RESUMO
Transected axons typically fail to regenerate in the central nervous system (CNS), resulting in chronic neurological disability in individuals with traumatic brain or spinal cord injury, glaucoma and ischemia-reperfusion injury of the eye. Although neuroinflammation is often depicted as detrimental, there is growing evidence that alternatively activated, reparative leukocyte subsets and their products can be deployed to improve neurological outcomes. In the current study, we identify a unique granulocyte subset, with characteristics of an immature neutrophil, that had neuroprotective properties and drove CNS axon regeneration in vivo, in part via secretion of a cocktail of growth factors. This pro-regenerative neutrophil promoted repair in the optic nerve and spinal cord, demonstrating its relevance across CNS compartments and neuronal populations. Our findings could ultimately lead to the development of new immunotherapies that reverse CNS damage and restore lost neurological function across a spectrum of diseases.
Assuntos
Axônios/metabolismo , Comunicação Celular , Sistema Nervoso Central/citologia , Sistema Nervoso Central/metabolismo , Regeneração Nervosa , Neurônios/metabolismo , Neutrófilos/metabolismo , Animais , Biomarcadores , Plasticidade Celular/imunologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/imunologia , Sistema Nervoso Central/imunologia , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Camundongos , Infiltração de Neutrófilos/imunologia , Neutrófilos/imunologia , Nervo Óptico/imunologia , Nervo Óptico/metabolismo , Receptores de Interleucina-8B/metabolismo , Medula Espinal/citologia , Medula Espinal/metabolismo , Transcriptoma , Zimosan/metabolismo , Zimosan/farmacologiaRESUMO
Neutrophils are expanded and abundant in cancer-bearing hosts. Under the influence of CXCR1 and CXCR2 chemokine receptor agonists and other chemotactic factors produced by tumors, neutrophils, and granulocytic myeloid-derived suppressor cells (MDSCs) from cancer patients extrude their neutrophil extracellular traps (NETs). In our hands, CXCR1 and CXCR2 agonists proved to be the major mediators of cancer-promoted NETosis. NETs wrap and coat tumor cells and shield them from cytotoxicity, as mediated by CD8+ T cells and natural killer (NK) cells, by obstructing contact between immune cells and the surrounding target cells. Tumor cells protected from cytotoxicity by NETs underlie successful cancer metastases in mice and the immunotherapeutic synergy of protein arginine deiminase 4 (PAD4) inhibitors, which curtail NETosis with immune checkpoint inhibitors. Intravital microscopy provides evidence of neutrophil NETs interfering cytolytic cytotoxic T lymphocytes (CTLs) and NK cell contacts with tumor cells.
Assuntos
Armadilhas Extracelulares/metabolismo , Neoplasias Experimentais/terapia , Receptores de Quimiocinas/agonistas , Receptores de Interleucina-8A/agonistas , Receptores de Interleucina-8B/agonistas , Animais , Linhagem Celular Tumoral , Citotoxicidade Imunológica/imunologia , Células HT29 , Humanos , Microscopia Intravital/métodos , Células Matadoras Naturais/imunologia , Ligantes , Camundongos , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/metabolismo , Receptores de Quimiocinas/imunologia , Receptores de Quimiocinas/metabolismo , Receptores de Interleucina-8A/imunologia , Receptores de Interleucina-8A/metabolismo , Receptores de Interleucina-8B/imunologia , Receptores de Interleucina-8B/metabolismo , Linfócitos T Citotóxicos/imunologiaRESUMO
Chemokines and their receptors mediate cell migration, which influences multiple fundamental biological processes and disease conditions such as inflammation and cancer1. Although ample effort has been invested into the structural investigation of the chemokine receptors and receptor-chemokine recognition2-4, less is known about endogenous chemokine-induced receptor activation and G-protein coupling. Here we present the cryo-electron microscopy structures of interleukin-8 (IL-8, also known as CXCL8)-activated human CXC chemokine receptor 2 (CXCR2) in complex with Gi protein, along with a crystal structure of CXCR2 bound to a designed allosteric antagonist. Our results reveal a unique shallow mode of binding between CXCL8 and CXCR2, and also show the interactions between CXCR2 and Gi protein. Further structural analysis of the inactive and active states of CXCR2 reveals a distinct activation process and the competitive small-molecule antagonism of chemokine receptors. In addition, our results provide insights into how a G-protein-coupled receptor is activated by an endogenous protein molecule, which will assist in the rational development of therapeutics that target the chemokine system for better pharmacological profiles.
Assuntos
Modelos Moleculares , Receptores de Interleucina-8B/química , Receptores de Interleucina-8B/metabolismo , Transdução de Sinais , Regulação Alostérica , Sítio Alostérico , Quimiocinas/classificação , Quimiocinas/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Humanos , Interleucina-8/metabolismo , Ligação Proteica , Relação Estrutura-Atividade , Especificidade por SubstratoRESUMO
BACKGROUND & AIMS: Because pancreatic cancer responds poorly to chemotherapy and immunotherapy, it is necessary to identify novel targets and compounds to overcome resistance to treatment. METHODS: This study analyzed genomic single nucleotide polymorphism sequencing, single-cell RNA sequencing, and spatial transcriptomics. Ehf-knockout mice, KPC (LSL-KrasG12D/+, LSL-Trp53R172H/+ and Pdx1-Cre) mice, CD45.1+ BALB/C nude mice, and CD34+ humanized mice were also used as subjects. Multiplexed immunohistochemistry and flow cytometry were performed to investigate the proportion of tumor-infiltrated C-X-C motif chemokine receptor 2 (CXCR2)+ neutrophils. In addition, multiplexed cytokines assays and chromatin immunoprecipitation assays were used to examine the mechanism. RESULTS: The TP53 mutation-mediated loss of tumoral EHF increased the recruitment of CXCR2+ neutrophils, modulated their spatial distribution, and further induced chemo- and immunotherapy resistance in clinical cohorts and preclinical syngeneic mice models. Mechanistically, EHF deficiency induced C-X-C motif chemokine ligand 1 (CXCL1) transcription to enhance in vitro and in vivo CXCR2+ neutrophils migration. Moreover, CXCL1 or CXCR2 blockade completely abolished the effect, indicating that EHF regulated CXCR2+ neutrophils migration in a CXCL1-CXCR2-dependent manner. The depletion of CXCR2+ neutrophils also blocked the in vivo effects of EHF deficiency on chemotherapy and immunotherapy resistance. The single-cell RNA-sequencing results of PDAC treated with Nifurtimox highlighted the therapeutic significance of Nifurtimox by elevating the expression of tumoral EHF and decreasing the weightage of CXCL1-CXCR2 pathway within the microenvironment. Importantly, by simultaneously inhibiting the JAK1/STAT1 pathway, it could significantly suppress the recruitment and function of CXCR2+ neutrophils, further sensitizing PDAC to chemotherapy and immunotherapies. CONCLUSIONS: The study demonstrated the role of EHF in the recruitment of CXCR2+ neutrophils and the promising role of Nifurtimox in sensitizing pancreatic cancer to chemotherapy and immunotherapy.
Assuntos
Quimiocina CXCL1 , Resistencia a Medicamentos Antineoplásicos , Infiltração de Neutrófilos , Neutrófilos , Neoplasias Pancreáticas , Receptores de Interleucina-8B , Animais , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/metabolismo , Receptores de Interleucina-8B/antagonistas & inibidores , Humanos , Infiltração de Neutrófilos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/efeitos dos fármacos , Camundongos , Quimiocina CXCL1/metabolismo , Quimiocina CXCL1/genética , Linhagem Celular Tumoral , Camundongos Knockout , Microambiente Tumoral , Imunoterapia/métodos , Camundongos Nus , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Camundongos Endogâmicos BALB C , Antineoplásicos/farmacologia , Transdução de Sinais , Mutação , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologiaRESUMO
Rosacea is a chronic inflammatory skin disorder that can lead to fibrosis. However, the mechanisms underlying fibrosis in the later stages of rosacea have been less thoroughly investigated. Interleukin-17A (IL-17A) has been implicated in both inflammation and organ fibrosis; however, the effectiveness and mechanism of IL-17A-neutralizing antibodies in the later stages of rosacea-related fibrosis remain unclear. In this study, we induced rosacea-like lesions in mice using LL-37 and administered IL-17A-neutralizing antibodies. The results indicated that the IL-17A-neutralizing antibodies alleviated skin damage, reduced skin thickness, and decreased the secretion of inflammatory factors (TNF-α, CAMP, TLR4, P-NF-kB), angiogenesis-related factors (CD31, VEGF), and the TGF-ß1 signaling pathway, along with factors associated with epithelial-mesenchymal transition and the deposition of fibrosis-related proteins (COL1) in the rosacea-like mouse models. Furthermore, the IL-17A-neutralizing antibodies effectively diminished the expression of IL-17, IL-17R, CXCL5, and CXCR2 in the skin. Our findings demonstrate that IL-17A-neutralizing antibodies inhibit the activation of the CXCL5/CXCR2 axis in rosacea-like skin tissue, thereby ameliorating inflammation and fibrosis associated with the condition.
Assuntos
Anticorpos Neutralizantes , Quimiocina CXCL5 , Fibrose , Inflamação , Interleucina-17 , Receptores de Interleucina-8B , Rosácea , Animais , Interleucina-17/metabolismo , Anticorpos Neutralizantes/farmacologia , Camundongos , Rosácea/tratamento farmacológico , Rosácea/metabolismo , Rosácea/patologia , Receptores de Interleucina-8B/metabolismo , Receptores de Interleucina-8B/antagonistas & inibidores , Inflamação/metabolismo , Inflamação/patologia , Inflamação/tratamento farmacológico , Quimiocina CXCL5/metabolismo , Transdução de Sinais/efeitos dos fármacos , Humanos , Pele/metabolismo , Pele/patologia , Pele/efeitos dos fármacos , Feminino , Camundongos Endogâmicos C57BLRESUMO
Interleukin (IL)-33 released from airway epithelial cells plays a vital role in shaping type 2 immune responses by binding to the ST2 receptor present in many immune cells, including mast cells (MCs). Intranasal administration of IL-33 in mice induces type 2 lung inflammation, an increase in lung MC progenitors, and transepithelial migration of leukocytes to the bronchoalveolar space. The aim of this study was to determine the contribution of MCs in IL-33-induced lung pathology. Four daily intranasal administrations of IL-33 reduced spirometry-like lung function parameters, induced airway hyperresponsiveness, and increased leukocytes in bronchoalveolar lavage fluid (BAL) in an ST2-dependent manner. MC-deficient (Cpa3cre/+) mice, which lack MCs, had intact spirometry-like lung function but slightly reduced airway hyperresponsiveness, possibly related to reduced IL-33 or serotonin. Strikingly, Cpa3cre/+ mice exposed to IL-33 had 50% reduction in BAL T-cells, and CXCL1 and IL-33 were reduced in the lung. Intranasal IL-33 induced CXCR2 expression in T-cells in a MC-independent fashion. Furthermore, IL-33-induced lung MCs were immunopositive for CXCL1 and localized in the epithelium of wild-type mice. These results suggest that MCs are required to sustain intact lung IL-33 and CXCL1 levels in mice with IL-33-induced airway inflammation, thereby facilitating T-cell accumulation in the bronchoalveolar space.
Assuntos
Líquido da Lavagem Broncoalveolar , Proteína 1 Semelhante a Receptor de Interleucina-1 , Interleucina-33 , Mastócitos , Camundongos Knockout , Linfócitos T , Animais , Interleucina-33/metabolismo , Interleucina-33/imunologia , Mastócitos/imunologia , Mastócitos/metabolismo , Camundongos , Líquido da Lavagem Broncoalveolar/imunologia , Líquido da Lavagem Broncoalveolar/citologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Camundongos Endogâmicos C57BL , Pulmão/imunologia , Pulmão/patologia , Pneumonia/imunologia , Pneumonia/metabolismo , Receptores de Interleucina-8B/metabolismo , Quimiocina CXCL1/metabolismoRESUMO
BACKGROUND: Chemokine signaling within the tumor microenvironment can promote tumor progression. Although CCR1 and CXCR2 on myeloid cells could be involved in tumor progression, it remains elusive what effect would be observed if both of those are blocked. METHODS: We employed two syngeneic colorectal cancer mouse models: a transplanted tumor model and a liver metastasis model. We generated double-knockout mice for CCR1 and CXCR2, and performed bone marrow (BM) transfer experiments in which sub-lethally irradiated wild-type mice were reconstituted with BM from either wild-type, Ccr1-/-, Cxcr2-/- or Ccr1-/-Cxcr2-/- mice. RESULTS: Myeloid cells that express MMP2, MMP9 and VEGF were accumulated around both types of tumors through CCR1- and CXCR2-mediated pathways. Mice reconstituted with Ccr1-/-Cxcr2-/- BM exhibited the strongest suppression of tumor growth and liver metastasis compared with other three groups. Depletion of CCR1+CXCR2+ myeloid cells led to a higher frequency of CD8+ T cells, whereas the numbers of Ly6G+ neutrophils, FOXP3+ Treg cells and CD31+ endothelial cells were significantly decreased. Furthermore, treatment with a neutralizing anti-CCR1 mAb to mice reconstituted with Cxcr2-/- BM significantly suppressed tumor growth and liver metastasis. CONCLUSION: Dual blockade of CCR1 and CXCR2 pathways in myeloid cells could be an effective therapy against colorectal cancer.
Assuntos
Camundongos Knockout , Células Mieloides , Receptores CCR1 , Receptores de Interleucina-8B , Microambiente Tumoral , Animais , Receptores CCR1/metabolismo , Receptores CCR1/genética , Receptores CCR1/antagonistas & inibidores , Receptores de Interleucina-8B/antagonistas & inibidores , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/metabolismo , Camundongos , Células Mieloides/metabolismo , Células Mieloides/imunologia , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/metabolismo , Camundongos Endogâmicos C57BL , Linhagem Celular Tumoral , Linfócitos T CD8-Positivos/imunologiaRESUMO
In a typical G protein coupled receptor drug discovery campaign, an in vitro primary functional screening assay is often established in a recombinant system overexpressing the target of interest, which offers advantages with respect to overall throughput and robustness of compound testing. Subsequently, compounds are then progressed into more physiologically relevant but lower throughput ex vivo primary cell assays and finally in vivo studies. Here we describe a dynamic mass redistribution (DMR) assay that has been developed in a format suitable to support medium throughput drug screening in primary human neutrophils. Neutrophils are known to express both CXC chemokine receptor (CXCR) 1 and CXCR2 that are thought to play significant roles in various inflammatory disorders and cancer. Using multiple relevant chemokine ligands and a range of selective and nonselective small and large molecule antagonists that block CXCR1 and CXCR2 responses, we demonstrate distinct pharmacological profiles in neutrophil DMR from those observed in recombinant assays but predictive of activity in neutrophil chemotaxis and CD11b upregulation, a validated target engagement marker previously used in clinical studies of CXCR2 antagonists. The primary human neutrophil DMR cell system is highly reproducible, robust, and less prone to donor variability observed in CD11b and chemotaxis assays and thus provides a unique, more physiologically relevant, and higher throughput assay to support drug discovery and translation to early clinical trials. SIGNIFICANCE STATEMENT: Neutrophil dynamic mass redistribution assays provide a higher throughput screening assay to profile compounds in primary cells earlier in the screening cascade enabling a higher level of confidence in progressing the development of compounds toward the clinic. This is particularly important for chemokine receptors where redundancy contributes to a lack of correlation between recombinant screening assays and primary cells, with the coexpression of related receptors confounding results.
Assuntos
Interleucina-8 , Neutrófilos , Humanos , Interleucina-8/metabolismo , Receptores de Quimiocinas , Quimiocinas/metabolismo , Quimiotaxia de Leucócito/fisiologia , Receptores de Interleucina-8B/metabolismo , Receptores de Interleucina-8A/metabolismoRESUMO
BACKGROUND: Chimeric antigen receptor (CAR)-NK cell therapy has shown remarkable clinical efficacy and safety in the treatment of hematological malignancies. However, this efficacy was limited in solid tumors owing to hostile tumor microenvironment (TME). Radiotherapy is commonly used for solid tumors and proved to improve the TME. Therefore, the combination with radiotherapy would be a potential strategy to improve therapeutic efficacy of CAR-NK cells for solid tumors. METHODS: Glypican-3 (GPC3) was used as a target antigen of CAR-NK cell for hepatocellular carcinoma (HCC). To promote migration towards HCC, CXCR2-armed CAR-NK92 cells targeting GPC3 were first developed, and their cytotoxic and migration activities towards HCC cells were evaluated. Next, the effects of irradiation on the anti-tumor activity of CAR-NK92 cells were assessed in vitro and in HCC-bearing NCG mice. Lastly, to demonstrate the potential mechanism mediating the sensitized effect of irradiation on CAR-NK cells, the differential gene expression profiles induced by irradiation were analyzed and the expression of some important ligands for the NK-cell activating receptors were further determined by qRT-PCR and flow cytometry. RESULTS: In this study, we developed CXCR2-armed GPC3-targeting CAR-NK92 cells that exhibited specific and potent killing activity against HCC cells and the enhanced migration towards HCC cells. Pretreating HCC cells with irradiation enhanced in vitro anti-HCC effect and migration activity of CXCR2-armed CAR-NK92 cells. We further found that only high-dose (8 Gy) but not low-dose (2 Gy) irradiation in one fraction could significantly enhanced in vivo anti-HCC activity of CXCR2-armed CAR-NK92 cells. Irradiation with 8 Gy significantly up-regulated the expression of NK cell-activating ligands on HCC cells. CONCLUSIONS: Our results indicate the evidence that irradiation could efficiently enhance the anti-tumor effect of CAR-NK cells in solid tumor model. The combination with radiotherapy would be an attractive strategy to improve therapeutic efficacy of CAR-NK cells for solid tumors.
Assuntos
Carcinoma Hepatocelular , Movimento Celular , Células Matadoras Naturais , Neoplasias Hepáticas , Receptores de Antígenos Quiméricos , Carcinoma Hepatocelular/radioterapia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/imunologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/efeitos da radiação , Neoplasias Hepáticas/radioterapia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/imunologia , Animais , Humanos , Linhagem Celular Tumoral , Receptores de Antígenos Quiméricos/metabolismo , Movimento Celular/efeitos da radiação , Glipicanas/metabolismo , Receptores de Interleucina-8B/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Imunoterapia Adotiva/métodos , Microambiente Tumoral/efeitos da radiação , Citotoxicidade Imunológica/efeitos da radiaçãoRESUMO
Gastric cancer (GC) is one of the most common malignant tumors in the world, and current treatments are still based on surgery and drug therapy. However, due to the complexity of immunosuppression and drug resistance, the treatment of gastric cancer still faces great challenges. Chemokine receptor 2 (CXCR2) is one of the most common therapeutic targets in targeted therapy. As a G protein-coupled receptor, CXCR2 and its ligands play important roles in tumorigenesis and progression. The abnormal expression of these genes in cancer plays a decisive role in the recruitment and activation of white blood cells, angiogenesis, and cancer cell proliferation, and CXCR2 is involved in various stages of tumor development. Therefore, interfering with the interaction between CXCR2 and its ligands is considered a possible target for the treatment of various tumors, including gastric cancer.
Assuntos
Receptores de Interleucina-8B , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Receptores de Interleucina-8B/metabolismo , Animais , Terapia de Alvo Molecular/métodos , Transdução de Sinais , Proliferação de CélulasRESUMO
BCR::ABL1 negative myeloproliferative neoplasms (MPN) form a distinct group of hematologic malignancies characterized by sustained proliferation of cells from multiple myeloid lineages. With a median survival of 16-35 months in patients with high-risk disease, primary myelofibrosis (PMF) is considered the most aggressive entity amongst all BCR::ABL1 MPN. Additionally, for a significant subset of patients, MPN evolve into secondary acute myeloid leukemia (AML), which has an even poorer prognosis compared to de novo AML. As the exact mechanisms of disease development and progression remain to be elucidated, current therapeutic approaches fail to prevent disease progression or transformation into secondary AML. As each MPN entity is characterized by sustained activation of various immune cells and raised cytokine concentrations within bone marrow (BM) and peripheral blood (PB), MPN may be considered to be typical inflammation-related malignancies. However, the exact role and consequences of increased cytokine concentrations within BM and PB plasma has still not been completely established. Up-regulated cytokines can stimulate cellular proliferation, or contribute to the development of an inflammation-related BM niche resulting in genotoxicity and thereby supporting mutagenesis. The neutrophil chemoattractant CXCL8 is of specific interest as its concentration is increased within PB and BM plasma of patients with PMF. Increased concentration of CXCL8 negatively correlates with overall survival. Furthermore, blockage of the CXCR1/2 axis appears to be able to reduce BM fibrosis and megakaryocyte dysmorphia in murine models. In this review, we summarize available evidence on the role of the CXCL8-CXCR1/2 axis within the pathogenesis of PMF, and discuss potential therapeutic modalities targeting either CXCL8 or its cognate receptors CXCR1/2.
Assuntos
Interleucina-8 , Mielofibrose Primária , Receptores de Interleucina-8A , Receptores de Interleucina-8B , Animais , Humanos , Interleucina-8/metabolismo , Mielofibrose Primária/metabolismo , Mielofibrose Primária/patologia , Mielofibrose Primária/genética , Mielofibrose Primária/diagnóstico , Mielofibrose Primária/etiologia , Mielofibrose Primária/mortalidade , Receptores de Interleucina-8A/metabolismo , Receptores de Interleucina-8A/genética , Receptores de Interleucina-8B/metabolismo , Receptores de Interleucina-8B/genética , Transdução de SinaisRESUMO
BACKGROUND: The human CXC chemokine receptor 2 (CXCR2) is a G protein-coupled receptor (GPCR) interacting with multiple chemokines (i.e., CXC chemokine ligands CXCL1-3 and CXCL5-8). It is involved in inflammatory diseases as well as cancer. Consequently, much effort is put into the identification of CXCR2 targeting drugs. Fundamental research regarding CXCR2 signaling is mainly focused on CXCL8 (IL-8), which is the first and best described high-affinity ligand for CXCR2. Much less is known about CXCR2 activation induced by other chemokines and it remains to be determined to what extent potential ligand bias exists within this signaling system. This insight might be important to unlock new opportunities in therapeutic targeting of CXCR2. METHODS: Ligand binding was determined in a competition binding assay using labeled CXCL8. Activation of the ELR + chemokine-induced CXCR2 signaling pathways, including G protein activation, ß-arrestin1/2 recruitment, and receptor internalization, were quantified using NanoBRET-based techniques. Ligand bias within and between these pathways was subsequently investigated by ligand bias calculations, with CXCL8 as the reference CXCR2 ligand. Statistical significance was tested through a one-way ANOVA followed by Dunnett's multiple comparisons test. RESULTS: All chemokines (CXCL1-3 and CXCL5-8) were able to displace CXCL8 from CXCR2 with high affinity and activated the same panel of G protein subtypes (Gαi1, Gαi2, Gαi3, GαoA, GαoB, and Gα15) without any statistically significant ligand bias towards any one type of G protein. Compared to CXCL8, all other chemokines were less potent in ß-arrestin1 and -2 recruitment and receptor internalization while equivalently activating G proteins, indicating a G protein activation bias for CXCL1,-2,-3,-5,-6 and CXCL7. Lastly, with CXCL8 used as reference ligand, CXCL2 and CXCL6 showed ligand bias towards ß-arrestin1/2 recruitment compared to receptor internalization. CONCLUSION: This study presents an in-depth analysis of signaling bias upon CXCR2 stimulation by its chemokine ligands. Using CXCL8 as a reference ligand for bias index calculations, no ligand bias was observed between chemokines with respect to activation of separate G proteins subtypes or recruitment of ß-arrestin1/2 subtypes, respectively. However, compared to ß-arrestin recruitment and receptor internalization, CXCL1-3 and CXCL5-7 were biased towards G protein activation when CXCL8 was used as reference ligand.
Assuntos
Quimiocinas , Receptores de Interleucina-8B , Humanos , Receptores de Interleucina-8B/metabolismo , beta-Arrestinas/metabolismo , Ligantes , Quimiocinas/metabolismo , Proteínas de Ligação ao GTP/metabolismoRESUMO
BACKGROUND: The incidence of diabetic kidney disease (DKD) continues to rapidly increase, with limited available treatment options. One of the hallmarks of DKD is persistent inflammation, but the underlying molecular mechanisms of early diabetic kidney injury remain poorly understood. C-X-C chemokine receptor 2 (CXCR2), plays an important role in the progression of inflammation-related vascular diseases and may bridge between glomerular endothelium and persistent inflammation in DKD. METHODS: Multiple methods were employed to assess the expression levels of CXCR2 and its ligands, as well as renal inflammatory response and endothelial glycocalyx shedding in patients with DKD. The effects of CXCR2 on glycocalyx shedding, and persistent renal inflammation was examined in a type 2 diabetic mouse model with Cxcr2 knockout specifically in endothelial cells (DKD-Cxcr2 eCKO mice), as well as in glomerular endothelial cells (GECs), cultured in high glucose conditions. RESULTS: CXCR2 was associated with early renal decline in DKD patients, and endothelial-specific knockout of CXCR2 significantly improved renal function in DKD mice, reduced inflammatory cell infiltration, and simultaneously decreased the expression of proinflammatory factors and chemokines in renal tissue. In DKD conditions, glycocalyx shedding was suppressed in endothelial Cxcr2 knockout mice compared to Cxcr2 L/L mice. Modulating CXCR2 expression also affected high glucose-induced inflammation and glycocalyx shedding in GECs. Mechanistically, CXCR2 deficiency inhibited the activation of NF-κB signaling, thereby regulating inflammation, restoring the endothelial glycocalyx, and alleviating DKD. CONCLUSIONS: Taken together, under DKD conditions, activation of CXCR2 exacerbates inflammation through regulation of the NF-κB pathway, leading to endothelial glycocalyx shedding and deteriorating renal function. Endothelial CXCR2 deficiency has a protective role in inflammation and glycocalyx dysfunction, suggesting its potential as a promising therapeutic target for DKD treatment.
Assuntos
Nefropatias Diabéticas , NF-kappa B , Receptores de Interleucina-8B , Animais , Humanos , Camundongos , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Células Endoteliais/metabolismo , Endotélio/metabolismo , Glucose , Glicocálix/metabolismo , Inflamação/metabolismo , Camundongos Knockout , NF-kappa B/metabolismo , Receptores de Quimiocinas/uso terapêutico , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/metabolismo , Complicações do Diabetes/genética , Complicações do Diabetes/metabolismoRESUMO
OBJECTIVE: Midpalatal expansion (MPE) is routinely employed to treat transverse maxillary arch deficiency. Neutrophils are indispensable for recruiting bone marrow stromal cells (BMSCs) at the initial stage of bone regeneration. This study aimed to explore whether neutrophils participate in MPE and how they function during bone formation under mechanical stretching. MATERIALS AND METHODS: The presence and phenotype of neutrophils in the midpalatal suture during expansion were detected by flow cytometry and immunofluorescence staining. The possible mechanism of neutrophil recruitment and polarization was explored in vitro by exposing vascular endothelial cells (VECs) to cyclic tensile strain. RESULTS: The number of neutrophils in the distracted suture peaked on Day 3, and N2-type neutrophils significantly increased on Day 5 after force application. The depletion of circulatory neutrophils reduced bone volume by 43.6% after 7-day expansion. The stretched VECs recruited neutrophils via a CXCR2 mechanism in vitro, which then promoted BMSC osteogenic differentiation through the VEGFA/VEGFR2 axis. Consistently, these neutrophils showed higher expression of canonical N2 phenotype genes, including CD206 and Arg1. CONCLUSIONS: These results suggested that neutrophils participated in early bone formation during MPE. Based on these findings, we propose that stretched VECs recruited and polarized neutrophils, which, in turn, induced BMSC osteogenic differentiation.
Assuntos
Diferenciação Celular , Neutrófilos , Osteogênese , Fator A de Crescimento do Endotélio Vascular , Neutrófilos/fisiologia , Osteogênese/fisiologia , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Endoteliais , Células-Tronco Mesenquimais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Técnica de Expansão Palatina , Receptores de Interleucina-8B/metabolismo , Camundongos , Masculino , Células Cultivadas , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos/fisiologiaRESUMO
Multiple sclerosis (MS) is a chronic neurological disease of the central nervous system driven by peripheral immune cell infiltration and glial activation. The pathological hallmark of MS is demyelination, and mounting evidence suggests neuronal damage in gray matter is a major contributor to disease irreversibility. While T cells are found in both gray and white matter of MS tissue, they are typically confined to the white matter of the most commonly used mouse model of MS, experimental autoimmune encephalomyelitis (EAE). Here, we used a modified EAE mouse model (Type-B EAE) that displays severe neuronal damage to investigate the interplay between peripheral immune cells and glial cells in the event of neuronal damage. We show that CD4+ T cells migrate to the spinal cord gray matter, preferentially to ventral horns. Compared to CD4+ T cells in white matter, gray matter-infiltrated CD4+ T cells were mostly immobilized and interacted with neurons, which are behaviors associated with detrimental effects to normal neuronal function. T cell-specific deletion of CXCR2 significantly decreased CD4+ T cell infiltration into gray matter in Type-B EAE mice. Further, astrocyte-targeted deletion of TAK1 inhibited production of CXCR2 ligands such as CXCL1 in gray matter, successfully prevented T cell migration into spinal cord gray matter, and averted neuronal damage and motor dysfunction in Type-B EAE mice. This study identifies astrocyte chemokine production as a requisite for the invasion of CD4+T cell into the gray matter to induce neuronal damage.
Assuntos
Astrócitos/patologia , Linfócitos T CD4-Positivos/metabolismo , Substância Cinzenta/patologia , Esclerose Múltipla/patologia , Receptores de Interleucina-8B/metabolismo , Animais , Astrócitos/metabolismo , Linfócitos T CD4-Positivos/patologia , Quimiocina CXCL1/metabolismo , Quimiocina CXCL5/metabolismo , Quimiocinas/metabolismo , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/patologia , Feminino , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Corno Ventral da Medula Espinal/patologia , Imagem com Lapso de TempoRESUMO
Studies conducted on animal models have identified several therapeutic targets for myelofibrosis, the most severe of the myeloproliferative neoplasms. Unfortunately, many of the drugs which were effective in pre-clinical settings had modest efficacy when tested in the clinic. This discrepancy suggests that treatment for this disease requires combination therapies. To rationalize possible combinations, the efficacy in the Gata1low model of drugs currently used for these patients (the JAK1/2 inhibitor Ruxolitinib) was compared with that of drugs targeting other abnormalities, such as p27kip1 (Aplidin), TGF-ß (SB431542, inhibiting ALK5 downstream to transforming growth factor beta (TGF-ß) signaling and TGF-ß trap AVID200), P-selectin (RB40.34), and CXCL1 (Reparixin, inhibiting the CXCL1 receptors CXCR1/2). The comparison was carried out by expressing the endpoints, which had either already been published or had been retrospectively obtained for this study, as the fold change of the values in the corresponding vehicles. In this model, only Ruxolitinib was found to decrease spleen size, only Aplidin and SB431542/AVID200 increased platelet counts, and with the exception of AVID200, all the inhibitors reduced fibrosis and microvessel density. The greatest effects were exerted by Reparixin, which also reduced TGF-ß content. None of the drugs reduced osteopetrosis. These results suggest that future therapies for myelofibrosis should consider combining JAK1/2 inhibitors with drugs targeting hematopoietic stem cells (p27Kip1) or the pro-inflammatory milieu (TGF-ß or CXCL1).
Assuntos
Janus Quinase 1 , Selectina-P , Mielofibrose Primária , Pirimidinas , Receptores de Interleucina-8B , Fator de Crescimento Transformador beta , Mielofibrose Primária/tratamento farmacológico , Mielofibrose Primária/metabolismo , Mielofibrose Primária/patologia , Fator de Crescimento Transformador beta/metabolismo , Animais , Janus Quinase 1/antagonistas & inibidores , Janus Quinase 1/metabolismo , Selectina-P/metabolismo , Receptores de Interleucina-8B/antagonistas & inibidores , Receptores de Interleucina-8B/metabolismo , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Receptores de Interleucina-8A/antagonistas & inibidores , Receptores de Interleucina-8A/metabolismo , Camundongos , Janus Quinase 2/metabolismo , Janus Quinase 2/antagonistas & inibidores , Nitrilas/uso terapêutico , Nitrilas/farmacologia , Modelos Animais de Doenças , Quimioterapia Combinada , Fator de Transcrição GATA1/metabolismo , Fator de Transcrição GATA1/genética , Pirazóis/farmacologia , Pirazóis/uso terapêutico , HumanosRESUMO
Muscle contractile activity stimulates intramuscular recruitment of immune cells including neutrophils emerging to serve as a prerequisite for exerting proper muscular performance, although the underlying mechanisms and their contributions to myokine upregulation remain ill-defined. We previously reported that pharmacological inhibition of CX3CR1, a fractalkine receptor, dampens gnawing-dependent neutrophil recruitment into masseter muscles along with compromising their masticatory activity. By using a running exercise model, we herein demonstrated that hindlimb muscles require collaborative actions of both CX3CR1- and CXCR2-mediated signals for achieving neutrophil recruitment, upregulation of myokines including interleukin (IL)-6, enhanced GLUT4 translocation, and adequate endurance capability. Mechanistically, we revealed that a combination of CX3CR1 and CXCR2 antagonists, i.e., AZD8797 and SB2205002, inhibits exercise-inducible ICAM-1 and fractalkine upregulations in the area of the endothelium and muscle-derived CXCL1 upregulation, both of which apparently contribute to the intramuscular neutrophil accumulation in working muscles. Intriguingly, we also observed that 2 h of running results in intramuscular augmentation of innate lymphoid type 2 cells (ILC2s) markers, i.e., Bcl11b mRNA levels and anti-GATA-3-antibody-positive signals, and that these effects are completely abolished by administration of the combination of CX3CR1 and CXCR2 antagonists. Taken together, our findings strongly suggest that the exercise-evoked regional interplay among working myofibers, the adjacent endothelium, and recruited immune cells including neutrophils and possibly ILC2s, mediated through these local factors, plays a key role in the organization of the intramuscular microenvironment supporting the performance of hindlimb muscles during running.NEW & NOTEWORTHY This study provides compelling evidence that running-dependent intramuscular neutrophil recruitment requires both CX3CR1- and CXCR2-mediated signals that prime not only myofiber-derived myokine upregulations but also endothelium ICAM-1 and fractalkine expressions. The results revealed the importance of the exercise-evoked regional interplay among working myofibers, the adjacent endothelium, and recruited immune cells, including neutrophils and possibly ILC2s, which plays a key role in the organization of the intramuscular microenvironment supporting the performance of hindlimb muscles during running.
Assuntos
Imunidade Inata , Corrida , Animais , Quimiocina CX3CL1/metabolismo , Quimiocina CX3CL1/farmacologia , Molécula 1 de Adesão Intercelular/metabolismo , Molécula 1 de Adesão Intercelular/farmacologia , Interleucina-6/metabolismo , Linfócitos , Infiltração de Neutrófilos , Neutrófilos , Regulação para Cima , Receptores de Interleucina-8B/metabolismo , Receptor 1 de Quimiocina CX3C/metabolismoRESUMO
BACKGROUND: Though the CXCR2 chemokine receptor is known to play a key role in cancer growth and response to therapy, a direct link between expression of CXCR2 in tumor progenitor cells during induction of tumorigenesis has not been established. METHODS: To characterize the role of CXCR2 during melanoma tumorigenesis, we generated tamoxifen-inducible tyrosinase-promoter driven BrafV600E/Pten-/-/Cxcr2-/- and NRasQ61R/INK4a-/-/Cxcr2-/- melanoma models. In addition, the effects of a CXCR1/CXCR2 antagonist, SX-682, on melanoma tumorigenesis were evaluated in BrafV600E/Pten-/- and NRasQ61R/INK4a-/- mice and in melanoma cell lines. Potential mechanisms by which Cxcr2 affects melanoma tumorigenesis in these murine models were explored using RNAseq, mMCP-counter, ChIPseq, and qRT-PCR; flow cytometry, and reverse phosphoprotein analysis (RPPA). RESULTS: Genetic loss of Cxcr2 or pharmacological inhibition of CXCR1/CXCR2 during melanoma tumor induction resulted in key changes in gene expression that reduced tumor incidence/growth and increased anti-tumor immunity. Interestingly, after Cxcr2 ablation, Tfcp2l1, a key tumor suppressive transcription factor, was the only gene significantly induced with a log2 fold-change greater than 2 in these three different melanoma models. CONCLUSIONS: Here, we provide novel mechanistic insight revealing how loss of Cxcr2 expression/activity in melanoma tumor progenitor cells results in reduced tumor burden and creation of an anti-tumor immune microenvironment. This mechanism entails an increase in expression of the tumor suppressive transcription factor, Tfcp2l1, along with alteration in the expression of genes involved in growth regulation, tumor suppression, stemness, differentiation, and immune modulation. These gene expression changes are coincident with reduction in the activation of key growth regulatory pathways, including AKT and mTOR.
Assuntos
Melanoma , Proteínas Proto-Oncogênicas B-raf , Receptores de Interleucina-8B , Animais , Camundongos , Carcinogênese/genética , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Melanoma/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/metabolismo , Microambiente TumoralRESUMO
CXC chemokine receptor 2 (CXCR2) plays an important role in demyelinating diseases, but the detailed mechanisms were not yet clarified. In the present study, we mainly investigated the critical function and the potential molecular mechanisms of CXCR2 on oligodendrocyte precursor cell (OPC) differentiation and remyelination. The present study demonstrated that inhibiting CXCR2 significantly enhanced OPC differentiation and remyelination in primary cultured OPCs and ethidium bromide (EB)-intoxicated rats by facilitating the formation of myelin proteins, including PDGFRα, MBP, MAG, MOG, and Caspr. Further investigation identified phosphodiesterase 10A (PDE10A) as a main downstream protein of CXCR2, interacting with the receptor to regulate OPC differentiation, in that inhibition of CXCR2 reduced PDE10A expression while suppression of PDE10A did not affect CXCR2. Furthermore, inhibition of PDE10A promoted OPC differentiation, whereas overexpression of PDE10A down-regulated OPC differentiation. Our data also revealed that inhibition of CXCR2/PDE10A activated the cAMP/ERK1/2 signaling pathway, and up-regulated the expression of key transcription factors, including SOX10, OLIG2, MYRF, and ZFP24, that ultimately promoted remyelination and myelin protein biosynthesis. In conclusion, our findings suggested that inhibition of CXCR2 promoted OPC differentiation and enhanced remyelination by regulating PDE10A/cAMP/ERK1/2 signaling pathway. The present data also highlighted that CXCR2 may serve as a potential target for the treatment of demyelination diseases.
Assuntos
Doenças Desmielinizantes , Remielinização , Ratos , Animais , Camundongos , Remielinização/fisiologia , Receptores de Interleucina-8B/metabolismo , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/tratamento farmacológico , Doenças Desmielinizantes/metabolismo , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Transdução de Sinais , Diferenciação Celular/fisiologia , Camundongos Endogâmicos C57BL , Diester Fosfórico Hidrolases/metabolismoRESUMO
BACKGROUND & AIMS: N6-Methyladenosine (m6A) is the most prevalent RNA modification and recognized as an important epitranscriptomic mechanism in colorectal cancer (CRC). We aimed to exploit whether and how tumor-intrinsic m6A modification driven by methyltransferase like 3 (METTL3) can dictate the immune landscape of CRC. METHODS: Mettl3 knockout mice, CD34+ humanized mice, and different syngeneic mice models were used. Immune cell composition and cytokine level were analyzed by flow cytometry and Cytokine 23-Plex immunoassay, respectively. M6A sequencing and RNA sequencing were performed to identify downstream targets and pathways of METTL3. Human CRC specimens (n = 176) were used to evaluate correlation between METTL3 expression and myeloid-derived suppressor cell (MDSC) infiltration. RESULTS: We demonstrated that silencing of METTL3 in CRC cells reduced MDSC accumulation to sustain activation and proliferation of CD4+ and CD8+ T cells, and eventually suppressed CRC in ApcMin/+Mettl3+/- mice, CD34+ humanized mice, and syngeneic mice models. Mechanistically, METTL3 activated the m6A-BHLHE41-CXCL1 axis by analysis of m6A sequencing, RNA sequencing, and cytokine arrays. METTL3 promoted BHLHE41 expression in an m6A-dependent manner, which subsequently induced CXCL1 transcription to enhance MDSC migration in vitro. However, the effect was negligible on BHLHE41 depletion, CXCL1 protein or CXCR2 inhibitor SB265610 administration, inferring that METTL3 promotes MDSC migration via BHLHE41-CXCL1/CXCR2. Consistently, depletion of MDSCs by anti-Gr1 antibody or SB265610 blocked the tumor-promoting effect of METTL3 in vivo. Importantly, targeting METTL3 by METTL3-single guide RNA or specific inhibitor potentiated the effect of anti-programmed cell death protein 1 (anti-PD1) treatment. CONCLUSIONS: Our study identifies METTL3 as a potential therapeutic target for CRC immunotherapy whose inhibition reverses immune suppression through the m6A-BHLHE41-CXCL1 axis. METTL3 inhibition plus anti-PD1 treatment shows promising antitumor efficacy against CRC.