Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 299(8): 104983, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37390986

RESUMO

The functional association between stimulation of G-protein-coupled receptors (GPCRs) by eicosanoids and actin cytoskeleton reorganization remains largely unexplored. Using a model of human adrenocortical cancer cells, here we established that activation of the GPCR OXER1 by its natural agonist, the eicosanoid 5-oxo-eicosatetraenoic acid, leads to the formation of filopodia-like elongated projections connecting adjacent cells, known as tunneling nanotube (TNT)-like structures. This effect is reduced by pertussis toxin and GUE1654, a biased antagonist for the Gßγ pathway downstream of OXER1 activation. We also observed pertussis toxin-dependent TNT biogenesis in response to lysophosphatidic acid, indicative of a general response driven by Gi/o-coupled GPCRs. TNT generation by either 5-oxo-eicosatetraenoic acid or lysophosphatidic acid is partially dependent on the transactivation of the epidermal growth factor receptor and impaired by phosphoinositide 3-kinase inhibition. Subsequent signaling analysis reveals a strict requirement of phospholipase C ß3 and its downstream effector protein kinase Cα. Consistent with the established role of Rho small GTPases in the formation of actin-rich projecting structures, we identified the phosphoinositide 3-kinase-regulated guanine nucleotide exchange factor FARP1 as a GPCR effector essential for TNT formation, acting via Cdc42. Altogether, our study pioneers a link between Gi/o-coupled GPCRs and TNT development and sheds light into the intricate signaling pathways governing the generation of specialized actin-rich elongated structures in response to bioactive signaling lipids.


Assuntos
Actinas , Ácidos Araquidônicos , Estruturas da Membrana Celular , Neoplasias , Receptores Eicosanoides , Humanos , Actinas/metabolismo , Neoplasias/metabolismo , Toxina Pertussis/farmacologia , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteína Quinase C-alfa/genética , Proteína Quinase C-alfa/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Estruturas da Membrana Celular/metabolismo , Nanotubos , Receptores Eicosanoides/antagonistas & inibidores , Receptores Eicosanoides/metabolismo , Linhagem Celular Tumoral , Ácidos Araquidônicos/metabolismo , Ácidos Araquidônicos/farmacologia , Transdução de Sinais
2.
Biochem Biophys Res Commun ; 584: 95-100, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34775286

RESUMO

OXER1 is a recently identified receptor, binding the arachidonic acid metabolic product 5-oxo-ETE, considered an inflammatory receptor, implicated in chemoattraction of circulating mononuclear cells, Ca2+ surge in neutrophils, inflammation and cancer. Recently, we have shown that OXER1 is also a membrane androgen receptor in various cancer tissues. It was reported that the presence of OXER1 in leucocytes and the production and release of 5-oxo-ETE by wounded tissues is a wound sensing mechanism, leading to lymphocyte attraction. In view of the similarity of hallmarks of cancer and wound healing, we have explored the role of OXER1 and its endogenous ligand in the control of cell migration of human cancer epithelial cells (DU-145, T47D and Hep3B), mimicking the activation/migration phase of healing. We show that OXER1 is up-regulated only at the leading edge of the wound and its expression is up-regulated by its ligand 5-oxo-ETE, in a time-related manner. Knock-down of OXER1 or inhibition of 5-oxo-ETE synthesis led to decreased migration of cells and a prolongation of healing, in culture prostate cancer cell monolayers, with a substantial modification of actin cytoskeleton and a decreased filopodia formation. Inhibition of cell migration is a phenomenon mediated by Gßγ OXER1 mediated actions. These results provide a novel mechanism of OXER1 implication in cancer progression and might be of value for the design of novel OXER1 antagonists.


Assuntos
Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias/genética , Receptores Eicosanoides/genética , Ácidos Araquidônicos/metabolismo , Ácidos Araquidônicos/farmacologia , Western Blotting , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Receptores Eicosanoides/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Regulação para Cima/efeitos dos fármacos
3.
Basic Res Cardiol ; 116(1): 3, 2021 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-33484341

RESUMO

5-Oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE) is an arachidonic acid metabolite produced along with leukotrienes via the 5-lipoxygenase pathway. Metabolomics studies have shown that 5-oxo-ETE level is elevated in the serum in acute myocardial infarction (AMI). The actions of 5-oxo-ETE are mediated by the highly selective oxoeicosanoid receptor (OXE-R). Moreover, increased OXE-R content was verified in AMI patients and mice. However, the precise role of OXE-R in AMI is unclear. In the present study, we demonstrate that 5-oxo-ETE triggered myocardial injury in mice. Pathway enrichment analysis identified branched chain amino acid transaminase 1/2 (BCAT1/2) as potential mediators of this effect. Western blot and immunohistochemical analyses showed that BCAT1/BCAT2 expression was significantly reduced by AMI in vitro and in vivo, while pharmacologic inhibition of BCAT1/BCAT2 accelerated myocardial injury. Conversely, heart-specific overexpression of BCAT1/BCAT2 in mice protected against ischemic myocardial injury. Treatment with the selective OXE-R inhibitor Gue1654 alleviated coronary artery ligation-induced ischemic myocardial injury in mice and oxygen/glucose deprivation-induced injury in cardiomyocytes through activation of BCAT1, while inhibiting OXE-R suppressed protein kinase C-ε (PKC-ε)/nuclear factor κB (NF-κB) signaling and cardiomyocyte apoptosis. Overall, our study confirmed a novel target OXE-R for the treatment of AMI based on metabolomics, and targeting OXE-R may represent unrecognized therapeutic intervention for cardiovascular diseases through activation of BCAT1.


