Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Obstet Gynaecol Res ; 50(8): 1317-1333, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38923718

RESUMO

BACKGROUND: Gestational Diabetes Mellitus (GDM) poses significant risks to maternal and fetal health. Current diagnostic methods based on glucose tolerance tests have limitations for early detection. tRNA-derived small RNAs (tsRNAs) have emerged as potential molecular regulators in various diseases, including metabolic disorders. However, the diagnostic value of tsRNAs in plasma for early GDM or postpartum remains unclear. METHODS: This longitudinal study profiled the expression of tsRNAs across different gestational stages and postpartum in women with GDM (n = 40) and healthy control gestational women (HCs, n = 40). High-throughput small RNA sequencing identified candidate tsRNAs, which were then validated and correlated with clinical biochemical markers such as fasting blood glucose (FBG), HOMA-IR, and GHbA1c. RESULTS: tRF-1:32-Val-AAC-1-M6, tRF-1:31-Glu-CTC-1-M2, and tRF-1:30-Gly-CCC-1-M4 were consistently upregulated in the GDM group compared to HCs during the second trimester (p < 0.05). Only tRF-1:31-Glu-CTC-1-M2 was highly expressed during the first trimester, and tRF-1:30-Gly-CCC-1-M4 increased during postpartum. tRF-1:31-Glu-CTC-1-M2 showed a significant correlation with FBG levels in the first trimester (R = 0.317, p = 0.047). The expression of tRF-1:30-Gly-CCC-1-M4 was significantly correlated with HOMA-IR (r = 0.65, p < 0.001) and GHBA1c (r = 0.33, p = 0.037) during postpartum. A joint diagnostic model incorporating tsRNAs expression and clinical markers demonstrated enhanced predictive power for GDM (ROC AUC = 0.768). CONCLUSION: Our results revealed distinct expression patterns of specific tsRNAs in GDM, showcasing their correlation with key metabolic parameters. This underscores their promising role as biomarkers for early prediction and diagnosis of GDM. The integration of tRFs into a composite biomarker panel holds the potential to improve clinical outcomes by enabling personalized risk assessment and targeted interventions.


Assuntos
Diabetes Gestacional , RNA de Transferência , Humanos , Feminino , Diabetes Gestacional/diagnóstico , Diabetes Gestacional/metabolismo , Diabetes Gestacional/sangue , Gravidez , Adulto , Estudos Longitudinais , RNA de Transferência/sangue , RNA de Transferência/genética , Biomarcadores/sangue , Biomarcadores/metabolismo
2.
Proc Natl Acad Sci U S A ; 117(51): 32606-32616, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33288717

RESUMO

Stroke is a leading cause of death and disability. Recovery depends on a delicate balance between inflammatory responses and immune suppression, tipping the scale between brain protection and susceptibility to infection. Peripheral cholinergic blockade of immune reactions fine-tunes this immune response, but its molecular regulators are unknown. Here, we report a regulatory shift in small RNA types in patient blood sequenced 2 d after ischemic stroke, comprising massive decreases of microRNA levels and concomitant increases of transfer RNA fragments (tRFs) targeting cholinergic transcripts. Electrophoresis-based size-selection followed by qRT-PCR validated the top six up-regulated tRFs in a separate cohort of stroke patients, and independent datasets of small and long RNA sequencing pinpointed immune cell subsets pivotal to these responses, implicating CD14+ monocytes in the cholinergic inflammatory reflex. In-depth small RNA targeting analyses revealed the most-perturbed pathways following stroke and implied a structural dichotomy between microRNA and tRF target sets. Furthermore, lipopolysaccharide stimulation of murine RAW 264.7 cells and human CD14+ monocytes up-regulated the top six stroke-perturbed tRFs, and overexpression of stroke-inducible tRF-22-WE8SPOX52 using a single-stranded RNA mimic induced down-regulation of immune regulator Z-DNA binding protein 1. In summary, we identified a "changing of the guards" between small RNA types that may systemically affect homeostasis in poststroke immune responses, and pinpointed multiple affected pathways, which opens new venues for establishing therapeutics and biomarkers at the protein and RNA level.


Assuntos
AVC Isquêmico/genética , AVC Isquêmico/imunologia , MicroRNAs/imunologia , Sistema Colinérgico não Neuronal/imunologia , RNA de Transferência/imunologia , Idoso , Animais , Estudos de Casos e Controles , Feminino , Humanos , Inflamação/etiologia , Inflamação/genética , Inflamação/imunologia , AVC Isquêmico/fisiopatologia , Receptores de Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , MicroRNAs/sangue , MicroRNAs/genética , Pessoa de Meia-Idade , Monócitos/fisiologia , Sistema Colinérgico não Neuronal/genética , Estudos Prospectivos , Células RAW 264.7 , RNA de Transferência/sangue , RNA de Transferência/genética
3.
J Clin Lab Anal ; 35(7): e23821, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34048096

RESUMO

BACKGROUND: Laryngeal squamous cell carcinoma (LSCC) brings a heavy blow to the patient's voice. Transfer RNA (tRNA) is a common RNA, the roles of tRNAs in LSCC are largely unknown. METHODS: The tRNA expression profile in LSCC tissues and adjacent normal tissues was measured by a tRNA qRT-PCR array. The expression level of tRNAIni CAT in LSCC tissues and plasmas was detected by qRT-PCR. The receiver operating characteristic (ROC) curve was established. tRNAIni CAT was upregulated by a lentivirus vector in the LSCC cell line. Moreover, tRNAIni CAT was upregulated in LSCC xenograft nude mouse model and the xenografts were used for pathological analysis and transmission electron microscope (TEM) observation. RESULTS: The top 10 upregulated tRNAs were tRNALys CTT -1, tRNALeu TAA , tRNAPhe GAA , tRNALeu CAG , tRNATyr ATA , tRNAMet CAT , tRNATyr GTA -1, tRNAThr CGT , tRNATyr GTA -2, tRNAAla AGC ; and the top 10 downregulated tRNAs were tRNAIni CAT , mt-tRNAGlu TTC , tRNAVal CAC -3, mt-tRNATrp TCA , mt-tRNATyr GTA , mt-tRNALys TTT , mt-tRNAThr TGT , mt-tRNAAsp GTC , mt-tRNAAsn GTT , mt-tRNAPro TGG . tRNAIni CAT was downregulated in LSCC tissues and plasma. The area under the ROC curve (AUC) in LSCC tissues and the plasma of patients with LSCC was 0.717 and 0.808, respectively. tRNAIni CAT inhibited LSCC cell proliferation and promoted apoptosis. The in vivo results showed that tRNAIni CAT inhibited the growth of the xenografts and promoted apoptosis. CONCLUSIONS: This is the first study to provide tRNA expression profiles for LSCC tissues. tRNAIni CAT may be used as a new biomarker for the early diagnosis of LSCC. tRNAIni CAT inhibits cell proliferation and promotes apoptosis in vitro and in vivo.


Assuntos
Apoptose/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Neoplasias Laríngeas/genética , Neoplasias Laríngeas/patologia , RNA de Transferência/metabolismo , Animais , Carcinoma de Células Escamosas/sangue , Carcinoma de Células Escamosas/diagnóstico , Linhagem Celular Tumoral , Proliferação de Células/genética , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Proteínas de Fluorescência Verde/metabolismo , Humanos , Neoplasias Laríngeas/sangue , Neoplasias Laríngeas/diagnóstico , Camundongos Endogâmicos BALB C , Camundongos Nus , RNA de Transferência/sangue , RNA de Transferência/genética , Curva ROC , Regulação para Cima/genética , Ensaios Antitumorais Modelo de Xenoenxerto
4.
J Cell Physiol ; 235(3): 2809-2824, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31535382

RESUMO

Breast cancer has become the most common cancer in women, and nontriple negative breast cancer (non-TNBC) accounts for 80-90% of all invasive breast cancers. Early detection, diagnosis, and treatment are considered key to a successful cure. Conventionally, breast imaging and needle core biopsy are used for detection and monitoring. However, small variations in volume might be ignored in imaging, and traditional biopsies are spatially and temporally limited, leading to a significant delay in cancer detection and thus prompting renewed focus on early and accurate diagnosis. In this article, we investigated whether there is an accurate molecule in peripheral blood that can help diagnose breast cancer. Similar to microRNAs, tRNA-derived fragments (tRFs) have been reported to be involved in many pathological processes in breast cancer, but whether they can serve as candidate biomarkers for breast cancer remains unclear. Using high-throughput sequencing technology, we identified 4,021 differentially expressed tRFs in normal and breast cancer cell lines, and eight tRFs were selected to establish a signature as a predictive biomarker of non-TNBC. Furthermore, quantitative reverse-transcriptase polymerase chain reaction was performed to verify the expression of the signature and analyze the correlation between dysregulated tRFs and breast cancer. The results indicated that tDR-7816, tDR-5334, and tDR-4733 might be promising biomarkers. Through further bioinformatics analysis, we predicted that tDR-7816 influences the xenobiotic metabolic processes that support the oncogenesis of breast cancer. In summary, our results provide a rationale for using circulating tDR-7816 expression as a novel potential biomarker for the diagnosis of patients with early non-TNBC.


Assuntos
Detecção Precoce de Câncer/métodos , RNA de Transferência/sangue , Neoplasias de Mama Triplo Negativas/diagnóstico , Neoplasias de Mama Triplo Negativas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Carcinogênese/genética , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Células MCF-7 , Pessoa de Meia-Idade , RNA de Transferência/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
5.
Cerebrovasc Dis ; 49(6): 639-646, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33207351

RESUMO

BACKGROUND AND PURPOSE: Transfer RNA (tRNA) is a noncoding RNA that delivers amino acids to ribosomes for protein synthesis. tRNA is also involved in cell stress response programs. Oxidative stress induces direct conformational change in tRNA structure that promotes subsequent tRNA fragmentation. Using an antibody against tRNA-specific modified nucleoside 1-methyladenosine (m1A), we can detect tRNA derivatives such as conformationally changed tRNA, tRNA-derived fragments, and mononucleotide-free m1A. Based on these findings, tRNA derivatives may have potential as an early tissue damage marker. The purpose of this study was to investigate the plasma tRNA derivatives in stroke patients to clarify whether tRNA derivatives in the acute phase can detect early brain damage and then predict the functional outcome. METHODS: Patients (75 patients with ischemic and 66 with hemorrhagic stroke) and 22 healthy volunteers were prospectively enrolled for this study between November 2016 and February 2019. Plasma samples were collected within 24 h and at 1 day, 7 days, and 30 days from the onset. Plasma tRNA derivative concentrations were measured by ELISA kit using the anti-m1A antibody. RESULTS: The plasma tRNA derivative level on admission was significantly increased in both ischemic (mean ± standard error, 232.2 ± 33.1 ng/mL) and hemorrhagic stroke patients (212 ± 23.4 ng/mL) compared to the healthy volunteers (86.0 ± 7.9 ng/mL) (p = 0.00042 and p = 0.00018, respectively). The infarction size (r = 0.445, p = 0.00018) and hematoma volumes (r = 0.33, p = 0.0072) were also significantly correlated with tRNA derivatives. The concentrations of tRNA derivatives were associated with poor functional outcome (Modified Rankin Scale score 3-6 at 30 days from the onset) in patients with ischemic stroke at 7 days after onset (p = 0.020). CONCLUSIONS: Stress-induced tRNA derivatives can detect brain tissue damage, predicting functional outcome in patients with ischemic stroke.


Assuntos
RNA de Transferência/sangue , Acidente Vascular Cerebral/diagnóstico , Idoso , Biomarcadores/sangue , Estudos de Casos e Controles , Avaliação da Deficiência , Feminino , Humanos , Masculino , Valor Preditivo dos Testes , Prognóstico , Estudos Prospectivos , Acidente Vascular Cerebral/sangue , Acidente Vascular Cerebral/fisiopatologia , Fatores de Tempo
6.
Int J Mol Sci ; 22(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374482

RESUMO

: Early blood biomarkers to diagnose acute stroke could drastically reduce treatment delays. We investigated whether circulating small non-coding RNAs can serve as biomarkers to distinguish between acute ischemic stroke (IS), intracerebral hemorrhage (ICH) and stroke mimics (SM). In an ongoing observational cohort study, we performed small RNA-sequencing in plasma obtained from a discovery cohort of 26 patients (9 IS, 8 ICH and 9 SM) presented to the emergency department within 6 h of symptom onset. We validated our results in an independent dataset of 20 IS patients and 20 healthy controls. ICH plasma had the highest abundance of ribosomal and tRNA-derived fragments, while microRNAs were most abundant in plasma of IS patients. Combinations of four to five tRNAs yielded diagnostic accuracies (areas under the receiver operating characteristics curve) up to 0.986 (ICH vs. IS and SM) in the discovery cohort. Validation of the IS and SM models in the independent dataset yielded diagnostic accuracies of 0.870 and 0.885 to distinguish IS from healthy controls. Thus, we identified tRNA-derived fragments as a promising novel class of biomarkers to distinguish between acute IS, ICH and SM, as well as healthy controls.


Assuntos
Biomarcadores/sangue , RNA de Transferência/sangue , Acidente Vascular Cerebral/sangue , Acidente Vascular Cerebral/diagnóstico , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/metabolismo , Isquemia Encefálica/sangue , Hemorragia Cerebral/sangue , Diagnóstico Diferencial , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , RNA Interferente Pequeno/metabolismo , RNA de Transferência/metabolismo , Curva ROC , Reprodutibilidade dos Testes , Fatores de Tempo
7.
RNA Biol ; 15(2): 242-250, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29219730

RESUMO

Non-coding RNA (ncRNA) molecules have fundamental roles in cells and many are also stable in body fluids as extracellular RNAs. In this study, we used RNA sequencing (RNA-seq) to investigate the profile of small non-coding RNA (sncRNA) in human serum. We analyzed 10 billion Illumina reads from 477 serum samples, included in the Norwegian population-based Janus Serum Bank (JSB). We found that the core serum RNA repertoire includes 258 micro RNAs (miRNA), 441 piwi-interacting RNAs (piRNA), 411 transfer RNAs (tRNA), 24 small nucleolar RNAs (snoRNA), 125 small nuclear RNAs (snRNA) and 123 miscellaneous RNAs (misc-RNA). We also investigated biological and technical variation in expression, and the results suggest that many RNA molecules identified in serum contain signs of biological variation. They are therefore unlikely to be random degradation by-products. In addition, the presence of specific fragments of tRNA, snoRNA, Vault RNA and Y_RNA indicates protection from degradation. Our results suggest that many circulating RNAs in serum can be potential biomarkers.


Assuntos
Ácidos Nucleicos Livres/sangue , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de RNA/métodos , Biomarcadores/sangue , Biomarcadores/química , Ácidos Nucleicos Livres/química , Regulação da Expressão Gênica , Humanos , MicroRNAs/sangue , MicroRNAs/química , Estabilidade de RNA , RNA Interferente Pequeno/sangue , RNA Interferente Pequeno/química , RNA Nucleolar Pequeno/sangue , RNA Nucleolar Pequeno/química , Pequeno RNA não Traduzido/sangue , Pequeno RNA não Traduzido/química , RNA de Transferência/sangue , RNA de Transferência/química
8.
Am J Physiol Heart Circ Physiol ; 313(6): H1162-H1167, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28916639

RESUMO

Exercise improves cardiometabolic and vascular function, although the mechanisms remain unclear. Our objective was to demonstrate the diversity of circulating extracellular RNA (ex-RNA) release during acute exercise in humans and its relevance to exercise-mediated benefits on vascular inflammation. We performed plasma small RNA sequencing in 26 individuals undergoing symptom-limited maximal treadmill exercise, with replication of our top candidate miRNA in a separate cohort of 59 individuals undergoing bicycle ergometry. We found changes in miRNAs and other ex-RNAs with exercise (e.g., Y RNAs and tRNAs) implicated in cardiovascular disease. In two independent cohorts of acute maximal exercise, we identified miR-181b-5p as a key ex-RNA increased in plasma after exercise, with validation in a separate cohort. In a mouse model of acute exercise, we found significant increases in miR-181b-5p expression in skeletal muscle after acute exercise in young (but not older) mice. Previous work revealed a strong role for miR-181b-5p in vascular inflammation in obesity, insulin resistance, sepsis, and cardiovascular disease. We conclude that circulating ex-RNAs were altered in plasma after acute exercise target pathways involved in inflammation, including miR-181b-5p. Further investigation into the role of known (e.g., miRNA) and novel (e.g., Y RNAs) RNAs is warranted to uncover new mechanisms of vascular inflammation on exercise-mediated benefits on health.NEW & NOTEWORTHY How exercise provides benefits to cardiometabolic health remains unclear. We performed RNA sequencing in plasma during exercise to identify the landscape of small noncoding circulating transcriptional changes. Our results suggest a link between inflammation and exercise, providing rich data on circulating noncoding RNAs for future studies by the scientific community.


Assuntos
MicroRNA Circulante/sangue , Exercício Físico , Inflamação/sangue , Síndrome Metabólica/sangue , RNA de Transferência/sangue , Adulto , Idoso , Animais , Ciclismo , MicroRNA Circulante/genética , Teste de Esforço/métodos , Feminino , Marcadores Genéticos , Nível de Saúde , Humanos , Inflamação/diagnóstico , Inflamação/genética , Masculino , Síndrome Metabólica/diagnóstico , Síndrome Metabólica/genética , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/sangue , MicroRNAs/genética , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , RNA de Transferência/genética , Fatores de Tempo
9.
Annu Rev Nutr ; 36: 301-36, 2016 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-27215587

RESUMO

Various biotypes of endogenous small RNAs (sRNAs) have been detected in human circulation, including microRNAs, transfer RNAs, ribosomal RNA, and yRNA fragments. These extracellular sRNAs (ex-sRNAs) are packaged and secreted by many different cell types. Ex-sRNAs exhibit differences in abundance in several disease states and have, therefore, been proposed for use as effective biomarkers. Furthermore, exosome-borne ex-sRNAs have been reported to elicit physiological responses in acceptor cells. Exogenous ex-sRNAs derived from diet (most prominently from plants) and microorganisms have also been reported in human blood. Essential issues that remain to be conclusively addressed concern the (a) presence and sources of exogenous ex-sRNAs in human bodily fluids, (b) detection and measurement of ex-sRNAs in human circulation, (c) selectivity of ex-sRNA export and import, (d) sensitivity and specificity of ex-sRNA delivery to cellular targets, and (e) cell-, tissue-, organ-, and organism-wide impacts of ex-sRNA-mediated cell-to-cell communication. We survey the present state of knowledge of most of these issues in this review.


Assuntos
Comunicação Celular , Regulação da Expressão Gênica , Imunidade Inata , Modelos Biológicos , RNA Ribossômico/sangue , Pequeno RNA não Traduzido/sangue , RNA de Transferência/sangue , Animais , Transporte Biológico , Biomarcadores/sangue , Dieta , Microbioma Gastrointestinal/imunologia , Interações Hospedeiro-Parasita , Interações Hospedeiro-Patógeno , Humanos , MicroRNAs/sangue , MicroRNAs/metabolismo , RNA Bacteriano/sangue , RNA Bacteriano/metabolismo , RNA de Plantas/sangue , RNA de Plantas/metabolismo , RNA Ribossômico/metabolismo , RNA Interferente Pequeno/sangue , RNA Interferente Pequeno/metabolismo , Pequeno RNA não Traduzido/metabolismo , RNA de Transferência/metabolismo , RNA Viral/sangue , RNA Viral/metabolismo
10.
Proc Natl Acad Sci U S A ; 111(30): 11151-6, 2014 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-25012294

RESUMO

Heart failure (HF) is associated with high morbidity and mortality and its incidence is increasing worldwide. MicroRNAs (miRNAs) are potential markers and targets for diagnostic and therapeutic applications, respectively. We determined myocardial and circulating miRNA abundance and its changes in patients with stable and end-stage HF before and at different time points after mechanical unloading by a left ventricular assist device (LVAD) by small RNA sequencing. miRNA changes in failing heart tissues partially resembled that of fetal myocardium. Consistent with prototypical miRNA-target-mRNA interactions, target mRNA levels were negatively correlated with changes in abundance for highly expressed miRNAs in HF and fetal hearts. The circulating small RNA profile was dominated by miRNAs, and fragments of tRNAs and small cytoplasmic RNAs. Heart- and muscle-specific circulating miRNAs (myomirs) increased up to 140-fold in advanced HF, which coincided with a similar increase in cardiac troponin I (cTnI) protein, the established marker for heart injury. These extracellular changes nearly completely reversed 3 mo following initiation of LVAD support. In stable HF, circulating miRNAs showed less than fivefold differences compared with normal, and myomir and cTnI levels were only captured near the detection limit. These findings provide the underpinning for miRNA-based therapies and emphasize the usefulness of circulating miRNAs as biomarkers for heart injury performing similar to established diagnostic protein biomarkers.


Assuntos
Insuficiência Cardíaca/sangue , MicroRNAs/sangue , Miocárdio/metabolismo , RNA de Transferência/sangue , Biomarcadores/sangue , Feminino , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/terapia , Coração Auxiliar , Humanos , Masculino , Miocárdio/patologia , Troponina I/sangue
12.
Adv Exp Med Biol ; 924: 117-119, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27753031

RESUMO

Human blood contains a great variety of membrane-covered RNA carrying vesicles which are spherical or tubular particles enclosed by a phospholipid bilayer. Circulating vesicles are thought to mediate cell-to-cell communication and their RNA cargo can act as regulatory molecules. In this work, we separated blood plasma of healthy donors by centrifugation and determined that vesicles precipitated at 16,000 g were enriched with CD41a, marker of platelets. At 160,000 g, the pellets were enriched with CD3 marker of T cells. To characterize the RNA-content of the blood plasma sub fractions, we performed high throughput sequencing of the RNA pelleted within vesicles at 16,000 g and 160,000 g as well as RNA remaining in the vesicle-free supernatant. We found that blood plasma sub fractions contain not only extensive set of microRNAs but also fragments of other cellular RNAs: rRNAs, tRNAs, mRNAs, lncRNAs, small RNAs including RNAs encoded by mtDNAs. Our data indicate that a variety of blood plasma RNAs circulating within vesicles as well as of extra-vesicular RNAs are comparable to the variety of cellular RNA species.


Assuntos
Vesículas Citoplasmáticas/genética , Vesículas Extracelulares/genética , RNA/genética , RNA/isolamento & purificação , Centrifugação/métodos , Vesículas Citoplasmáticas/metabolismo , Vesículas Extracelulares/metabolismo , Citometria de Fluxo , Humanos , Integrina alfa2/sangue , MicroRNAs/sangue , MicroRNAs/genética , MicroRNAs/isolamento & purificação , RNA/sangue , RNA Longo não Codificante/sangue , RNA Longo não Codificante/genética , RNA Longo não Codificante/isolamento & purificação , RNA Mensageiro/sangue , RNA Mensageiro/genética , RNA Mensageiro/isolamento & purificação , RNA Ribossômico/sangue , RNA Ribossômico/genética , RNA Ribossômico/isolamento & purificação , RNA de Transferência/sangue , RNA de Transferência/genética , RNA de Transferência/isolamento & purificação
13.
Int J Mol Sci ; 17(1)2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26771608

RESUMO

MicroRNAs (miRNAs) are small non-coding RNAs (18-22 nt) that function as modulators of gene expression. Since their discovery in 1993 in C. elegans, our knowledge about their biogenesis, function, and mechanism of action has increased enormously, especially in recent years, with the development of deep-sequencing technologies. New biogenesis pathways and sources of miRNAs are changing our concept about these molecules. The study of the miRNA contribution to pathological states is a field of great interest in research. Different groups have reported the implication of miRNAs in pathologies such as cancer, diabetes, cardiovascular, and gynecological diseases. It is also well-known that miRNAs are present in biofluids (plasma, serum, urine, semen, and menstrual blood) and have been proposed as ideal candidates as disease biomarkers. The goal of this review is to highlight the current knowledge in the field of miRNAs with a special emphasis to their role in endometriosis and the newest investigations addressing the use of miRNAs as biomarkers for this gynecological disease.


Assuntos
Endometriose/sangue , Endometriose/diagnóstico , Endométrio/metabolismo , Regulação da Expressão Gênica , MicroRNAs/genética , Biomarcadores/sangue , Endometriose/genética , Endometriose/patologia , Endométrio/patologia , Feminino , Humanos , MicroRNAs/sangue , RNA Mensageiro/sangue , RNA Mensageiro/genética , RNA Citoplasmático Pequeno/sangue , RNA Citoplasmático Pequeno/genética , RNA Interferente Pequeno/sangue , RNA Interferente Pequeno/genética , RNA de Transferência/sangue , RNA de Transferência/genética
14.
Mol Med Rep ; 30(6)2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39364758

RESUMO

Transfer RNA­derived small RNAs (tsRNAs) are novel non­coding RNAs that are associated with the pathogenesis of various diseases. However, their association with lung adenocarcinoma (LUAD) has not been studied comprehensively. Therefore, the present study aimed to explore the diagnostic value of a tsRNA, hsa_tsr011468, in LUAD. The OncotRF database was used to screen tsRNAs and reverse transcription­quantitative PCR (RT­qPCR) was performed to detect the expression levels of hsa_tsr011468 in various samples. Subsequently, the diagnostic and prognostic values of hsa_tsr011468 for LUAD were determined via receiver operating characteristic (ROC) curve and survival curve analyses, and by assessing clinicopathological parameters. In addition, both nuclear and cytoplasmic RNA were extracted to assess the location of hsa_tsr011468. The OncotRF database identified high expression of hsa_tsr011468 in LUAD. In addition, the results of RT­qPCR showed that the relative expression levels of hsa_tsr011468 in the serum and tissues of patients with LUAD were higher than those in normal controls. Furthermore, its expression was lower in postoperative serum samples than in preoperative serum samples from patients with LUAD. ROC and survival curves indicated that hsa_tsr011468 had good diagnostic and prognostic value. Furthermore, the clinicopathological analysis revealed that hsa_tsr011468 was associated with tumor size. In addition, hsa_tsr011468 was mainly localized in the cytoplasm of LUAD cells. The present study indicated that hsa_tsr011468 has good diagnostic value and, therefore, could be employed as a serum marker for LUAD.


Assuntos
Adenocarcinoma de Pulmão , Biomarcadores Tumorais , Neoplasias Pulmonares , Curva ROC , Humanos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/sangue , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/diagnóstico , Masculino , Feminino , Pessoa de Meia-Idade , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/diagnóstico , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Prognóstico , Idoso , Regulação Neoplásica da Expressão Gênica , Pequeno RNA não Traduzido/sangue , Pequeno RNA não Traduzido/genética , RNA de Transferência/genética , RNA de Transferência/sangue
15.
BMC Genomics ; 14: 298, 2013 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-23638709

RESUMO

BACKGROUND: Small RNAs complex with proteins to mediate a variety of functions in animals and plants. Some small RNAs, particularly miRNAs, circulate in mammalian blood and may carry out a signaling function by entering target cells and modulating gene expression. The subject of this study is a set of circulating 30-33 nt RNAs that are processed derivatives of the 5' ends of a small subset of tRNA genes, and closely resemble cellular tRNA derivatives (tRFs, tiRNAs, half-tRNAs, 5' tRNA halves) previously shown to inhibit translation initiation in response to stress in cultured cells. RESULTS: In sequencing small RNAs extracted from mouse serum, we identified abundant 5' tRNA halves derived from a small subset of tRNAs, implying that they are produced by tRNA type-specific biogenesis and/or release. The 5' tRNA halves are not in exosomes or microvesicles, but circulate as particles of 100-300 kDa. The size of these particles suggest that the 5' tRNA halves are a component of a macromolecular complex; this is supported by the loss of 5' tRNA halves from serum or plasma treated with EDTA, a chelating agent, but their retention in plasma anticoagulated with heparin or citrate. A survey of somatic tissues reveals that 5' tRNA halves are concentrated within blood cells and hematopoietic tissues, but scant in other tissues, suggesting that they may be produced by blood cells. Serum levels of specific subtypes of 5' tRNA halves change markedly with age, either up or down, and these changes can be prevented by calorie restriction. CONCLUSIONS: We demonstrate that 5' tRNA halves circulate in the blood in a stable form, most likely as part of a nucleoprotein complex, and their serum levels are subject to regulation by age and calorie restriction. They may be produced by blood cells, but their cellular targets are not yet known. The characteristics of these circulating molecules, and their known function in suppression of translation initiation, suggest that they are a novel form of signaling molecule.


Assuntos
Envelhecimento/genética , Células Sanguíneas/metabolismo , Restrição Calórica , RNA de Transferência/sangue , RNA de Transferência/genética , Animais , Ácido Edético/farmacologia , Masculino , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Nucleoproteínas/sangue , Iniciação Traducional da Cadeia Peptídica/efeitos dos fármacos , RNA de Transferência/efeitos dos fármacos , Distribuição Tecidual
16.
Fertil Steril ; 117(3): 512-521, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34955241

RESUMO

OBJECTIVE: To identify circulating plasma exosomal transfer RNA-derived fragments (tRFs) as the predictive factors of successful microdissection testicular sperm extraction (micro-TESE) in patients with nonobstructive azoospermia (NOA). DESIGN: Case and control prospective study. SETTING: Academic research laboratory. PATIENT(S): Twelve patients with NOA with successful sperm retrieval by micro-TESE, 18 patients with NOA with failed sperm retrieval by micro-TESE, and 12 normozoospermic fertile controls. INTERVENTION(S): Blood samples were collected from participants. MAIN OUTCOME MEASURE(S): The abundance of tRFs normalized as counts per million of the total aligned reads with the next-generation sequencing system; candidate tRF levels were validated through quantitative reverse transcription polymerase chain reaction; predictive accuracy was evaluated by the receiver operating characteristic area under the curve analysis. The nomogram was built for ranking. RESULT(S): The plasma circulating exosomal tRF-Gly-GCC-002 and tRF-Glu-CTC-005 manifested the most confident differential expression between patients with NOA with successful sperm retrieval by micro-TESE and patients with NOA with failed sperm retrieval by micro-TESE. The target gene prediction of these 2 tRFs followed by the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis indicated the functional enrichment of neuroendocrine protein metabolism and striatum/subpallium development. The herpes simplex virus 1 infection pathway was also involved. The receiver operating characteristic area under the curve (AUC) analysis demonstrated a promising predictive accuracy: tRF-Gly-GCC-002, AUC of 0.921, and tRF-Glu-CTC-005, AUC of 0.954. A regression model was built and presented with the nomogram for further assessment. CONCLUSION(S): This study described the exosomal tRF-Gly-GCC-002 and tRF-Glu-CTC-005 expression values, indicated a promising predictive effect for accessibility of sperm retrieval through micro-TESE from patients with NOA, and highlighted tRF-Gly-GCC-002 and tRF-Glu-CTC-005 as useful biomarkers in patients with NOA seeking in vitro conception with their residual sperm.


Assuntos
Azoospermia/genética , Exossomos/genética , Microdissecção/métodos , RNA de Transferência/genética , Recuperação Espermática , Espermatozoides/fisiologia , Azoospermia/sangue , Azoospermia/diagnóstico , Biomarcadores/sangue , Estudos de Casos e Controles , Exossomos/metabolismo , Ontologia Genética , Humanos , Masculino , Valor Preditivo dos Testes , Estudos Prospectivos , RNA de Transferência/sangue , Testículo/fisiologia , Testículo/cirurgia
17.
Genome Med ; 13(1): 20, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33563322

RESUMO

BACKGROUND: tRNA-derived small RNAs (tDRs), which are widely distributed in human tissues including blood and urine, play an important role in the progression of cancer. However, the expression of tDRs in colorectal cancer (CRC) plasma and their potential diagnostic values have not been systematically explored. METHODS: The expression profiles of tDRs in plasma of CRC and health controls (HCs) are investigated by small RNA sequencing. The level and diagnostic value of 5'-tRF-GlyGCC are evaluated by quantitative PCR in plasma samples from 105 CRC patients and 90 HCs. The mechanisms responsible for biogenesis of 5'-tRF-GlyGCC are checked by in vitro and in vivo models. RESULTS: 5'-tRF-GlyGCC is dramatically increased in plasma of CRC patients compared to that of HCs. The area under curve (AUC) for 5'-tRF-GlyGCC in CRC group is 0.882. The combination of carcinoembryonic antigen (CEA) and carbohydrate antigen 199 (CA199) with 5'-tRF-GlyGCC improves the AUC to 0.926. Consistently, the expression levels of 5'-tRF-GlyGCC in CRC cells and xenograft tissues are significantly greater than that in their corresponding controls. Blood cells co-cultured with CRC cells or mice xenografted with CRC tumors show increased levels of 5'-tRF-GlyGCC. In addition, we find that the increased expression of 5'-tRF-GlyGCC is dependent on the upregulation of AlkB homolog 3 (ALKBH3), a tRNA demethylase which can promote tRNA cleaving to generate tDRs. CONCLUSIONS: The level of 5'-tRF-GlyGCC in plasma is a promising diagnostic biomarker for CRC diagnosis.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , RNA de Transferência/genética , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato/sangue , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato/genética , Animais , Biomarcadores Tumorais/sangue , Linhagem Celular Tumoral , Neoplasias Colorretais/sangue , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos Endogâmicos BALB C , RNA de Transferência/sangue , RNA de Transferência/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Front Immunol ; 12: 735105, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867955

RESUMO

Objective: Dysregulation of transfer RNA (tRNA)-derived small noncoding RNA (tsRNA) signatures in human serum has been found in various diseases. Here, we determine whether the signatures of tsRNAs in serum can serve as biomarkers for diagnosis or prognosis of systemic lupus erythematosus (SLE). Methods: Initially, small RNA sequencing was employed for the screening serum tsRNAs obtained from SLE patients, followed by validation with TaqMan probe-based quantitative reverse transcription-PCR (RT-PCR) assay. Receiver operating characteristic (ROC) curve analysis was used to assess the diagnostic efficacy. The biological functions of tsRNAs were identified by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) assay. Results: We first analyzed tsRNA signatures in SLE serum and identified that tRF-His-GTG-1 was significantly upregulated in SLE serum. The combination of tRF-His-GTG-1 and anti-dsDNA could serve as biomarkers for diagnosing SLE with a high area under the curve (AUC) of 0.95 (95% CI = 0.92-0.99), sensitivity (83.72%), and specificity (94.19%). Importantly, the noninvasive serum tRF-His-GTG-1 could also be used to distinguish SLE with LN or SLE without LN with AUC of 0.81 (95% CI, 0.73-0.88) and performance (sensitivity 66.27%, specificity 96.15%). Moreover, the serum tsRNA is mainly secreted via exosome and can directly target signaling molecules that play crucial roles in regulating the immune system. Conclusion: In this study, it has been demonstrated for the first time that serum tsRNAs can be employed as noninvasive biomarkers for the efficient diagnosis and prediction of nephritis in SLE.


Assuntos
Lúpus Eritematoso Sistêmico/sangue , Nefrite Lúpica/sangue , Nefrite Lúpica/diagnóstico , Pequeno RNA não Traduzido/sangue , RNA de Transferência/sangue , Adolescente , Adulto , Idoso , Sequência de Bases , Biomarcadores/sangue , Estudos de Casos e Controles , Feminino , Perfilação da Expressão Gênica , Humanos , Lúpus Eritematoso Sistêmico/genética , Nefrite Lúpica/genética , Masculino , Pessoa de Meia-Idade , Conformação de Ácido Nucleico , Pequeno RNA não Traduzido/genética , RNA de Transferência/química , RNA de Transferência/genética , Curva ROC , Adulto Jovem
19.
Sci Rep ; 11(1): 5886, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33723340

RESUMO

Fibrotic tissue remodelling in nonalcoholic fatty liver disease (NAFLD) will probably emerge as the leading cause of end-stage liver disease in the coming decades, but the ability to diagnose liver fibrosis in NAFLD patients noninvasively is limited. The abnormal expression of tRNA-derived small RNA (tsRNA) in plasma provides a novel idea for noninvasive diagnosis of various diseases, however, the relationship between tsRNAs and NAFLD is still unknown. Here, we took advantage of small RNA-Seq technology to profile tsRNAs in NAFLD patients and found the ubiquitous presence of hepatic tsRNAs secreted into circulating blood. Verification in a cohort of 114 patients with NAFLD and 42 patients without NAFLD revealed that three tsRNAs (tRF-Val-CAC-005, tiRNA-His-GTG-001, and tRF-Ala-CGC-006) were significantly elevated in the plasma of NAFLD patients, and the expression level are associated with NAFLD activity score (calculated from 0 to 8) and fibrosis stage (scored from 0 to 4). In mouse models, we further found that increased plasma levels of these three tsRNAs were positively correlated with the degree of liver fibrosis. Our study potentially identifies a new class of NAFLD biomarkers and reveal the possible existence of tsRNAs in the blood that can be used to predict fibrogenesis risk in patients diagnosed with NAFLD.


Assuntos
Cirrose Hepática/sangue , Hepatopatia Gordurosa não Alcoólica/sangue , RNA de Transferência/sangue , Adulto , Idoso , Animais , Sequência de Bases , Biomarcadores/sangue , Modelos Animais de Doenças , Progressão da Doença , Feminino , Perfilação da Expressão Gênica , Humanos , Fígado/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , RNA de Transferência/química , RNA de Transferência/genética , Regulação para Cima/genética , Adulto Jovem
20.
Science ; 158(3806): 1330-2, 1967 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-6058008

RESUMO

Radioactive aminoacyl transfer RNA's isolated from erythrocytes in the blood of 4-day-old chick embryos and from reticulocytes of adult chickens were analyzed by chromatography on methylated albumin kieselguhr and freon columns. Embryonic and adult methionyl transfer RNA's showed qualitative and quantitative differences in both chromatographic systems. The patterns for arginyl, seryl, and tyrosyl transfer RNA's in the two cell types were similar, while the leucyl transfer RNA patterns suggested a difference.


Assuntos
Galinhas/crescimento & desenvolvimento , Eritrócitos/análise , RNA de Transferência/sangue , Animais , Arginina/análise , Isótopos de Carbono , Embrião de Galinha , Cromatografia por Troca Iônica , Leucina/análise , Metionina/análise , Reticulócitos/análise , Serina/análise , Tirosina/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA