs to ensure completion of the division process. Herein, we discuss the changes in metabolism that accompany entry to, and exit from, the cell cycle for the unicellular eukaryote Saccharomyces cerevisiae. Studies of budding yeast under continuous, slow-growth conditions have provided insights into the essence of these metabolic changes at unprecedented temporal resolution. Some of these mechanisms by which cell growth and proliferation are coordinated with metabolism are likely to be conserved in multicellular organisms. An improved understanding of the metabolic basis of cell cycle control promises to reveal fundamental principles governing tumorigenesis, metazoan development, niche expansion, and many additional aspects of cell and organismal growth control.
Assuntos
Ciclo Celular , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiologia , Metabolismo Energético , Genes Fúngicos , Redes e Vias Metabólicas , Mitose , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologiaRESUMO
The +1 nucleosome of yeast genes, within which reside transcription start sites, is characterized by histone acetylation, by the displacement of an H2A-H2B dimer, and by a persistent association with the RSC chromatin-remodeling complex. Here we demonstrate the interrelationship of these characteristics and the conversion of a nucleosome to the +1 state in vitro. Contrary to expectation, acetylation performs an inhibitory role, preventing the removal of a nucleosome by RSC. Inhibition is due to both enhanced RSC-histone interaction and diminished histone-chaperone interaction. Acetylation does not prevent all RSC activity, because stably bound RSC removes an H2A-H2B dimer on a timescale of seconds in an irreversible manner.
Assuntos
Montagem e Desmontagem da Cromatina/fisiologia , Proteínas de Ligação a DNA/fisiologia , Histonas/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Fatores de Transcrição/fisiologia , Acetilcoenzima A/metabolismo , Acetilação , Animais , Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , Proteína 1 de Modelagem do Nucleossomo , Nucleossomos/fisiologia , Conformação Proteica , Processamento de Proteína Pós-Traducional , Ratos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismoRESUMO
Spt6 is a conserved factor that controls transcription and chromatin structure across the genome. Although Spt6 is viewed as an elongation factor, spt6 mutations in Saccharomyces cerevisiae allow elevated levels of transcripts from within coding regions, suggesting that Spt6 also controls initiation. To address the requirements for Spt6 in transcription and chromatin structure, we have combined four genome-wide approaches. Our results demonstrate that Spt6 represses transcription initiation at thousands of intragenic promoters. We characterize these intragenic promoters and find sequence features conserved with genic promoters. Finally, we show that Spt6 also regulates transcription initiation at most genic promoters and propose a model of initiation site competition to account for this. Together, our results demonstrate that Spt6 controls the fidelity of transcription initiation throughout the genome.
Assuntos
Chaperonas de Histonas/genética , Chaperonas de Histonas/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiologia , Iniciação da Transcrição Genética/fisiologia , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/fisiologia , Cromatina/fisiologia , Regulação Fúngica da Expressão Gênica/genética , Chaperonas de Histonas/metabolismo , Histonas/fisiologia , Proteínas Nucleares , Nucleossomos , Fatores de Alongamento de Peptídeos/fisiologia , Regiões Promotoras Genéticas/genética , RNA Polimerase II , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/fisiologia , Fatores de Transcrição/fisiologia , Sítio de Iniciação de Transcrição/fisiologia , Transcrição Gênica/genética , Fatores de Elongação da Transcrição/metabolismoRESUMO
During homologous recombination, cells must coordinate repair, DNA damage checkpoint signaling, and movement of chromosomal loci to facilitate homology search. In Saccharomyces cerevisiae, increased movement of damaged loci (local mobility) and undamaged loci (global mobility) precedes homolog pairing in mitotic cells. How cells modulate chromosome mobility in response to DNA damage remains unclear. Here, we demonstrate that global chromosome mobility is regulated by the Rad51 recombinase and its mediator, Rad52. Surprisingly, rad51Δ rad52Δ cells display checkpoint-dependent constitutively increased mobility, indicating that a regulatory circuit exists between recombination and checkpoint machineries to govern chromosomal mobility. We found that the requirement for Rad51 in this circuit is distinct from its role in recombination and that interaction with Rad52 is necessary to alleviate inhibition imposed by mediator recruitment to ssDNA. Thus, interplay between recombination factors and the checkpoint restricts increased mobility until recombination proteins are assembled at damaged sites.
Assuntos
Cromossomos Fúngicos/metabolismo , Dano ao DNA , Recombinação Homóloga , Rad51 Recombinase/fisiologia , Proteína Rad52 de Recombinação e Reparo de DNA/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Mutação , Rad51 Recombinase/genética , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genéticaRESUMO
The transcriptional coactivators Mediator and two histone acetyltransferase (HAT) complexes, NuA4 and SAGA, play global roles in transcriptional activation. Here we explore the relative contributions of these factors to RNA polymerase II association at specific genes and gene classes by rapid nuclear depletion of key complex subunits. We show that the NuA4 HAT Esa1 differentially affects certain groups of genes, whereas the SAGA HAT Gcn5 has a weaker but more uniform effect. Relative dependence on Esa1 and Tra1, a shared component of NuA4 and SAGA, distinguishes two large groups of coregulated growth-promoting genes. In contrast, we show that the activity of Mediator is particularly important at a separate, small set of highly transcribed TATA-box-containing genes. Our analysis indicates that at least three distinct combinations of coactivator deployment are used to generate moderate or high transcription levels and suggests that each may be associated with distinct forms of regulation.
Assuntos
Regulação Fúngica da Expressão Gênica , Histona Acetiltransferases/fisiologia , Complexo Mediador/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/genética , Ativação Transcricional , Acetilação , Histonas/metabolismo , Complexo Mediador/metabolismo , Estresse Oxidativo/genética , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína de Ligação a TATA-Box/metabolismo , Transcrição GênicaRESUMO
The mitochondrial cytoplasmic surface serves as a processing site for numerous RNAs from budding yeast to metazoans. We report that budding yeast mitochondrial outer membrane (MOM) proteins that are subunits of the translocase of the outer mitochondrial membrane (Tom70 and Tom 22) and sorting and assembly machinery (Sam37) are required for efficient pretransfer RNA (pre-tRNA) splicing. Defective pre-tRNA splicing in MOM mutants is due not to loss of respiratory metabolism but instead inefficient targeting/tethering of tRNA splicing endonuclease (SEN) subunits to mitochondria. Schizosaccharomyces pombe SEN subunits also localize to mitochondria, and Tom70 is required for this localization and pre-tRNA splicing. Thus, the role of MOM protein in targeting/tethering SEN subunits to mitochondria has been conserved for >500 million years.
Assuntos
Endorribonucleases/metabolismo , Proteínas de Membrana/fisiologia , Proteínas de Transporte da Membrana Mitocondrial/fisiologia , Splicing de RNA , RNA de Transferência/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Respiração Celular , Proteínas de Membrana/genética , Mitocôndrias/enzimologia , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Mutação , Subunidades Proteicas/metabolismo , Transporte de RNA , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Schizosaccharomyces/enzimologia , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/fisiologiaRESUMO
Srs2 is a superfamily 1 (SF1) helicase that participates in several pathways necessary for the repair of damaged DNA. Srs2 regulates formation of early homologous recombination (HR) intermediates by actively removing the recombinase Rad51 from single-stranded DNA (ssDNA). It is not known whether and how Srs2 itself is down-regulated to allow for timely HR progression. Rad54 and Rdh54 are two closely related superfamily 2 (SF2) motor proteins that promote the formation of Rad51-dependent recombination intermediates. Rad54 and Rdh54 bind tightly to Rad51-ssDNA and act downstream of Srs2, suggesting that they may affect the ability of Srs2 to dismantle Rad51 filaments. Here, we used DNA curtains to determine whether Rad54 and Rdh54 alter the ability of Srs2 to disrupt Rad51 filaments. We show that Rad54 and Rdh54 act synergistically to greatly restrict the antirecombinase activity of Srs2. Our findings suggest that Srs2 may be accorded only a limited time window to act and that Rad54 and Rdh54 fulfill a role of prorecombinogenic licensing factors.
Assuntos
DNA Helicases/metabolismo , Enzimas Reparadoras do DNA/metabolismo , DNA Topoisomerases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/metabolismo , Dano ao DNA/fisiologia , DNA Helicases/fisiologia , Reparo do DNA/genética , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/fisiologia , DNA Topoisomerases/fisiologia , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Recombinação Homóloga/genética , Ligação Proteica/genética , Rad51 Recombinase/metabolismo , Rad51 Recombinase/fisiologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiologiaRESUMO
Repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) requires that the 5'-terminated DNA strands are resected to generate single-stranded DNA overhangs. This process is initiated by a short-range resection catalyzed by the MRX (Mre11-Rad50-Xrs2) complex, which is followed by a long-range step involving the nucleases Exo1 and Dna2. Here we show that the Saccharomyces cerevisiae ATP-dependent chromatin-remodeling protein Chd1 participates in both short- and long-range resection by promoting MRX and Exo1 association with the DSB ends. Furthermore, Chd1 reduces histone occupancy near the DSB ends and promotes DSB repair by HR. All these functions require Chd1 ATPase activity, supporting a role for Chd1 in the opening of chromatin at the DSB site to facilitate MRX and Exo1 processing activities.
Assuntos
Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/fisiologia , Exodesoxirribonucleases/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/genética , Genes Fúngicos , Histonas/isolamento & purificaçãoRESUMO
Macroautophagy/autophagy is a highly conserved eukaryotic molecular process that facilitates the recycling of superfluous cytoplasmic materials, damaged organelles, and invading pathogens, resulting in proper cellular homeostasis and survival during stress conditions. Autophagy is stringently regulated at multiple stages, including control at transcriptional, translational, and posttranslational levels. In this work, we identified a mechanism by which regulation of autophagy is achieved through the posttranslational modification of Atg9. Here, we show that, in order to limit autophagy to a low, basal level during normal conditions, Atg9 is ubiquitinated and subsequently targeted for degradation in a proteasome-dependent manner through the action of the E3 ligase Met30. When cells require increased autophagy flux to respond to nutrient deprivation, the proteolysis of Atg9 is significantly reduced. Overall, this work reveals an additional layer of mechanistic regulation that allows cells to further maintain appropriate levels of autophagy and to rapidly induce this process in response to stress.
Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Autofagia/fisiologia , Proteínas F-Box/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Autofagia/genética , Proteínas Relacionadas à Autofagia/fisiologia , Regulação para Baixo , Proteínas F-Box/fisiologia , Lisossomos/metabolismo , Proteínas de Membrana/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Processamento de Proteína Pós-Traducional , Proteólise , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Ubiquitina/metabolismo , Complexos Ubiquitina-Proteína Ligase/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , UbiquitinaçãoRESUMO
The transition from mitosis into the first gap phase of the cell cycle in budding yeast is controlled by the Mitotic Exit Network (MEN). The network interprets spatiotemporal cues about the progression of mitosis and ensures that release of Cdc14 phosphatase occurs only after completion of key mitotic events. The MEN has been studied intensively; however, a unified understanding of how localisation and protein activity function together as a system is lacking. In this paper, we present a compartmental, logical model of the MEN that is capable of representing spatial aspects of regulation in parallel to control of enzymatic activity. We show that our model is capable of correctly predicting the phenotype of the majority of mutants we tested, including mutants that cause proteins to mislocalise. We use a continuous time implementation of the model to demonstrate that Cdc14 Early Anaphase Release (FEAR) ensures robust timing of anaphase, and we verify our findings in living cells. Furthermore, we show that our model can represent measured cell-cell variation in Spindle Position Checkpoint (SPoC) mutants. This work suggests a general approach to incorporate spatial effects into logical models. We anticipate that the model itself will be an important resource to experimental researchers, providing a rigorous platform to test hypotheses about regulation of mitotic exit.
Assuntos
Ciclo Celular/genética , Pontos de Checagem da Fase M do Ciclo Celular/fisiologia , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiologia , Divisão do Núcleo Celular/fisiologia , Pontos de Checagem da Fase M do Ciclo Celular/genética , Mitose/fisiologia , Fosforilação , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Tirosina Fosfatases/fisiologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomycetales/genética , Saccharomycetales/metabolismo , Fuso Acromático/fisiologiaRESUMO
The mitosis-to-interphase transition involves dramatic cellular reorganization from a state that supports chromosome segregation to a state that complies with all functions of an interphase cell. This process, termed mitotic exit, depends on the removal of mitotic phosphorylations from a broad range of substrates. Mitotic exit regulation involves inactivation of mitotic kinases and activation of counteracting protein phosphatases. The key mitotic exit phosphatase in budding yeast, Cdc14, is now well understood. By contrast, in animal cells, it is now emerging that mitotic exit relies on distinct regulatory networks, including the protein phosphatases PP1 and PP2A.
Assuntos
Mitose/fisiologia , Monoéster Fosfórico Hidrolases/fisiologia , Ciclossomo-Complexo Promotor de Anáfase , Animais , Aurora Quinases , Proteína Quinase CDC2/fisiologia , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/fisiologia , Ciclina B1/fisiologia , Humanos , Interfase/fisiologia , Modelos Biológicos , Neoplasias/patologia , Neoplasias/terapia , Proteína Fosfatase 1/fisiologia , Proteína Fosfatase 2/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Tirosina Fosfatases/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Complexos Ubiquitina-Proteína Ligase/fisiologia , Quinase 1 Polo-LikeRESUMO
In nearly every organism studied, reduced caloric intake extends life span. In yeast, span extension from dietary restriction is thought to be mediated by the highly conserved, nutrient-responsive target of rapamycin (TOR), protein kinase A (PKA), and Sch9 kinases. These kinases coordinately regulate various cellular processes including stress responses, protein turnover, cell growth, and ribosome biogenesis. Here we show that a specific reduction of 60S ribosomal subunit levels slows aging in yeast. Deletion of genes encoding 60S subunit proteins or processing factors or treatment with a small molecule, which all inhibit 60S subunit biogenesis, are each sufficient to significantly increase replicative life span. One mechanism by which reduced 60S subunit levels leads to life span extension is through induction of Gcn4, a nutrient-responsive transcription factor. Genetic epistasis analyses suggest that dietary restriction, reduced 60S subunit abundance, and Gcn4 activation extend yeast life span by similar mechanisms.
Assuntos
Proteínas de Ligação a DNA/fisiologia , Subunidades Ribossômicas Maiores de Eucariotos/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/fisiologia , Fatores de Transcrição/fisiologia , Fatores de Transcrição de Zíper de Leucina Básica , Deleção de Genes , Histona Desacetilases/fisiologia , Proteínas Ribossômicas/fisiologia , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/fisiologia , Sirtuína 2 , Sirtuínas/fisiologiaRESUMO
The budding yeast, Saccharomyces cerevisiae, has emerged as an archetype of eukaryotic cell biology. Here we show that S. cerevisiae is also a model for the evolution of cooperative behavior by revisiting flocculation, a self-adherence phenotype lacking in most laboratory strains. Expression of the gene FLO1 in the laboratory strain S288C restores flocculation, an altered physiological state, reminiscent of bacterial biofilms. Flocculation protects the FLO1 expressing cells from multiple stresses, including antimicrobials and ethanol. Furthermore, FLO1(+) cells avoid exploitation by nonexpressing flo1 cells by self/non-self recognition: FLO1(+) cells preferentially stick to one another, regardless of genetic relatedness across the rest of the genome. Flocculation, therefore, is driven by one of a few known "green beard genes," which direct cooperation toward other carriers of the same gene. Moreover, FLO1 is highly variable among strains both in expression and in sequence, suggesting that flocculation in S. cerevisiae is a dynamic, rapidly evolving social trait.
Assuntos
Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/fisiologia , Biofilmes , Farmacorresistência Fúngica , Citometria de Fluxo , Proteínas Fúngicas/metabolismo , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Lectinas de Ligação a Manose , Proteínas de Membrana/metabolismo , Microscopia , Modelos Biológicos , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMO
Meiosis differs from mitosis in that DNA replication is followed by the segregation of homologous chromosomes but not sister chromatids. This depends on the formation of interhomolog connections through crossover recombination and on the attachment of sister kinetochores to microtubules emanating from the same spindle pole. We show that in yeast, the Dbf4-dependent Cdc7 kinase (DDK) provides a link between premeiotic S phase, recombination, and monopolar attachment. Independently from its established role in initiating DNA replication, DDK promotes double-strand break formation, the first step of recombination, and the recruitment of the monopolin complex to kinetochores, which is essential for monopolar attachment. DDK regulates monopolin localization together with the polo-kinase Cdc5 bound to Spo13, probably through phosphorylation of the monopolin subunit Lrs4. Thus, activation of DDK both initiates DNA replication and commits meiotic cells to reductional chromosome segregation in the first division of meiosis.
Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiologia , Meiose , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Ciclo Celular , Cromossomos/ultraestrutura , Replicação do DNA , Deleção de Genes , Cinetocoros/metabolismo , Cinetocoros/ultraestrutura , Microtúbulos/metabolismo , Modelos Biológicos , Modelos Genéticos , Proteínas Nucleares/metabolismo , Proteínas Quinases/metabolismo , Saccharomyces cerevisiaeRESUMO
ATP-dependent chromatin remodeling complexes such as INO80 have been implicated in checkpoint regulation in response to DNA damage. However, how chromatin remodeling complexes regulate DNA damage checkpoints remain unclear. Here, we identified a mechanism of regulating checkpoint effector kinase Rad53 through a direct interaction with the INO80 chromatin remodeling complex. Rad53 is a key checkpoint kinase downstream of Mec1. Mec1/Tel1 phosphorylates the Ies4 subunit of the INO80 complex in response to DNA damage. We find that the phosphorylated Ies4 binds to the N-terminal FHA domain of Rad53. In vitro, INO80 can activate Rad53 kinase activity in an Ies4-phosphorylation-dependent manner in the absence of known activators such as Rad9. In vivo, Ies4 and Rad9 function synergistically to activate Rad53. These findings establish a direct connection between ATP-dependent chromatin remodeling complexes and checkpoint regulation.
Assuntos
Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos , Ativação Enzimática , Dados de Sequência Molecular , Fosforilação , ProteóliseRESUMO
Most aspects of RNA metabolism involve DEAD-box RNA helicases, enzymes that bind and remodel RNA and RNA-protein complexes in an ATP-dependent manner. Here we show that the DEAD-box helicase Ded1p oligomerizes in the cell and in vitro, and unwinds RNA as a trimer. Two protomers bind the single-stranded region of RNA substrates and load a third protomer to the duplex, which then separates the strands. ATP utilization differs between the strand-separating protomer and those bound to the single-stranded region. Binding of the eukaryotic initiation factor 4G to Ded1p interferes with oligomerization and thereby modulates unwinding activity and RNA affinity of the helicase. Our data reveal a strict division of labor between the Ded1p protomers in the oligomer. This mode of oligomerization fundamentally differs from other helicases. Oligomerization represents a previously unappreciated level of regulation for DEAD-box helicase activities.
Assuntos
RNA Helicases DEAD-box/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Trifosfato de Adenosina/química , Biocatálise , RNA Helicases DEAD-box/fisiologia , Hidrólise , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Subunidades Proteicas/química , RNA de Cadeia Dupla/química , Proteínas de Saccharomyces cerevisiae/fisiologiaRESUMO
Double-strand breaks (DSBs) threaten chromosome integrity. The most accurate repair of DSBs is by homologous recombination (HR), catalyzed by recombination proteins such as Rad51. Three papers in this issue of Molecular Cell (Fasching et al., 2015; Kaur et al., 2015; Tang et al., 2015) now reveal the role of three of these proteins in budding yeast: Sgs1 (BLM homolog), Top3 (TOPIIIα homolog), and Rmi1. They demonstrate several steps where all three proteins act together, and find additional functions of the Top3-Rmi1 subcomplex that are critical for the completion of meiosis.
Assuntos
Segregação de Cromossomos , DNA Topoisomerases Tipo I/fisiologia , Proteínas de Ligação a DNA/fisiologia , Recombinação Homóloga/fisiologia , Meiose/genética , Modelos Genéticos , Rad51 Recombinase/fisiologia , RecQ Helicases/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/genética , HumanosRESUMO
The Bloom's helicase ortholog, Sgs1, plays central roles to coordinate the formation and resolution of joint molecule intermediates (JMs) during meiotic recombination in budding yeast. Sgs1 can associate with type-I topoisomerase Top3 and its accessory factor Rmi1 to form a conserved complex best known for its unique ability to decatenate double-Holliday junctions. Contrary to expectations, we show that the strand-passage activity of Top3-Rmi1 is required for all known functions of Sgs1 in meiotic recombination, including channeling JMs into physiological crossover and noncrossover pathways, and suppression of non-allelic recombination. We infer that Sgs1 always functions in the context of the Sgs1-Top3-Rmi1 complex to regulate meiotic recombination. In addition, we reveal a distinct late role for Top3-Rmi1 in resolving recombination-dependent chromosome entanglements to allow segregation at anaphase. Surprisingly, Sgs1 does not share this essential role of Top3-Rmi1. These data reveal an essential and pervasive role for the Top3-Rmi1 decatenase during meiosis.