Assuntos
Ácidos Araquidônicos/metabolismo , Benzenoacetamidas/farmacologia , Benzotiazóis/farmacologia , Infarto do Miocárdio/tratamento farmacológico , Miócitos Cardíacos/efeitos dos fármacos , Receptores Eicosanoides/antagonistas & inibidores , Transaminases/metabolismo , Idoso , Animais , Apoptose/efeitos dos fármacos , Estudos de Casos e Controles , Linhagem Celular , Modelos Animais de Doenças , Ativação Enzimática , Feminino , Humanos , Masculino , Metaboloma , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/ultraestrutura , NF-kappa B/metabolismo , Proteína Quinase C-épsilon/metabolismo , Ratos , Receptores Eicosanoides/metabolismo , Transdução de Sinais , Transaminases/genética , Função Ventricular Esquerda/efeitos dos fármacos
4.
Prostaglandins Other Lipid Mediat ; 144: 106346, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31301403

RESUMO

The OXE receptor is a GPCR activated by eicosanoids produced by the action of 5-lipoxygenase. We previously found that this membrane receptor participates in the regulation of cAMP-dependent and -independent steroidogenesis in human H295R adrenocortical carcinoma cells. In this study we analyzed the effects of the OXE receptor physiological activator 5-oxo-ETE on the growth and migration of H259R cells. While 5-oxo-ETE did not affect the growth of H295R cells, overexpression of OXE receptor caused an increase in cell proliferation, which was further increased by 5-oxo-ETE and blocked by 5-lipoxygenase inhibition. 5-oxo-ETE increased the migratory capacity of H295R cells in wound healing assays, but it did not induce the production of metalloproteases MMP-1, MMP-2, MMP-9 and MMP-10. The pro-migratory effect of 5-oxo-ETE was reduced by pharmacological inhibition of the MEK/ERK1/2, p38 and PKC pathways. 5-oxo-ETE caused significant activation of ERK and p38. ERK activation by the eicosanoid was reduced by the "pan" PKC inhibitor GF109203X but not by the classical PKC inhibitor Gö6976, suggesting the involvement of novel PKCs in this effect. Although H295R cells display detectable phosphorylation of Ser299 in PKCδ, a readout for the activation of this novel PKC, treatment with 5-oxo-ETE per se was unable to induce additional PKCδ activation. Our results revealed signaling effectors activated by 5-oxo-ETE in H295R cells and may have significant implications for our understanding of OXE receptor in adrenocortical cell pathophysiology.


Assuntos
Córtex Suprarrenal/citologia , Ácidos Araquidônicos/farmacologia , Movimento Celular/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteína Quinase C/metabolismo , Linhagem Celular , Citoproteção/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Humanos , Metaloproteases/metabolismo , Receptores Eicosanoides/metabolismo
5.
Bioorg Med Chem ; 26(12): 3580-3587, 2018 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-29866479

RESUMO

The oxoeicosanoid receptor 1 (OXER1) is a member of the G-protein coupled receptors (GPCR) family, and is involved in inflammatory processes and oncogenesis. As such it is an attractive target for pharmacological intervention. The present study aimed to shed light on the molecular fundaments of OXER1 modulation using chemical probes structurally related to the natural agonist 5-oxo-ETE. In a first step, 5-oxo-ETE and its closely related derivatives (5-oxo-EPE and 4-oxo-DHA) were obtained by conducting concise and high-yielding syntheses. The biological activity of obtained compounds was assessed in terms of potency (EC50) and efficacy (Emax) for arrestin recruitment. Finally, molecular modelling and simulation were used to explore binding characteristics of 5-oxo-ETE and derivatives with the aim to rationalize biological activity. Our data suggest that the tested 5-oxo-ETE derivatives (i) insert quickly into the membrane, (ii) access the receptor via transmembrane helices (TMs) 5 and 6 from the membrane side and (iii) drive potency and efficacy by differential interaction with TM5 and 7. Most importantly, we found that the methyl ester of 5-oxo-ETE (1a) showed even a higher maximum response than the natural agonist (1). In contrast, shifting the 5-oxo group into position 4 results in inactive compounds (4-oxo DHA compounds (3) and (3a)). All in all, our study provides relevant structural data that help understanding better OXER1 functionality and its modulation. The structural information presented herein will be useful for designing new lead compounds with desired signalling profiles.


Assuntos
Ácidos Araquidônicos/química , Receptores Eicosanoides/agonistas , Ácidos Araquidônicos/síntese química , Ácidos Araquidônicos/metabolismo , Sítios de Ligação , Desenho de Fármacos , Ácido Eicosapentaenoico/química , Humanos , Simulação de Dinâmica Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Receptores Eicosanoides/metabolismo
6.
FASEB J ; 30(6): 2360-9, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26965684

RESUMO

Previously we identified and deorphaned G-protein-coupled receptor 31 (GPR31) as the high-affinity 12(S)-hydroxyeicosatetraenoic acid [12(S)-HETE] receptor (12-HETER1). Here we have determined its distribution in prostate cancer tissue and its role in prostate tumorigenesis using in vitro and in vivo assays. Data-mining studies strongly suggest that 12-HETER1 expression positively correlates with the aggressiveness and progression of prostate tumors. This was corroborated with real-time PCR analysis of human prostate tumor tissue arrays that revealed the expression of 12-HETER1 positively correlates with the clinical stages of prostate cancers and Gleason scores. Immunohistochemistry analysis also proved that the expression of 12-HETER1 is positively correlated with the grades of prostate cancer. Knockdown of 12-HETER1 in prostate cancer cells markedly reduced colony formation and inhibited tumor growth in animals. To discover the regulatory factors, 5 candidate 12-HETER1 promoter cis elements were assayed as luciferase reporter fusions in Chinese hamster ovary (CHO) cells, where the putative cis element required for gene regulation was mapped 2 kb upstream of the 12-HETER1 transcriptional start site. The data implicate 12-HETER1 in a critical new role in the regulation of prostate cancer progression and offer a novel alternative target for therapeutic intervention.-Honn, K. V., Guo, Y., Cai, Y., Lee, M.-J., Dyson, G., Zhang, W., Tucker, S. C. 12-HETER1/GPR31, a high-affinity 12(S)-hydroxyeicosatetraenoic acid receptor, is significantly up-regulated in prostate cancer and plays a critical role in prostate cancer progression.


Assuntos
Regulação Neoplásica da Expressão Gênica/fisiologia , Neoplasias da Próstata/metabolismo , Receptores Eicosanoides/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Regulação para Cima/fisiologia , Animais , Linhagem Celular , Clonagem Molecular , Biologia Computacional , Cricetinae , Bases de Dados Factuais , Humanos , Masculino , Regiões Promotoras Genéticas , Neoplasias da Próstata/genética , Receptores Eicosanoides/genética , Receptores Acoplados a Proteínas G/classificação , Receptores Acoplados a Proteínas G/genética , Análise Serial de Tecidos , Transcriptoma
7.
Bioorg Med Chem Lett ; 27(20): 4770-4776, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28943042

RESUMO

5-Oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE) is formed from 5S-hydroxy-6,8,11,14-eicosatetraenoic acid (5-HETE) by the 5-lipoxygenase (5-LO) pathway under conditions associated with oxidative stress. 5-Oxo-ETE is an important pro-inflammatory mediator, which stimulates the migration of eosinophils via a selective G-protein coupled receptor, known as the OXE receptor (OXE-R). Previously, we designed and synthesized structural mimics of 5-oxo-ETE such as 1 using an indole scaffold. In the present work, we added various substituents at C-3 of this moiety to block potential ß-oxidation of the 5-oxo-valerate side chain, and investigated the structure-activity relationships of the resulting novel ß-oxidation-resistant antagonists. Cyclopropyl and cyclobutyl substituents were well tolerated in this position, but were less potent as the highly active 3S-methyl compound. It seems likely that 3-alkyl substituents can affect the conformation of the 5-oxovalerate side chain containing the critical keto and carboxyl groups, thereby affecting interaction with the OXE-receptor.


Assuntos
Indóis/metabolismo , Receptores Eicosanoides/antagonistas & inibidores , Araquidonato 5-Lipoxigenase/metabolismo , Desenho de Fármacos , Eosinófilos/citologia , Eosinófilos/metabolismo , Humanos , Indóis/química , Concentração Inibidora 50 , Oxirredução , Receptores Eicosanoides/metabolismo , Eletricidade Estática , Relação Estrutura-Atividade
8.
Biochim Biophys Acta ; 1851(4): 340-55, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25449650

RESUMO

Arachidonic acid can be oxygenated by a variety of different enzymes, including lipoxygenases, cyclooxygenases, and cytochrome P450s, and can be converted to a complex mixture of oxygenated products as a result of lipid peroxidation. The initial products in these reactions are hydroperoxyeicosatetraenoic acids (HpETEs) and hydroxyeicosatetraenoic acids (HETEs). Oxoeicosatetraenoic acids (oxo-ETEs) can be formed by the actions of various dehydrogenases on HETEs or by dehydration of HpETEs. Although a large number of different HETEs and oxo-ETEs have been identified, this review will focus principally on 5-oxo-ETE, 5S-HETE, 12S-HETE, and 15S-HETE. Other related arachidonic acid metabolites will also be discussed in less detail. 5-Oxo-ETE is synthesized by oxidation of the 5-lipoxygenase product 5S-HETE by the selective enzyme, 5-hydroxyeicosanoid dehydrogenase. It actions are mediated by the selective OXE receptor, which is highly expressed on eosinophils, suggesting that it may be important in eosinophilic diseases such as asthma. 5-Oxo-ETE also appears to stimulate tumor cell proliferation and may also be involved in cancer. Highly selective and potent OXE receptor antagonists have recently become available and could help to clarify its pathophysiological role. The 12-lipoxygenase product 12S-HETE acts by the GPR31 receptor and promotes tumor cell proliferation and metastasis and could therefore be a promising target in cancer therapy. It may also be involved as a proinflammatory mediator in diabetes. In contrast, 15S-HETE may have a protective effect in cancer. In addition to GPCRs, higher concentration of HETEs and oxo-ETEs can activate peroxisome proliferator-activated receptors (PPARs) and could potentially regulate a variety of processes by this mechanism. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance".


Assuntos
Ácido Araquidônico/metabolismo , Ácidos Hidroxieicosatetraenoicos/metabolismo , Receptores Eicosanoides/metabolismo , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/metabolismo , Animais , Ácidos Araquidônicos/metabolismo , Doença , Humanos , Oxirredução , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
9.
Br J Cancer ; 115(3): 364-70, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27362730

RESUMO

BACKGROUND: The arachidonic acid metabolite 12(S)-HETE is suspected to enhance metastatic spread by inducing cancer cell- and lymph endothelial cell (LEC) motility. However, the molecular mechanisms leading to 12(S)-HETE-triggered cell migration are still elusive. METHODS: To delineate the signalling pathways involved in 12(S)-HETE-mediated migration, inhibitors against RHO and ROCK, and specific siRNAs downregulating 12(S)-HETE receptor (12-HETER) and myosin light chain 2 (MLC2) were used. The breaching of the endothelial barrier was investigated by an assay measuring tumour spheroid-triggered 'circular chemorepellent-induced defects' (CCIDs), and respective signal transduction was elucidated by western blotting. RESULTS: We provide evidence that 12(S)-HETE phosphorylated (and activated) MLC2, which regulates actin/myosin-based contraction. MLC2 activation was found to be essential for LEC retraction and CCID formation. Furthermore, we show that 12(S)-HETE activated a 12-HETER-RHO-ROCK-MYPT signalling cascade to induce MLC2 function. CONCLUSIONS: Signalling via this pathway is described for this metabolite for the first time. This may provide potential targets for the intervention of metastatic colonisation.


Assuntos
Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/metabolismo , Endotélio Linfático/metabolismo , Cadeias Leves de Miosina/metabolismo , Receptores Eicosanoides/metabolismo , Fator Rho/metabolismo , Transdução de Sinais , Quinases Associadas a rho/metabolismo , Linhagem Celular Tumoral , Humanos , Permeabilidade , Fosforilação
10.
Magy Onkol ; 58(3): 211-8, 2014 Sep.
Artigo em Húngaro | MEDLINE | ID: mdl-25260086

RESUMO

Prostate cancer is one of the leading cancer types in males in the developed world. Radiotherapy is a major method in the curative treatment of prostate cancer however, up to 30% of the patients experience local relapse. Arachidonic acid metabolites have been shown to have important role in cancer. 12-lipoxygenase (12-LOX) has been proven to significantly influence prostate cancer progression, by apoptosis regulation and by promoting cancer cell survival. In this study we examined whether 12-LOX inhibition may increase radiation sensitivity of prostate cancer cells in vitro and in vivo. Prostate cancer cell lines were treated with 12-LOX inhibitors, different doses of radiation and the combination of 12-LOX inhibitors and radiation. We measured the effect of these treatments through clonogenic survival and apoptosis in vitro and tumor growth in vivo in a tumor xenograft model. 12-LOX inhibition and radiation both increased apoptosis and decreased clonogenic survival of prostate cancer cell lines in vitro. Combined treatment resulted in a supra-additive effect in vitro. In vivo both 12-LOX inhibition and radiotherapy caused delay in growth of the xenograft tumors but the combined treatment resulted in the strongest growth inhibition. The presented data prove that 12-LOX and its metabolite 12(S)-HETE have a major role in prostate cancer cell progression and radiosensitivity. We have shown by different methods in vitro and in vivo that inhibition of 12-LOX activity significantly sensitizes prostate cancer cells to radiation. Therefore we can state that 12-LOX inhibitors are promising compounds to be developed to become a new class of clinical radiation sensitizers in prostate cancer.


Assuntos
Apoptose/efeitos da radiação , Araquidonato 12-Lipoxigenase/metabolismo , Inibidores de Lipoxigenase/farmacologia , Neoplasias da Próstata/radioterapia , Tolerância a Radiação/efeitos dos fármacos , Receptores Eicosanoides/metabolismo , Linhagem Celular Tumoral/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Progressão da Doença , Humanos , Masculino , Neoplasias da Próstata/patologia , Receptores Eicosanoides/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
11.
FASEB J ; 26(7): 3075-83, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22499581

RESUMO

A major therapeutic target for Parkinson's disease (PD) is providing increased glial-derived neurotrophic factor (GDNF) to dopaminergic neurons. We tested the hypothesis that innate immune activation increases astrocyte GDNF production and that this is regulated by specific eicosanoid receptors. Innate immune-activated primary murine astrocytes were assayed for GDNF expression and secretion. Controls were agent vehicle exposure and wild-type mice. Rank order for up to 10-fold selectively increased GDNF expression was activators of TLR3 > TLR2 or TLR4 > TLR9. TLR3 activator-stimulated GDNF expression was selectively JNK-dependent, followed cyclooxygenase (COX)-2, was coincident with membranous PGE(2) synthase, and was not significantly altered by a nonspecific COX- or a COX-2-selective inhibitor. Specific eicosanoid receptors had opposing effects on TLR3 activator-induced GDNF expression: ∼60% enhancement by blocking or ablating of PGE(2) receptor subtype 1 (EP1), ∼30% enhancement by activating PGF(2α) receptor or thromboxane receptor, or ∼15% enhancement by activating EP4. These results demonstrate functionally antagonistic eicosanoid receptor subtype regulation of innate immunity-induced astrocyte GDNF expression and suggest that selective inhibition of EP1 signaling might be a means to augment astrocyte GDNF secretion in the context of innate immune activation in diseased regions of brain in PD.


Assuntos
Astrócitos/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Receptores Eicosanoides/metabolismo , Receptores Toll-Like/metabolismo , Animais , Astrócitos/imunologia , Sequência de Bases , Células Cultivadas , Primers do DNA/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/deficiência , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Imunidade Inata , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Receptores Eicosanoides/classificação , Receptores de Prostaglandina E Subtipo EP1/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor 3 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo
12.
Prostaglandins Other Lipid Mediat ; 107: 35-42, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23603610

RESUMO

Lipoxygenases (LOX) and cyclooxygenases (COX) are the main enzymes for poly-unsaturated fatty acid (PUFA) metabolism to highly bioactive prostaglandins, leukotrienes, thromboxanes and protectins. LOX and COX pathways are highly important for the regulation of pro- and anti-inflammatory active metabolite synthesis and metabolism in various inflammatory diseases like atopic diseases (AD). In this study using QRT-PCR, we found that in PBMCs the expression of 5-LOX, 12-LOX, 15-LOX and COX pathways and further enzymatic pathways like various leukotriene-hydoxylases, leukotriene-, prostaglandin-, and thromboxane-synthases as well as various of their membrane based receptors are mainly significantly down-regulated in AD-patients vs. healthy volunteers. In addition, using HPLC MS-MS we determined up to 19 different metabolites originating from eicosapentaenoic acid (EPA), docosapentaenoic acid (DHA) and arachidonic acid (AA) ranging from hydroxylated-PUFA derivatives and further bioactive derivatives like thromboxanes, leukotrienes, prostaglandins and protectins originating from LOX and COX metabolism. In PBMCs from AD-patients LOX and COX pathways were down-regulated. We conclude from this study, that in PBMCs from AD-patients in comparison to healthy volunteers, a systemic down-regulation of LOX- and COX-responses occurs to generally reduce eicosanoid/docosanoid synthesis during the current allergic inflammatory status.


Assuntos
Araquidonato 12-Lipoxigenase/metabolismo , Araquidonato 5-Lipoxigenase/metabolismo , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Dermatite Atópica/enzimologia , Leucócitos Mononucleares/enzimologia , Adolescente , Adulto , Araquidonato 12-Lipoxigenase/genética , Araquidonato 5-Lipoxigenase/genética , Estudos de Casos e Controles , Ciclo-Oxigenase 1/genética , Ciclo-Oxigenase 2/genética , Ácidos Graxos Insaturados/metabolismo , Feminino , Expressão Gênica , Humanos , Masculino , Receptores Eicosanoides/genética , Receptores Eicosanoides/metabolismo , Transdução de Sinais , Adulto Jovem
13.
Mol Cell Endocrinol ; 539: 111487, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34634385

RESUMO

In prostate cancer, calcium homeostasis plays a significant role in the disease's development and progression. Intracellular calcium changes are an important secondary signal, triggered by a variety of extracellular stimuli, that controls many cellular functions. One of the main events affecting calcium is androgen signaling. Indeed, via calcium changes, androgens regulate cell processes like cell growth, differentiation and motility. In the present work we explored the nature of the receptor involved in calcium response induced by membrane-acting testosterone in prostate cancer cells. We report that testosterone, independently of the presence of the classical androgen receptor, can rapidly increase intracellular calcium from calcium stores, through the oxoeicosanoid receptor 1 (OXER1) and a specific signaling cascade that triggers calcium release from the endoplasmic reticulum. These findings reveal for the first time the receptor involved in the rapid calcium changes induced by androgens. Moreover, they further support the notion that androgens, even in the absence of AR, can still exert specific effects that regulate cancer cell fate.


Assuntos
Cálcio/metabolismo , Neoplasias da Próstata/metabolismo , Receptores Eicosanoides/metabolismo , Testosterona/farmacologia , Ácidos Araquidônicos/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino
14.
Respir Res ; 12: 155, 2011 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-22141755

RESUMO

BACKGROUND: Neonates and young infants manifest increased susceptibility to bacterial, viral and fungal lung infections. Previous work has identified a role for eicosanoids in mediating host defense functions of macrophages. This study examines the relationship between alveolar macrophage (AM) host defense and production of lipid mediators during the neonatal period compared to adult AMs. METHODS: AMs were harvested from young (day 7 and day 14) and adult (~10 week) rats. The functionality of these cells was assessed by examining their ability to phagocytose opsonized targets, produce cytokines, eicosanoids and intracellular cAMP measured by enzyme immunoassays, and gene expression of proteins, enzymes and receptors essential for eicosanoid generation and phagocytosis measured by real time RT-PCR. RESULTS: AMs from young animals (day 7 and 14) were defective in their ability to phagocytose opsonized targets and produce tumor necrosis factor (TNF)- α. In addition, young AMs produce more prostaglandin (PG) E(2), a suppressor of host defense, and less leukotriene (LT) B(4), a promoter of host defense. Young AMs express higher levels of enzymes responsible for the production of PGE(2) and LTB(4); however, there was no change in the expression of E prostanoid (EP) receptors or LT receptors. Despite the similar EP profiles, young AMs are more responsive to PGE(2) as evidenced by their increased production of the important second messenger, cyclic AMP. In addition, young AMs express higher levels of PDE3B and lower levels of PDE4C compared to adult AMs. However, even though the young AMs produced a skewed eicosanoid profile, neither the inhibition of PGE(2) by aspirin nor the addition of exogenous LTB(4) rescued the defective opsonized phagocytosis. Examination of a receptor responsible for mediating opsonized phagocytosis showed a significant decrease in the gene expression levels of the Fcgamma receptor in young (day 7) AMs compared to adult AMs. CONCLUSION: These results suggest that elevated production of PGE(2) and decreased production of LTB(4) do not contribute to impaired opsonized macrophage phagocytosis and highlight an important difference between young and adult AMs.


Assuntos
Dinoprostona/metabolismo , Mediadores da Inflamação/metabolismo , Macrófagos Alveolares/imunologia , Fagocitose , Fatores Etários , Envelhecimento/imunologia , Animais , Animais Recém-Nascidos , Células Cultivadas , AMP Cíclico/metabolismo , Inibidores de Ciclo-Oxigenase/farmacologia , Citocinas/metabolismo , Regulação Enzimológica da Expressão Gênica , Técnicas Imunoenzimáticas , Leucotrieno B4/metabolismo , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Fagocitose/efeitos dos fármacos , Fagocitose/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Receptores Eicosanoides/genética , Receptores Eicosanoides/metabolismo , Receptores de IgG/genética , Receptores de IgG/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima
15.
Prostaglandins Other Lipid Mediat ; 96(1-4): 27-36, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21864702

RESUMO

Inflammation in the tumor microenvironment is now recognized as one of the hallmarks of cancer. Endogenously produced lipid autacoids, locally acting small molecule lipid mediators, play a central role in inflammation and tissue homeostasis, and have recently been implicated in cancer. A well-studied group of autacoid mediators that are the products of arachidonic acid metabolism include: the prostaglandins, leukotrienes, lipoxins and cytochrome P450 (CYP) derived bioactive products. These lipid mediators are collectively referred to as eicosanoids and are generated by distinct enzymatic systems initiated by cyclooxygenases (COX 1 and 2), lipoxygenases (5-LOX, 12-LOX, 15-LOXa, 15-LOXb), and cytochrome P450s, respectively. These pathways are the target of approved drugs for the treatment of inflammation, pain, asthma, allergies, and cardiovascular disorders. Beyond their potent anti-inflammatory and anti-cancer effects, non-steroidal anti-inflammatory drugs (NSAIDs) and COX-2 specific inhibitors have been evaluated in both preclinical tumor models and clinical trials. Eicosanoid biosynthesis and actions can also be directly influenced by nutrients in the diet, as evidenced by the emerging role of omega-3 fatty acids in cancer prevention and treatment. Most research dedicated to using eicosanoids to inhibit tumor-associated inflammation has focused on the COX and LOX pathways. Novel experimental approaches that demonstrate the anti-tumor effects of inhibiting cancer-associated inflammation currently include: eicosanoid receptor antagonism, overexpression of eicosanoid metabolizing enzymes, and the use of endogenous anti-inflammatory lipid mediators. Here we review the actions of eicosanoids on inflammation in the context of tumorigenesis. Eicosanoids may represent a missing link between inflammation and cancer and thus could serve as therapeutic target(s) for inhibiting tumor growth.


Assuntos
Transformação Celular Neoplásica/imunologia , Eicosanoides/imunologia , Ácidos Graxos Ômega-3 , Inflamação/metabolismo , Neoplasias/metabolismo , Transdução de Sinais/imunologia , Microambiente Tumoral/imunologia , Animais , Anti-Inflamatórios não Esteroides/imunologia , Anti-Inflamatórios não Esteroides/farmacologia , Anticarcinógenos/imunologia , Anticarcinógenos/farmacologia , Ácido Araquidônico/imunologia , Ácido Araquidônico/metabolismo , Transformação Celular Neoplásica/efeitos dos fármacos , Inibidores de Ciclo-Oxigenase 2/imunologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Sistema Enzimático do Citocromo P-450/imunologia , Sistema Enzimático do Citocromo P-450/metabolismo , Eicosanoides/metabolismo , Eicosanoides/farmacologia , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Humanos , Inflamação/complicações , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/fisiopatologia , Lipoxigenases/imunologia , Lipoxigenases/metabolismo , Camundongos , Neoplasias/complicações , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/fisiopatologia , Prostaglandina-Endoperóxido Sintases/imunologia , Prostaglandina-Endoperóxido Sintases/metabolismo , Ratos , Receptores Eicosanoides/antagonistas & inibidores , Receptores Eicosanoides/imunologia , Receptores Eicosanoides/metabolismo , Transdução de Sinais/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos
16.
Kardiologiia ; 51(5): 37-49, 2011.
Artigo em Russo | MEDLINE | ID: mdl-21649594

RESUMO

Safe pharmacotherapy and prevention of arrhythmia is an urgent problem of modern cardiology. Essential micronutrients such as omega-3 polyunsaturated fatty acids (-3 PUF-) significantly contribute to the metabolic processes in cardiomyocytes and cardiac conduction system. This article presents a systematic analysis of anti-arrhythmic effects of omega-3 PUFA and of standardized ethyl esters of omega-3 PUFA. The currently available data indicate two fundamentally different molecular mechanisms of anti-arrhythmic effects: "slow" and "fast" types. Formulation of fundamental prospects of bioinformatic studies of molecular effects of anti-arrhythmic action of omega-3 PUF-s is presented.


Assuntos
Arritmias Cardíacas , Ácidos Graxos Ômega-3 , Sistema de Condução Cardíaco/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Ácido Araquidônico/metabolismo , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/metabolismo , Biotransformação , Fármacos Cardiovasculares/metabolismo , Fármacos Cardiovasculares/farmacologia , Ensaios Clínicos como Assunto , Citocromos/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Combinação de Medicamentos , Ácido Eicosapentaenoico/metabolismo , Ácido Eicosapentaenoico/farmacologia , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Sistema de Condução Cardíaco/metabolismo , Humanos , Canais Iônicos/metabolismo , Micronutrientes/metabolismo , Micronutrientes/farmacologia , Miócitos Cardíacos/metabolismo , Receptores Eicosanoides/metabolismo , Receptores de Prostaglandina/metabolismo
17.
Essays Biochem ; 64(3): 423-441, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32808658

RESUMO

This article describes the pathways of eicosanoid synthesis, eicosanoid receptors, the action of eicosanoids in different physiological systems, the roles of eicosanoids in selected diseases, and the major inhibitors of eicosanoid synthesis and action. Eicosanoids are oxidised derivatives of 20-carbon polyunsaturated fatty acids (PUFAs) formed by the cyclooxygenase (COX), lipoxygenase (LOX) and cytochrome P450 (cytP450) pathways. Arachidonic acid (ARA) is the usual substrate for eicosanoid synthesis. The COX pathways form prostaglandins (PGs) and thromboxanes (TXs), the LOX pathways form leukotrienes (LTs) and lipoxins (LXs), and the cytP450 pathways form various epoxy, hydroxy and dihydroxy derivatives. Eicosanoids are highly bioactive acting on many cell types through cell membrane G-protein coupled receptors, although some eicosanoids are also ligands for nuclear receptors. Because they are rapidly catabolised, eicosanoids mainly act locally to the site of their production. Many eicosanoids have multiple, sometimes pleiotropic, effects on inflammation and immunity. The most widely studied is PGE2. Many eicosanoids have roles in the regulation of the vascular, renal, gastrointestinal and female reproductive systems. Despite their vital role in physiology, eicosanoids are often associated with disease, including inflammatory disease and cancer. Inhibitors have been developed that interfere with the synthesis or action of various eicosanoids and some of these are used in disease treatment, especially for inflammation.


Assuntos
Eicosanoides/biossíntese , Eicosanoides/imunologia , Ácido Araquidônico/metabolismo , Artrite Reumatoide/metabolismo , Asma/metabolismo , Inibidores de Ciclo-Oxigenase/farmacologia , Eicosanoides/antagonistas & inibidores , Humanos , Doenças Inflamatórias Intestinais/metabolismo , Lipoxigenase/metabolismo , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Neoplasias/metabolismo , Prostaglandina-Endoperóxido Sintases/metabolismo , Receptores Eicosanoides/metabolismo
18.
Br J Pharmacol ; 177(2): 388-401, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31655025

RESUMO

BACKGROUND AND PURPOSE: The 5-lipoxygenase product 5-oxo-6E,8Z,11Z,14Z-eicosatetraenoic acid (5-oxo-ETE), acting through the OXE receptor, is a potent eosinophil chemoattractant that may be an important proinflammatory mediator in eosinophilic diseases such as asthma. We previously identified a series of indole-based OXE receptor antagonists that rapidly appear in the blood following oral administration but have limited lifetimes. The objective of this study was to increase the potency and plasma half-lives of these compounds and thereby identify the optimal candidate for future preclinical studies in monkeys, as rodents do not have an OXE receptor orthologue. EXPERIMENTAL APPROACH: We synthesized a series of substituted phenylalkyl indoles and compared their antagonist potencies, pharmacokinetics, and metabolism to those of our earlier compounds. The potencies of some of their metabolites were also investigated. KEY RESULTS: Among the compounds tested, the S-enantiomer of the m-chlorophenyl compound (S-Y048) was the most potent, with an pIC50 of about 10.8 for inhibition of 5-oxo-ETE-induced calcium mobilization in human neutrophils. When administered orally to cynomolgus monkeys, S-Y048 rapidly appeared in the blood and had a half-life in plasma of over 7 hr, considerably longer than any of the other OXE analogues tested. A major hydroxylated metabolite, with a potency close to that of its precursor, was identified in plasma. CONCLUSION AND IMPLICATIONS: Because of its highly potent antagonist activity and its long lifetime in vivo, S-Y048 may be a useful anti-inflammatory agent for the treatment of eosinophilic diseases such as asthma, allergic rhinitis, and atopic dermatitis.


Assuntos
Antialérgicos/farmacocinética , Anti-Inflamatórios/farmacocinética , Indóis/farmacocinética , Neutrófilos/efeitos dos fármacos , Receptores Eicosanoides/antagonistas & inibidores , Ativação Metabólica , Administração Oral , Animais , Antialérgicos/sangue , Antialérgicos/síntese química , Anti-Inflamatórios/sangue , Anti-Inflamatórios/síntese química , Cálcio/metabolismo , Feminino , Meia-Vida , Humanos , Hidroxilação , Indóis/sangue , Indóis/síntese química , Macaca fascicularis , Neutrófilos/metabolismo , Receptores Eicosanoides/metabolismo , Relação Estrutura-Atividade
19.
Biochem Pharmacol ; 179: 113930, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32240653

RESUMO

5-Oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE) is an arachidonic acid metabolite formed by oxidation of the 5-lipoxygenase (5-LO) product 5S-hydroxy-6,8,11,14-eicosatetraenoic acid (5S-HETE) by the NADP+-dependent enzyme 5-hydroxyeicosanoid dehydrogenase. It is the only 5-LO product with appreciable chemoattractant activity for human eosinophils. Its actions are mediated by the selective OXE receptor, which is highly expressed on eosinophils, basophils, neutrophils and monocytes. Orthologs of the OXER1 gene, which encodes this receptor, are found in many species except for rodents. Intradermal injection of 5-oxo-ETE into humans and monkeys elicits eosinophil infiltration into the skin, raising the possibility that it may play a pathophysiological role in eosinophilic diseases. To investigate this and possibly identify a novel therapy we sought to prepare synthetic antagonists that could selectively block the OXE receptor. We synthesized a series of indole-based compounds bearing substituents that mimic the regions of 5-oxo-ETE that are required for biological activity, which we modified to reduce metabolism. The most potent of these OXE receptor antagonists is S-Y048, which is a potent inhibitor of 5-oxo-ETE-induced calcium mobilization (IC50, 20 pM) and has a long half-life following oral administration. S-Y048 inhibited allergen-induced eosinophil infiltration into the skin of rhesus monkeys that had been experimentally sensitized to house dust mite and inhibited pulmonary inflammation resulting from challenge with aerosolized allergen. These data provide the first evidence for a pathophysiological role for 5-oxo-ETE in mammals and suggest that potent and selective OXE receptor antagonists such as S-Y048 may be useful therapeutic agents in asthma and other eosinophilic diseases.


Assuntos
Antiasmáticos/farmacologia , Ácidos Araquidônicos/metabolismo , Asma/tratamento farmacológico , Asma/metabolismo , Receptores Eicosanoides/metabolismo , Animais , Antiasmáticos/síntese química , Antiasmáticos/química , Ácidos Araquidônicos/farmacologia , Membrana Basal/efeitos dos fármacos , Membrana Basal/metabolismo , Modelos Animais de Doenças , Eosinófilos/efeitos dos fármacos , Eosinófilos/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Humanos , Peroxidação de Lipídeos , Terapia de Alvo Molecular/métodos , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Receptores Eicosanoides/antagonistas & inibidores , Relação Estrutura-Atividade
20.
Br J Pharmacol ; 177(2): 360-371, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31655023

RESUMO

BACKGROUND AND PURPOSE: 5-Oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE), acting via the OXE receptor, is unique among 5-lipoxygenase products in its ability to directly induce human eosinophil migration, suggesting its involvement in eosinophilic diseases. To address this hypothesis, we synthesized selective indole-based OXE receptor antagonists. Because rodents lack an OXE receptor orthologue, we sought to determine whether these antagonists could attenuate allergen-induced skin eosinophilia in sensitized monkeys. EXPERIMENTAL APPROACH: In a pilot study, cynomolgus monkeys with environmentally acquired sensitivity to Ascaris suum were treated orally with the "first-generation" OXE antagonist 230 prior to intradermal injection of 5-oxo-ETE or Ascaris extract. Eosinophils were evaluated in punch biopsy samples taken 6 or 24 hr later. We subsequently treated captive-bred rhesus monkeys sensitized to house dust mite (HDM) allergen with a more recently developed OXE antagonist, S-Y048, and evaluated its effects on dermal eosinophilia induced by either 5-oxo-ETE or HDM. KEY RESULTS: In a pilot experiment, both 5-oxo-ETE and Ascaris extract induced dermal eosinophilia in cynomolgus monkeys, which appeared to be reduced by 230. Subsequently, we found that the related OXE antagonist S-Y048 is a highly potent inhibitor of 5-oxo-ETE-induced activation of rhesus monkey eosinophils in vitro and has a half-life in plasma of about 6 hr after oral administration. S-Y048 significantly inhibited eosinophil infiltration into the skin in response to both intradermally administered 5-oxo-ETE and HDM. CONCLUSIONS AND IMPLICATIONS: 5-Oxo-ETE may play an important role in allergen-induced eosinophilia. Blocking its effects with S-Y048 may provide a novel therapeutic approach for eosinophilic diseases.


Assuntos
Alérgenos , Antialérgicos/farmacologia , Quimiotaxia de Leucócito/efeitos dos fármacos , Dermatite/prevenção & controle , Eosinofilia/prevenção & controle , Eosinófilos/efeitos dos fármacos , Receptores Eicosanoides/antagonistas & inibidores , Pele/efeitos dos fármacos , Animais , Antialérgicos/síntese química , Antialérgicos/farmacocinética , Antígenos de Helmintos/imunologia , Ácidos Araquidônicos , Ascaris suum/imunologia , Células Cultivadas , Dermatite/imunologia , Dermatite/metabolismo , Modelos Animais de Doenças , Eosinofilia/imunologia , Eosinofilia/metabolismo , Eosinófilos/imunologia , Eosinófilos/metabolismo , Proteínas de Insetos/imunologia , Macaca fascicularis , Macaca mulatta , Masculino , Projetos Piloto , Pyroglyphidae/imunologia , Receptores Eicosanoides/metabolismo , Transdução de Sinais , Pele/imunologia , Pele/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA