Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.911
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 187(7): 1719-1732.e14, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38513663

RESUMO

The glycine transporter 1 (GlyT1) plays a crucial role in the regulation of both inhibitory and excitatory neurotransmission by removing glycine from the synaptic cleft. Given its close association with glutamate/glycine co-activated NMDA receptors (NMDARs), GlyT1 has emerged as a central target for the treatment of schizophrenia, which is often linked to hypofunctional NMDARs. Here, we report the cryo-EM structures of GlyT1 bound with substrate glycine and drugs ALX-5407, SSR504734, and PF-03463275. These structures, captured at three fundamental states of the transport cycle-outward-facing, occluded, and inward-facing-enable us to illustrate a comprehensive blueprint of the conformational change associated with glycine reuptake. Additionally, we identified three specific pockets accommodating drugs, providing clear insights into the structural basis of their inhibitory mechanism and selectivity. Collectively, these structures offer significant insights into the transport mechanism and recognition of substrate and anti-schizophrenia drugs, thus providing a platform to design small molecules to treat schizophrenia.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Glicina , Humanos , Transporte Biológico , Glicina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Glicina/química , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Glicina/ultraestrutura , Receptores de N-Metil-D-Aspartato/metabolismo , Esquizofrenia/metabolismo , Transmissão Sináptica , Imidazóis/química , Sarcosina/análogos & derivados , Piperidinas/química
2.
Cell ; 182(2): 357-371.e13, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32610085

RESUMO

Excitatory neurotransmission meditated by glutamate receptors including N-methyl-D-aspartate receptors (NMDARs) is pivotal to brain development and function. NMDARs are heterotetramers composed of GluN1 and GluN2 subunits, which bind glycine and glutamate, respectively, to activate their ion channels. Despite importance in brain physiology, the precise mechanisms by which activation and inhibition occur via subunit-specific binding of agonists and antagonists remain largely unknown. Here, we show the detailed patterns of conformational changes and inter-subunit and -domain reorientation leading to agonist-gating and subunit-dependent competitive inhibition by providing multiple structures in distinct ligand states at 4 Å or better. The structures reveal that activation and competitive inhibition by both GluN1 and GluN2 antagonists occur by controlling the tension of the linker between the ligand-binding domain and the transmembrane ion channel of the GluN2 subunit. Our results provide detailed mechanistic insights into NMDAR pharmacology, activation, and inhibition, which are fundamental to the brain physiology.


Assuntos
Receptores de N-Metil-D-Aspartato/metabolismo , Sítios de Ligação , Ligação Competitiva , Microscopia Crioeletrônica , Cristalografia por Raios X , Dimerização , Ácido Glutâmico/química , Ácido Glutâmico/metabolismo , Glicina/química , Glicina/metabolismo , Humanos , Ligantes , Simulação de Dinâmica Molecular , Estrutura Quaternária de Proteína , Subunidades Proteicas/agonistas , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação
3.
Cell ; 175(6): 1520-1532.e15, 2018 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-30500536

RESUMO

N-methyl-D-aspartate receptors (NMDARs) play essential roles in memory formation, neuronal plasticity, and brain development, with their dysfunction linked to a range of disorders from ischemia to schizophrenia. Zinc and pH are physiological allosteric modulators of NMDARs, with GluN2A-containing receptors inhibited by nanomolar concentrations of divalent zinc and by excursions to low pH. Despite the widespread importance of zinc and proton modulation of NMDARs, the molecular mechanism by which these ions modulate receptor activity has proven elusive. Here, we use cryoelectron microscopy to elucidate the structure of the GluN1/GluN2A NMDAR in a large ensemble of conformations under a range of physiologically relevant zinc and proton concentrations. We show how zinc binding to the amino terminal domain elicits structural changes that are transduced though the ligand-binding domain and result in constriction of the ion channel gate.


Assuntos
Complexos Multiproteicos/química , Prótons , Receptores de N-Metil-D-Aspartato/química , Zinco/química , Regulação Alostérica , Animais , Microscopia Crioeletrônica , Concentração de Íons de Hidrogênio , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Domínios Proteicos , Ratos , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Células Sf9 , Spodoptera , Zinco/metabolismo
4.
Cell ; 175(5): 1213-1227.e18, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30318147

RESUMO

Neurons use two main schemes to encode information: rate coding (frequency of firing) and temporal coding (timing or pattern of firing). While the importance of rate coding is well established, it remains controversial whether temporal codes alone are sufficient for controlling behavior. Moreover, the molecular mechanisms underlying the generation of specific temporal codes are enigmatic. Here, we show in Drosophila clock neurons that distinct temporal spike patterns, dissociated from changes in firing rate, encode time-dependent arousal and regulate sleep. From a large-scale genetic screen, we identify the molecular pathways mediating the circadian-dependent changes in ionic flux and spike morphology that rhythmically modulate spike timing. Remarkably, the daytime spiking pattern alone is sufficient to drive plasticity in downstream arousal neurons, leading to increased firing of these cells. These findings demonstrate a causal role for temporal coding in behavior and define a form of synaptic plasticity triggered solely by temporal spike patterns.


Assuntos
Plasticidade Neuronal , Sono/fisiologia , Potenciais de Ação , Animais , Relógios Circadianos/fisiologia , Drosophila , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Modelos Neurológicos , Neurônios/metabolismo , Optogenética , Canais de Potássio/genética , Canais de Potássio/metabolismo , Canais de Potássio Cálcio-Ativados/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Transmissão Sináptica
5.
Cell ; 174(1): 32-43.e15, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29958111

RESUMO

The organization of action into sequences underlies complex behaviors that are essential for organismal survival and reproduction. Despite extensive studies of innate sequences in relation to central pattern generators, how learned action sequences are controlled and whether they are organized as a chain or a hierarchy remain largely unknown. By training mice to perform heterogeneous action sequences, we demonstrate that striatal direct and indirect pathways preferentially encode different behavioral levels of sequence structure. State-dependent closed-loop optogenetic stimulation of the striatal direct pathway can selectively insert a single action element into the sequence without disrupting the overall sequence length. Optogenetic manipulation of the striatal indirect pathway completely removes the ongoing subsequence while leaving the following subsequence to be executed with the appropriate timing and length. These results suggest that learned action sequences are not organized in a serial but rather a hierarchical structure that is distinctly controlled by basal ganglia pathways.


Assuntos
Aprendizagem , Neurônios/metabolismo , Optogenética , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/efeitos da radiação , Toxina Diftérica/farmacologia , Eletrodos Implantados , Potenciais Evocados Visuais , Feminino , Lasers , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Muscimol/farmacologia , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Proteínas RGS/genética , Receptores de N-Metil-D-Aspartato/deficiência , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
6.
Cell ; 165(6): 1347-1360, 2016 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-27212237

RESUMO

Prolonged wakefulness leads to an increased pressure for sleep, but how this homeostatic drive is generated and subsequently persists is unclear. Here, from a neural circuit screen in Drosophila, we identify a subset of ellipsoid body (EB) neurons whose activation generates sleep drive. Patch-clamp analysis indicates these EB neurons are highly sensitive to sleep loss, switching from spiking to burst-firing modes. Functional imaging and translational profiling experiments reveal that elevated sleep need triggers reversible increases in cytosolic Ca(2+) levels, NMDA receptor expression, and structural markers of synaptic strength, suggesting these EB neurons undergo "sleep-need"-dependent plasticity. Strikingly, the synaptic plasticity of these EB neurons is both necessary and sufficient for generating sleep drive, indicating that sleep pressure is encoded by plastic changes within this circuit. These studies define an integrator circuit for sleep homeostasis and provide a mechanism explaining the generation and persistence of sleep drive.


Assuntos
Plasticidade Neuronal , Neurônios/fisiologia , Sono/fisiologia , Animais , Cálcio/metabolismo , Impulso (Psicologia) , Drosophila , Homeostase , Modelos Neurológicos , Receptores de N-Metil-D-Aspartato/metabolismo
7.
Cell ; 160(5): 811-813, 2015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-25723159

RESUMO

Nuclear receptors bind chromosome ends in "alternative lengthening of telomeres" (ALT) cancer cells that maintain their ends by homologous recombination instead of telomerase. Marzec et al. now demonstrate that, in ALT cells, nuclear receptors not only trigger distal chromatin associations to mediate telomere-telomere recombination events, but also drive chromosome-internal targeted telomere insertions (TTI).


Assuntos
Instabilidade Genômica , Neoplasias/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Telômero/metabolismo , Humanos
8.
Cell ; 160(5): 913-927, 2015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-25723166

RESUMO

The breakage-fusion-bridge cycle is a classical mechanism of telomere-driven genome instability in which dysfunctional telomeres are fused to other chromosomal extremities, creating dicentric chromosomes that eventually break at mitosis. Here, we uncover a distinct pathway of telomere-driven genome instability, specifically occurring in cells that maintain telomeres with the alternative lengthening of telomeres mechanism. We show that, in these cells, telomeric DNA is added to multiple discrete sites throughout the genome, corresponding to regions regulated by NR2C/F transcription factors. These proteins drive local telomere DNA addition by recruiting telomeric chromatin. This mechanism, which we name targeted telomere insertion (TTI), generates potential common fragile sites that destabilize the genome. We propose that TTI driven by NR2C/F proteins contributes to the formation of complex karyotypes in ALT tumors.


Assuntos
Instabilidade Genômica , Neoplasias/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Telômero/metabolismo , Cromossomos Humanos/metabolismo , Quebras de DNA de Cadeia Dupla , Humanos , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Translocação Genética
9.
Cell ; 163(7): 1730-41, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26686654

RESUMO

The occurrence of cognitive disturbances upon CNS inflammation or infection has been correlated with increased levels of the cytokine tumor necrosis factor-α (TNFα). To date, however, no specific mechanism via which this cytokine could alter cognitive circuits has been demonstrated. Here, we show that local increase of TNFα in the hippocampal dentate gyrus activates astrocyte TNF receptor type 1 (TNFR1), which in turn triggers an astrocyte-neuron signaling cascade that results in persistent functional modification of hippocampal excitatory synapses. Astrocytic TNFR1 signaling is necessary for the hippocampal synaptic alteration and contextual learning-memory impairment observed in experimental autoimmune encephalitis (EAE), an animal model of multiple sclerosis (MS). This process may contribute to the pathogenesis of cognitive disturbances in MS, as well as in other CNS conditions accompanied by inflammatory states or infections.


Assuntos
Astrócitos/metabolismo , Giro Denteado/metabolismo , Encefalomielite Autoimune Experimental/fisiopatologia , Memória , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Animais , Encefalomielite Autoimune Experimental/imunologia , Humanos , Aprendizagem , Camundongos , Esclerose Múltipla/fisiopatologia , Piperidinas , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo
10.
Cell ; 160(1-2): 119-31, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25594177

RESUMO

The kynurenine pathway of tryptophan metabolism is involved in the pathogenesis of several brain diseases, but its physiological functions remain unclear. We report that kynurenic acid, a metabolite in this pathway, functions as a regulator of food-dependent behavioral plasticity in C. elegans. The experience of fasting in C. elegans alters a variety of behaviors, including feeding rate, when food is encountered post-fast. Levels of neurally produced kynurenic acid are depleted by fasting, leading to activation of NMDA-receptor-expressing interneurons and initiation of a neuropeptide-y-like signaling axis that promotes elevated feeding through enhanced serotonin release when animals re-encounter food. Upon refeeding, kynurenic acid levels are eventually replenished, ending the elevated feeding period. Because tryptophan is an essential amino acid, these findings suggest that a physiological role of kynurenic acid is in directly linking metabolism to activity of NMDA and serotonergic circuits, which regulate a broad range of behaviors and physiologies.


Assuntos
Comportamento Animal , Caenorhabditis elegans/metabolismo , Comportamento Alimentar , Ácido Cinurênico/metabolismo , Animais , Sinais (Psicologia) , Jejum , Interneurônios/metabolismo , Cinurenina/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Serotonina , Transdução de Sinais , Transaminases/metabolismo , Triptofano/metabolismo
11.
Nature ; 629(8014): 1133-1141, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38750368

RESUMO

The N-methyl-D-aspartate (NMDA) receptor is a glutamate-activated cation channel that is critical to many processes in the brain. Genome-wide association studies suggest that glutamatergic neurotransmission and NMDA receptor-mediated synaptic plasticity are important for body weight homeostasis1. Here we report the engineering and preclinical development of a bimodal molecule that integrates NMDA receptor antagonism with glucagon-like peptide-1 (GLP-1) receptor agonism to effectively reverse obesity, hyperglycaemia and dyslipidaemia in rodent models of metabolic disease. GLP-1-directed delivery of the NMDA receptor antagonist MK-801 affects neuroplasticity in the hypothalamus and brainstem. Importantly, targeting of MK-801 to GLP-1 receptor-expressing brain regions circumvents adverse physiological and behavioural effects associated with MK-801 monotherapy. In summary, our approach demonstrates the feasibility of using peptide-mediated targeting to achieve cell-specific ionotropic receptor modulation and highlights the therapeutic potential of unimolecular mixed GLP-1 receptor agonism and NMDA receptor antagonism for safe and effective obesity treatment.


Assuntos
Maleato de Dizocilpina , Peptídeo 1 Semelhante ao Glucagon , Receptor do Peptídeo Semelhante ao Glucagon 1 , Obesidade , Receptores de N-Metil-D-Aspartato , Animais , Humanos , Masculino , Camundongos , Ratos , Tronco Encefálico/metabolismo , Tronco Encefálico/efeitos dos fármacos , Modelos Animais de Doenças , Maleato de Dizocilpina/efeitos adversos , Maleato de Dizocilpina/farmacologia , Maleato de Dizocilpina/uso terapêutico , Dislipidemias/tratamento farmacológico , Dislipidemias/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/efeitos dos fármacos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Ratos Sprague-Dawley , Ratos Wistar , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores
12.
Mol Cell ; 82(23): 4548-4563.e4, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36309015

RESUMO

Neurotransmission mediated by diverse subtypes of N-methyl-D-aspartate receptors (NMDARs) is fundamental for basic brain functions and development as well as neuropsychiatric diseases and disorders. NMDARs are glycine- and glutamate-gated ion channels that exist as heterotetramers composed of obligatory GluN1 and GluN2(A-D) and/or GluN3(A-B). The GluN2C and GluN2D subunits form ion channels with distinct properties and spatio-temporal expression patterns. Here, we provide the structures of the agonist-bound human GluN1-2C NMDAR in the presence and absence of the GluN2C-selective positive allosteric potentiator (PAM), PYD-106, the agonist-bound GluN1-2A-2C tri-heteromeric NMDAR, and agonist-bound GluN1-2D NMDARs by single-particle electron cryomicroscopy. Our analysis shows unique inter-subunit and domain arrangements of the GluN2C NMDARs, which contribute to functional regulation and formation of the PAM binding pocket and is distinct from GluN2D NMDARs. Our findings here provide the fundamental blueprint to study GluN2C- and GluN2D-containing NMDARs, which are uniquely involved in neuropsychiatric disorders.


Assuntos
Ácido Glutâmico , Receptores de N-Metil-D-Aspartato , Humanos , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/metabolismo , Ácido Glutâmico/metabolismo , Glicina/metabolismo , Transmissão Sináptica , Subunidades Proteicas/metabolismo
13.
Cell ; 157(2): 486-498, 2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24725413

RESUMO

Cyclin-dependent kinase 5 regulates numerous neuronal functions with its activator, p35. Under neurotoxic conditions, p35 undergoes proteolytic cleavage to liberate p25, which has been implicated in various neurodegenerative diseases. Here, we show that p25 is generated following neuronal activity under physiological conditions in a GluN2B- and CaMKIIα-dependent manner. Moreover, we developed a knockin mouse model in which endogenous p35 is replaced with a calpain-resistant mutant p35 (Δp35KI) to prevent p25 generation. The Δp35KI mice exhibit impaired long-term depression and defective memory extinction, likely mediated through persistent GluA1 phosphorylation at Ser845. Finally, crossing the Δp35KI mice with the 5XFAD mouse model of Alzheimer's disease (AD) resulted in an amelioration of ß-amyloid (Aß)-induced synaptic depression and cognitive impairment. Together, these results reveal a physiological role of p25 production in synaptic plasticity and memory and provide new insights into the function of p25 in Aß-associated neurotoxicity and AD-like pathology.


Assuntos
Doença de Alzheimer/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Calpaína/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cognição , Quinase 5 Dependente de Ciclina/metabolismo , Modelos Animais de Doenças , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Endocitose , Técnicas de Introdução de Genes , Hipocampo/metabolismo , Humanos , Potenciação de Longa Duração , Depressão Sináptica de Longo Prazo , Camundongos , Proteínas do Tecido Nervoso/genética , Fosfotransferases , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses
14.
Nature ; 622(7984): 802-809, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37853123

RESUMO

Ketamine, an N-methyl-D-aspartate receptor (NMDAR) antagonist1, has revolutionized the treatment of depression because of its potent, rapid and sustained antidepressant effects2-4. Although the elimination half-life of ketamine is only 13 min in mice5, its antidepressant activities can last for at least 24 h6-9. This large discrepancy poses an interesting basic biological question and has strong clinical implications. Here we demonstrate that after a single systemic injection, ketamine continues to suppress burst firing and block NMDARs in the lateral habenula (LHb) for up to 24 h. This long inhibition of NMDARs is not due to endocytosis but depends on the use-dependent trapping of ketamine in NMDARs. The rate of untrapping is regulated by neural activity. Harnessing the dynamic equilibrium of ketamine-NMDAR interactions by activating the LHb and opening local NMDARs at different plasma ketamine concentrations, we were able to either shorten or prolong the antidepressant effects of ketamine in vivo. These results provide new insights into the causal mechanisms of the sustained antidepressant effects of ketamine. The ability to modulate the duration of ketamine action based on the biophysical properties of ketamine-NMDAR interactions opens up new opportunities for the therapeutic use of ketamine.


Assuntos
Antidepressivos , Depressão , Habenula , Ketamina , Receptores de N-Metil-D-Aspartato , Animais , Camundongos , Antidepressivos/administração & dosagem , Antidepressivos/metabolismo , Antidepressivos/farmacocinética , Antidepressivos/farmacologia , Depressão/tratamento farmacológico , Depressão/metabolismo , Habenula/efeitos dos fármacos , Habenula/metabolismo , Meia-Vida , Ketamina/administração & dosagem , Ketamina/metabolismo , Ketamina/farmacocinética , Ketamina/farmacologia , Neurônios/fisiologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Fatores de Tempo , Ligação Proteica
15.
Nat Rev Neurosci ; 24(11): 672-692, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37773070

RESUMO

Excitation-transcription coupling (E-TC) links synaptic and cellular activity to nuclear gene transcription. It is generally accepted that E-TC makes a crucial contribution to learning and memory through its role in underpinning long-lasting synaptic enhancement in late-phase long-term potentiation and has more recently been linked to late-phase long-term depression: both processes require de novo gene transcription, mRNA translation and protein synthesis. E-TC begins with the activation of glutamate-gated N-methyl-D-aspartate-type receptors and voltage-gated L-type Ca2+ channels at the membrane and culminates in the activation of transcription factors in the nucleus. These receptors and ion channels mediate E-TC through mechanisms that include long-range signalling from the synapse to the nucleus and local interactions within dendritic spines, among other possibilities. Growing experimental evidence links these E-TC mechanisms to late-phase long-term potentiation and learning and memory. These advances in our understanding of the molecular mechanisms of E-TC mean that future efforts can focus on understanding its mesoscale functions and how it regulates neuronal network activity and behaviour in physiological and pathological conditions.


Assuntos
Plasticidade Neuronal , Receptores de N-Metil-D-Aspartato , Humanos , Receptores de N-Metil-D-Aspartato/metabolismo , Plasticidade Neuronal/fisiologia , Potenciação de Longa Duração/fisiologia , Neurônios/metabolismo , Sinapses/metabolismo , Expressão Gênica , Hipocampo/fisiologia
16.
Cell ; 152(5): 1119-33, 2013 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-23452857

RESUMO

The activation of N-methyl-D-aspartate-receptors (NMDARs) in synapses provides plasticity and cell survival signals, whereas NMDARs residing in the neuronal membrane outside synapses trigger neurodegeneration. At present, it is unclear how these opposing signals are transduced to and discriminated by the nucleus. In this study, we demonstrate that Jacob is a protein messenger that encodes the origin of synaptic versus extrasynaptic NMDAR signals and delivers them to the nucleus. Exclusively synaptic, but not extrasynaptic, NMDAR activation induces phosphorylation of Jacob at serine-180 by ERK1/2. Long-distance trafficking of Jacob from synaptic, but not extrasynaptic, sites depends on ERK activity, and association with fragments of the intermediate filament α-internexin hinders dephosphorylation of the Jacob/ERK complex during nuclear transit. In the nucleus, the phosphorylation state of Jacob determines whether it induces cell death or promotes cell survival and enhances synaptic plasticity.


Assuntos
Núcleo Celular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo , Animais , Sobrevivência Celular , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Regulação da Expressão Gênica , Hipocampo/citologia , Hipocampo/metabolismo , Proteínas de Filamentos Intermediários/metabolismo , Potenciação de Longa Duração , Depressão Sináptica de Longo Prazo , Sistema de Sinalização das MAP Quinases , Camundongos , Neurônios/citologia , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação , Ratos
17.
Cell ; 153(1): 86-100, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23540692

RESUMO

Glutamate and its receptor N-methyl-D-aspartate receptor (NMDAR) have been associated with cancer, although their functions are not fully understood. Herein, we implicate glutamate-driven NMDAR signaling in a mouse model of pancreatic neuroendocrine tumorigenesis (PNET) and in selected human cancers. NMDAR was upregulated at the periphery of PNET tumors, particularly invasive fronts. Moreover, elevated coexpression of NMDAR and glutamate exporters correlated with poor prognosis in cancer patients. Treatment of a tumor-derived cell line with NMDAR antagonists impaired cancer cell proliferation and invasion. Flow conditions mimicking interstitial fluid pressure induced autologous glutamate secretion, activating NMDAR and its downstream MEK-MAPK and CaMK effectors, thereby promoting invasiveness. Congruently, pharmacological inhibition of NMDAR in mice with PNET reduced tumor growth and invasiveness. Therefore, beyond its traditional role in neurons, NMDAR may be activated in human tumors by fluid flow consequent to higher interstitial pressure, inducing an autocrine glutamate signaling circuit with resultant stimulation of malignancy.


Assuntos
Proliferação de Células , Transformação Celular Neoplásica , Tumores Neuroendócrinos/metabolismo , Neoplasias Pancreáticas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Ácido Glutâmico/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Tumores Neuroendócrinos/patologia , Neoplasias Pancreáticas/patologia , Microambiente Tumoral
18.
Cell ; 154(3): 637-50, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23911326

RESUMO

Synaptic plasticity induced by cocaine and other drugs underlies addiction. Here we elucidate molecular events at synapses that cause this plasticity and the resulting behavioral response to cocaine in mice. In response to D1-dopamine-receptor signaling that is induced by drug administration, the glutamate-receptor protein metabotropic glutamate receptor 5 (mGluR5) is phosphorylated by microtubule-associated protein kinase (MAPK), which we show potentiates Pin1-mediated prolyl-isomerization of mGluR5 in instances where the product of an activity-dependent gene, Homer1a, is present to enable Pin1-mGluR5 interaction. These biochemical events potentiate N-methyl-D-aspartate receptor (NMDAR)-mediated currents that underlie synaptic plasticity and cocaine-evoked motor sensitization as tested in mice with relevant mutations. The findings elucidate how a coincidence of signals from the nucleus and the synapse can render mGluR5 accessible to activation with consequences for drug-induced dopamine responses and point to depotentiation at corticostriatal synapses as a possible therapeutic target for treating addiction.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Cocaína/metabolismo , Dopamina/metabolismo , Peptidilprolil Isomerase/metabolismo , Sequência de Aminoácidos , Animais , Encéfalo/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Embrião de Mamíferos/metabolismo , Proteínas de Arcabouço Homer , Potenciação de Longa Duração , Camundongos , Dados de Sequência Molecular , Peptidilprolil Isomerase de Interação com NIMA , Fosforilação , Receptores de AMPA/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Ácido Caínico/química , Receptores de Ácido Caínico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo
19.
Nature ; 608(7922): 368-373, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35896744

RESUMO

Ketamine is used clinically as an anaesthetic and a fast-acting antidepressant, and recreationally for its dissociative properties, raising concerns of addiction as a possible side effect. Addictive drugs such as cocaine increase the levels of dopamine in the nucleus accumbens. This facilitates synaptic plasticity in the mesolimbic system, which causes behavioural adaptations and eventually drives the transition to compulsion1-4. The addiction liability of ketamine is a matter of much debate, in part because of its complex pharmacology that among several targets includes N-methyl-D-aspartic acid (NMDA) receptor (NMDAR) antagonism5,6. Here we show that ketamine does not induce the synaptic plasticity that is typically observed with addictive drugs in mice, despite eliciting robust dopamine transients in the nucleus accumbens. Ketamine nevertheless supported reinforcement through the disinhibition of dopamine neurons in the ventral tegmental area (VTA). This effect was mediated by NMDAR antagonism in GABA (γ-aminobutyric acid) neurons of the VTA, but was quickly terminated by type-2 dopamine receptors on dopamine neurons. The rapid off-kinetics of the dopamine transients along with the NMDAR antagonism precluded the induction of synaptic plasticity in the VTA and the nucleus accumbens, and did not elicit locomotor sensitization or uncontrolled self-administration. In summary, the dual action of ketamine leads to a unique constellation of dopamine-driven positive reinforcement, but low addiction liability.


Assuntos
Ketamina , Transtornos Relacionados ao Uso de Substâncias , Animais , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Ketamina/efeitos adversos , Ketamina/farmacologia , Camundongos , Plasticidade Neuronal/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Reforço Psicológico , Autoadministração , Transtornos Relacionados ao Uso de Substâncias/etiologia , Transtornos Relacionados ao Uso de Substâncias/prevenção & controle , Área Tegmentar Ventral/citologia , Área Tegmentar Ventral/efeitos dos fármacos
20.
Cell ; 151(4): 821-834, 2012 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-23141539

RESUMO

Neuronal activity influences genes involved in circuit development and information processing. However, the molecular basis of this process remains poorly understood. We found that HDAC4, a histone deacetylase that shuttles between the nucleus and cytoplasm, controls a transcriptional program essential for synaptic plasticity and memory. The nuclear import of HDAC4 and its association with chromatin is negatively regulated by NMDA receptors. In the nucleus, HDAC4 represses genes encoding constituents of central synapses, thereby affecting synaptic architecture and strength. Furthermore, we show that a truncated form of HDAC4 encoded by an allele associated with mental retardation is a gain-of-function nuclear repressor that abolishes transcription and synaptic transmission despite the loss of the deacetylase domain. Accordingly, mice carrying a mutant that mimics this allele exhibit deficits in neurotransmission, spatial learning, and memory. These studies elucidate a mechanism of experience-dependent plasticity and define the biological role of HDAC4 in the brain.


Assuntos
Transporte Ativo do Núcleo Celular , Encéfalo/metabolismo , Histona Desacetilases/metabolismo , Memória , Plasticidade Neuronal , Neurônios/metabolismo , Sinapses/metabolismo , Transcrição Gênica , Animais , Camundongos , Prosencéfalo/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA