Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 653
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 73(2): 377-389.e11, 2019 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-30581143

RESUMO

The ubiquitin proteasome system (UPS) maintains the integrity of the proteome by selectively degrading misfolded or mis-assembled proteins, but the rules that govern how conformationally defective proteins in the secretory pathway are selected from the structurally and topologically diverse constellation of correctly folded membrane and secretory proteins for efficient degradation by cytosolic proteasomes is not well understood. Here, we combine parallel pooled genome-wide CRISPR-Cas9 forward genetic screening with a highly quantitative and sensitive protein turnover assay to discover a previously undescribed collaboration between membrane-embedded cytoplasmic ubiquitin E3 ligases to conjugate heterotypic branched or mixed ubiquitin (Ub) chains on substrates of endoplasmic-reticulum-associated degradation (ERAD). These findings demonstrate that parallel CRISPR analysis can be used to deconvolve highly complex cell biological processes and identify new biochemical pathways in protein quality control.


Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Degradação Associada com o Retículo Endoplasmático , Estudo de Associação Genômica Ampla/métodos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteostase , Proteína 9 Associada à CRISPR/metabolismo , Degradação Associada com o Retículo Endoplasmático/efeitos dos fármacos , Degradação Associada com o Retículo Endoplasmático/genética , Células HEK293 , Humanos , Células K562 , Cinética , Complexo de Endopeptidases do Proteassoma/genética , Dobramento de Proteína , Proteólise , Proteostase/efeitos dos fármacos , Proteostase/genética , Ricina/farmacologia , Especificidade por Substrato , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
2.
Nucleic Acids Res ; 49(16): 9574-9593, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34403481

RESUMO

Sequence variation in a widespread, recurrent, structured RNA 3D motif, the Sarcin/Ricin (S/R), was studied to address three related questions: First, how do the stabilities of structured RNA 3D motifs, composed of non-Watson-Crick (non-WC) basepairs, compare to WC-paired helices of similar length and sequence? Second, what are the effects on the stabilities of such motifs of isosteric and non-isosteric base substitutions in the non-WC pairs? And third, is there selection for particular base combinations in non-WC basepairs, depending on the temperature regime to which an organism adapts? A survey of large and small subunit rRNAs from organisms adapted to different temperatures revealed the presence of systematic sequence variations at many non-WC paired sites of S/R motifs. UV melting analysis and enzymatic digestion assays of oligonucleotides containing the motif suggest that more stable motifs tend to be more rigid. We further found that the base substitutions at non-Watson-Crick pairing sites can significantly affect the thermodynamic stabilities of S/R motifs and these effects are highly context specific indicating the importance of base-stacking and base-phosphate interactions on motif stability. This study highlights the significance of non-canonical base pairs and their contributions to modulating the stability and flexibility of RNA molecules.


Assuntos
Motivos de Nucleotídeos/genética , RNA Ribossômico/ultraestrutura , RNA/ultraestrutura , Pareamento de Bases/genética , Cristalografia por Raios X , Ligação de Hidrogênio/efeitos dos fármacos , Conformação de Ácido Nucleico/efeitos dos fármacos , RNA/efeitos dos fármacos , RNA/genética , RNA Ribossômico/efeitos dos fármacos , RNA Ribossômico/genética , Ricina/farmacologia
3.
J Nanobiotechnology ; 20(1): 387, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35999603

RESUMO

The plant toxin ricin, especially its cytotoxic A chain (RTA), can be genetically engineered with targeting ligands to develop specific anti-cancer recombinant immunotoxins (RITs). Here, we used affibody molecules targeting two cancer biomarkers, the receptors HER2 and EGFR, along with the KDEL signal peptide to construct two cancer-specific ricin-based RITs, HER2Afb-RTA-KDEL and EGFRAfb-RTA-KDEL. The affibodies successfully provided target-specificity and subsequent receptor-mediated endocytosis and the KDEL signal peptide routed the RITs through the retrograde transport pathway, effectively delivering RTA to the cytosol as well as avoiding the alternate recycling pathway that typical cancer cells frequently have. The in vivo efficacy of RITs was enhanced by introducing the albumin binding domain (AlBD) to construct AlBD/HER2Afb/RTA-KDEL. Systemic administration of AlBD-containing RITs to tumor-bearing mice significantly suppressed tumor growth without any noticeable side-effects. Collectively, combining target-selective affibody molecules, a cytotoxic RTA, and an intracellularly designating peptide, we successfully developed cancer-specific and efficacious ricin-based RITs. This approach can be applied to develop novel protein-based "magic bullets" to effectively suppress tumors that are resistant to conventional anti-cancer drugs.


Assuntos
Imunotoxinas , Neoplasias , Ricina , Animais , Apoptose , Endocitose , Imunotoxinas/metabolismo , Imunotoxinas/farmacologia , Camundongos , Neoplasias/tratamento farmacológico , Sinais Direcionadores de Proteínas , Ricina/farmacologia , Ricina/toxicidade
4.
Dokl Biochem Biophys ; 494(1): 219-221, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33119820

RESUMO

In the present study, we assessed the role of annexin 13 membrane-binding protein (ANXA13) in the intracellular transport of vesicles containing type II ribosome-inactivating proteins (RIP-IIs). A modified human intestinal epithelial cell line HT29 was used, in which the expression of ANXA13 was significantly reduced. The cytotoxic effect of ricin and viscumin was evaluated by modification of 28S ribosome RNA. The observed differences in the activity of toxins on the parental and modified HT29 lines indicate that ANXA13 plays a different role in the intracellular transport of vesicles containing the RIP-IIs.


Assuntos
Anexinas/metabolismo , Substâncias para a Guerra Química/farmacologia , Neoplasias do Colo/patologia , Proteínas Inativadoras de Ribossomos Tipo 2/farmacologia , Proteínas Inativadoras de Ribossomos/metabolismo , Ribossomos/efeitos dos fármacos , Ricina/farmacologia , Toxinas Biológicas/farmacologia , Transporte Biológico , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Células HT29 , Humanos
5.
Dokl Biochem Biophys ; 493(1): 198-200, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32894464

RESUMO

The role of proteasome proteins and proteins of the ERAD system in the cytotoxicity of type II ribosome-inactivating proteins ricin and viscumin was investigated. For this, the cell line of colorectal adenocarcinoma HT29, as well as the HT29-sh002 line obtained on its basis, were used. On the basis on the proteome analysis of these lines and the estimation of the proportion of inactivated ribosomes, it was shown that the contribution of the proteasome to the degradation of the catalytic subunits of toxins is different. The role of the Cdc37 co-chaperone in maintaining the stability of A subunit of viscumin in the cytoplasm is shown.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Chaperoninas/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Complexo de Endopeptidases do Proteassoma/biossíntese , Proteínas Inativadoras de Ribossomos Tipo 2/farmacologia , Ricina/farmacologia , Toxinas Biológicas/farmacologia , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Proteínas de Ciclo Celular/genética , Chaperoninas/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Citoplasma/metabolismo , Humanos , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ribossomos/metabolismo , Células Tumorais Cultivadas
6.
BMC Biotechnol ; 18(1): 47, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-30081895

RESUMO

BACKGROUND: Ricin A chain (RTA) and Pokeweed antiviral proteins (PAPs) are plant-derived N-glycosidase ribosomal-inactivating proteins (RIPs) isolated from Ricinus communis and Phytolacca Americana respectively. This study was to investigate the potential production amenability and sub-toxic antiviral value of novel fusion proteins between RTA and PAPs (RTA-PAPs). In brief, RTA-Pokeweed antiviral protein isoform 1 from seeds (RTA-PAPS1) was produced in an E. coli in vivo expression system, purified from inclusion bodies using gel filtration chromatography and protein synthesis inhibitory activity assayed by comparison to the production of a control protein Luciferase. The antiviral activity of the RTA-PAPS1 against Hepatitis B virus (HBV) in HepAD38 cells was then determined using a dose response assay by quantifying supernatant HBV DNA compared to control virus infected HepAD38 cells. The cytotoxicity in HepAD38 cells was determined by measuring cell viability using a tetrazolium dye uptake assay. The fusion protein was further optimized using in silico tools, produced in an E. coli in vivo expression system, purified by a three-step process from soluble lysate and confirmed in a protein synthesis inhibition activity assay. RESULTS: Results showed that RTA-PAPS1 could effectively be recovered and purified from inclusion bodies. The refolded protein was bioactive with a 50% protein synthesis inhibitory concentration (IC50) of 0.06 nM (3.63 ng/ml). The results also showed that RTA-PAPS1 had a synergetic activity against HBV with a half-maximal response concentration value (EC50) of 0.03 nM (1.82 ng/ml) and a therapeutic index of > 21,818 with noticeable steric hindrance. Results also showed that the optimized protein ricin A chain mutant-Pokeweed antiviral protein isoform 1 from leaves (RTAM-PAP1) could be recovered and purified from soluble lysates with gain of function on protein synthesis inhibition activity, with an IC50 of 0.03 nM (1.82 ng/ml), and with minimal, if any, steric hindrance. CONCLUSIONS: Collectively, our results demonstrate that RTA-PAPs are amenable to effective production and purification in native form, possess significant gain of function on protein synthesis inhibition and anti-HBV activities in vitro with a high therapeutic index and, thus, merit further development as potential potent antiviral agents against chronic HBV infection to be used as a standalone or in combination with existent therapies.


Assuntos
Escherichia coli/genética , Proteínas Recombinantes de Fusão , Proteínas Inativadoras de Ribossomos Tipo 1 , Ricina , Antivirais/farmacologia , Vírus da Hepatite B/efeitos dos fármacos , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Proteínas de Plantas/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Inativadoras de Ribossomos Tipo 1/biossíntese , Proteínas Inativadoras de Ribossomos Tipo 1/genética , Proteínas Inativadoras de Ribossomos Tipo 1/farmacologia , Ricina/biossíntese , Ricina/genética , Ricina/farmacologia
7.
Small ; 14(26): e1800665, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29845742

RESUMO

Under the unmet need of efficient tumor-targeting drugs for oncology, a recombinant version of the plant toxin ricin (the modular protein T22-mRTA-H6) is engineered to self-assemble as protein-only, CXCR4-targeted nanoparticles. The soluble version of the construct self-organizes as regular 11 nm planar entities that are highly cytotoxic in cultured CXCR4+ cancer cells upon short time exposure, with a determined IC50 in the nanomolar order of magnitude. The chemical inhibition of CXCR4 binding sites in exposed cells results in a dramatic reduction of the cytotoxic potency, proving the receptor-dependent mechanism of cytotoxicity. The insoluble version of T22-mRTA-H6 is, contrarily, moderately active, indicating that free, nanostructured protein is the optimal drug form. In animal models of acute myeloid leukemia, T22-mRTA-H6 nanoparticles show an impressive and highly selective therapeutic effect, dramatically reducing the leukemia cells affectation of clinically relevant organs. Functionalized T22-mRTA-H6 nanoparticles are then promising prototypes of chemically homogeneous, highly potent antitumor nanostructured toxins for precise oncotherapies based on self-mediated intracellular drug delivery.


Assuntos
Antineoplásicos/farmacologia , Nanoestruturas/química , Neoplasias/patologia , Receptores CXCR4/metabolismo , Proteínas Recombinantes/farmacologia , Ricina/farmacologia , Sequência de Aminoácidos , Animais , Permeabilidade da Membrana Celular/efeitos dos fármacos , Modelos Animais de Doenças , Células HeLa , Humanos , Leucemia Mieloide Aguda/patologia , Camundongos , Proteínas Recombinantes/química , Ricina/química
8.
Appl Microbiol Biotechnol ; 102(22): 9585-9594, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30141083

RESUMO

The specific targeting of immunotoxins enables their wide application in cancer therapy. The A-chain of the ricin protein (RTA) is an N-glycosidase that catalyzes the removal of adenine from the 28S rRNA, preventing protein translation and leading to cell death. Ricin is highly toxic but can only exert its toxic effects from within the cytoplasm. In this study, we linked the anti-HER2 single-chain variable fragment 4D5 scFv and the endoplasmic reticulum-targeting peptide KDEL to the C-terminal of the RTA to construct immunotoxin RTA-4D5-KDEL. In vitro experiments showed that the anticancer effect of RTA-4D5-KDEL towards ovarian cancer cells SKOV-3 increased 440-fold and 28-fold relative to RTA and RTA-4D5, respectively. RTA-4D5-KDEL had a strong inhibitory effect on HER2-overexpressing SKOV-3 cells and caused little damage to normal HEK-293 cells and H460 lung cancer cells. Immunofluorescence experiments showed that the immunotoxin RTA-4D5 could specifically bind to SKOV-3 cells, but not to normal cells HEK-293. The immunotoxin RTA-4D5-KDEL could rapidly localize the recombinant protein to the endoplasmic reticulum. These results suggest that the recombinant immunotoxin RTA-4D5-KDEL has a strong inhibitory effect on ovarian cancer cells that overexpress HER2 but little harm to the normal cells.


Assuntos
Retículo Endoplasmático/metabolismo , Imunotoxinas/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Ovarianas/metabolismo , Receptor ErbB-2/metabolismo , Ricina/metabolismo , Anticorpos de Cadeia Única/metabolismo , Motivos de Aminoácidos , Linhagem Celular Tumoral , Retículo Endoplasmático/genética , Feminino , Células HEK293 , Humanos , Imunotoxinas/genética , Imunotoxinas/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Sinais Direcionadores de Proteínas/genética , Transporte Proteico , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Ricina/genética , Ricina/farmacologia , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/farmacologia
9.
Molecules ; 22(2)2017 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-28134797

RESUMO

The enzymes called ribosome-inactivating proteins (RIPs) that are able to depurinate  nucleic acids and arrest vital cellular functions, including protein synthesis, are still a frontline  research field, mostly because of their promising medical applications. The contributions of Stirpe  to the development of these studies has been one of the most relevant. After a short biographical  introduction, an overview is offered of the main results obtained by his investigations during last  55 years on his main research lines: hyperuricaemia, xanthine oxidoreductase and RIPs.


Assuntos
Hiperuricemia/tratamento farmacológico , Hiperuricemia/metabolismo , Proteínas de Plantas/farmacologia , Pesquisa , Proteínas Inativadoras de Ribossomos/farmacologia , Xantina Desidrogenase/metabolismo , Animais , Pessoas Famosas , Frutose/metabolismo , História do Século XX , Humanos , Hiperuricemia/diagnóstico , Hiperuricemia/etiologia , Itália , Pesquisa/história , Ricina/farmacologia , Pesquisa Translacional Biomédica/história
10.
Acta Biochim Biophys Sin (Shanghai) ; 48(11): 1050-1057, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27649890

RESUMO

Nosema bombycis is an obligate intracellular parasitic fungus that utilizes a distinctive mechanism to infect Bombyx mori Spore germination can be used for host cell invasion; however, the detailed mechanism remains to be elucidated. The ricin-B-lectin (RBL) gene is significantly differentially regulated after N. bombycis spore germination, and NbRBL might play roles in spore germination and infection. In this study, the biological function of NbRBL was examined. Protein sequence analysis showed that NbRBL is a secreted protein that attaches to carbohydrates. The relative expression level of the NbRBL gene was low during the first 30 h post-infection (hpi) in BmN cells, and high expression was detected from 42 hpi. Gene cloning, prokaryotic expression, and antibody preparation for NbRBL were performed. NbRBL was detected in total and secreted proteins using western blot analysis. Subcellular localization analysis showed that NbRBL is an intracellular protein. Spore adherence and infection assays showed that NbRBL could enhance spore adhesion to BmN cells; the proliferative activities of BmN cells incubated with anti-NbRBL were higher than those in negative control groups after N. bombycis infection; and the treatment groups showed less damage from spore invasion. We therefore, propose that NbRBL is released during spore germination, enhances spore adhesion to BmN cells, and contributes to spore invasion.


Assuntos
Bombyx/parasitologia , Nosema/patogenicidade , Ricina/farmacologia , Sequência de Aminoácidos , Animais , Linhagem Celular , Regulação da Expressão Gênica , Ricina/química , Ricina/genética
11.
Biochim Biophys Acta ; 1840(3): 958-63, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24246953

RESUMO

BACKGROUND: Ricin is a type II ribosome-inactivating protein (RIP) that potently inactivates eukaryotic ribosomes by removing a specific adenine residue at the conserved α-sarcin/ricin loop of 28S ribosomal RNA (rRNA). Here, we try to increase the specificity of the enzymatically active ricin A chain (RTA) towards human immunodeficiency virus type 1 (HIV-1) by adding a loop with HIV protease recognition site to RTA. METHODS: HIV-specific RTA variants were constructed by inserting a peptide with HIV-protease recognition site either internally or at the C-terminal region of wild type RTA. Cleavability of variants by viral protease was tested in vitro and in HIV-infected cells. The production of viral p24 antigen and syncytium in the presence of C-terminal variants was measured to examine the anti-HIV activities of the variants. RESULTS: C-terminal RTA variants were specifically cleaved by HIV-1 protease both in vitro and in HIV-infected cells. Upon proteolysis, the processed variants showed enhanced antiviral effect with low cytotoxicity towards uninfected cells. CONCLUSIONS: RTA variants with HIV protease recognition sequence engineered at the C-terminus were cleaved and the products mediated specific inhibitory effect towards HIV replication. GENERAL SIGNIFICANCE: Current cocktail treatment of HIV infection fails to eradicate the virus from patients. Here we illustrate the feasibility of targeting an RIP towards HIV-infected cells by incorporation of HIV protease cleavage sequence. This approach may be generalized to other RIPs and is promising in drug design for combating HIV.


Assuntos
Fármacos Anti-HIV/farmacologia , Ricina/farmacologia , Sequência de Aminoácidos , Sequência de Bases , Linhagem Celular , Humanos , Dados de Sequência Molecular , Engenharia de Proteínas , Estrutura Terciária de Proteína , Ricina/química
12.
Glycobiology ; 25(4): 428-37, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25472443

RESUMO

The abundant cell-surface lipophosphoglycan (LPG) of Leishmania parasites plays a central role throughout the eukaryote's life cycle. A number of LPG-defective mutants and their complementing genes have been isolated and have proven invaluable in assessing the importance of LPG and related glycoconjugates in parasite virulence. While ricin agglutination selection protocols frequently result in lpg- mutants, one  Leishmania donovani variant we isolated, named JABBA, was found to be lpg+. Procyclic (logarithmic) JABBA expresses significant amounts of a large-sized LPG, larger than observed from procyclic wild type but similar in size to LPG from wild type from metacyclic (stationary) phase. Structural analysis of the LPG from logarithmically grown JABBA by capillary electrophoresis protocols revealed that it averaged 30 repeat units composed of the unsubstituted Gal(ß1,4)Man(α1)-PO4 typical of wild-type L. donovani. Analysis of JABBA LPG caps indicated that 20% is branched trisaccharide Gal(ß1,4)[Glc(ß1,2)]Man and tetrasaccharide Gal(ß1,4)[Glc(ß1,2)Man(α1,2)]Man instead of the usual Gal(ß1,4)Man and Man(α1,2)Man terminating caps. Consistent with these structural observations, analyses of the relevant glycosyltransferases in JABBA microsomes involved in LPG biosynthesis showed a 2-fold increase in elongating mannosylphosphoryltransferase activity and up-regulation of a ß-glucosyltransferase activity. Furthermore, the caps of JABBA LPG are cryptic in presentation as shown by the loss of binding by the lectins, ricin, peanut agglutinin and concanavalin A and reduced accessibility of the terminal galactose residues to oxidation by galactose oxidase. These results indicate that LPG from JABBA is intriguingly similar to the larger LPG in wild-type parasites that arises following the differentiation of the non-infectious procyclic promastigotes to infectious, metacyclic forms.


Assuntos
Aglutininas/farmacologia , Glicoesfingolipídeos/metabolismo , Leishmania donovani/efeitos dos fármacos , Ricina/farmacologia , Configuração de Carboidratos , Sequência de Carboidratos , Resistência a Medicamentos , Galactose/química , Galactose Oxidase/química , Glicoesfingolipídeos/química , Glicosilação , Leishmania donovani/metabolismo , Dados de Sequência Molecular
13.
J Biol Chem ; 287(10): 7367-73, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22228764

RESUMO

Members of the type 2 ribosome-inactivating proteins (RIPs) family (e.g. ricin, abrin) are potent cytotoxins showing a strong lethal activity toward eukaryotic cells. Type 2 RIPs contain two polypeptide chains (usually named A, for "activity", and B, for "binding") linked by a disulfide bond. The intoxication of the cell is a consequence of a reductive process in which the toxic domain is cleaved from the binding domain by oxidoreductases located in the lumen of the endoplasmic reticulum (ER). The best known example of type 2 RIPs is ricin. Protein disulfide isomerase (PDI) was demonstrated to be involved in the process of ricin reduction; however, when PDI is depleted from cell fraction preparations ricin reduction can still take place, indicating that also other oxidoreductases might be implicated in this process. We have investigated the role of TMX, a transmembrane thioredoxin-related protein member of the PDI family, in the cell intoxication operated by type 2 RIPs ricin and abrin. Overexpressing TMX in A549 cells resulted in a dramatic increase of ricin or abrin cytotoxicity compared with control mock-treated cells. Conversely, no difference in cytotoxicity was observed after treatment of A549 cells or control cells with saporin or Pseudomonas exotoxin A whose intracellular mechanism of activation is not dependent upon reduction (saporin) or only partially dependent upon it (Pseudomonas exotoxin A). Moreover, the silencing of TMX in the prostatic cell line DU145 reduced the sensitivity of the cells to ricin intoxication further confirming a role for this enzyme in intracellular ricin activation.


Assuntos
Abrina/farmacocinética , Substâncias para a Guerra Química/farmacocinética , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Ricina/farmacocinética , Tiorredoxinas/metabolismo , ADP Ribose Transferases/farmacocinética , ADP Ribose Transferases/farmacologia , Abrina/farmacologia , Toxinas Bacterianas/farmacocinética , Toxinas Bacterianas/farmacologia , Substâncias para a Guerra Química/farmacologia , Retículo Endoplasmático/genética , Exotoxinas/farmacocinética , Exotoxinas/farmacologia , Humanos , Células Jurkat , Proteínas de Membrana/genética , Oxirredução/efeitos dos fármacos , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Inibidores da Síntese de Proteínas/farmacocinética , Inibidores da Síntese de Proteínas/farmacologia , Proteínas Inativadoras de Ribossomos Tipo 1/farmacocinética , Proteínas Inativadoras de Ribossomos Tipo 1/farmacologia , Ricina/farmacologia , Saporinas , Tiorredoxinas/genética , Fatores de Virulência/farmacocinética , Fatores de Virulência/farmacologia , Exotoxina A de Pseudomonas aeruginosa
14.
Curr Top Microbiol Immunol ; 357: 41-65, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22057792

RESUMO

Shiga toxins and ricin are potent inhibitors of protein synthesis. In addition to causing inhibition of protein synthesis, these toxins activate proinflammatory signaling cascades that may contribute to the severe diseases associated with toxin exposure. Treatment of cells with Shiga toxins and ricin have been shown to activate a number of signaling pathways including those associated with the ribotoxic stress response, Nuclear factor kappa B activation, inflammasome activation, the unfolded protein response, mTOR signaling, hemostasis, and retrograde trafficking. In this chapter, we review our current understanding of these signaling pathways as they pertain to intoxication by Shiga toxins and ricin.


Assuntos
Ricina/farmacologia , Toxinas Shiga/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Proteínas de Transporte/metabolismo , Estresse do Retículo Endoplasmático , Humanos , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , NF-kappa B/metabolismo , Iniciação Traducional da Cadeia Peptídica , Transporte Proteico , Toxinas Shiga/metabolismo , Estresse Fisiológico
15.
Int J Mol Sci ; 14(6): 12401-10, 2013 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-23765218

RESUMO

Ricin toxin binding subunit B (RTB) is one of the subunits of the ricin protein. RTB has been used as adjuvant, but little is known about its mechanism. In this study, we found that RTB increased not only nitric oxide (NO) release, but also tumor necrosis factor (TNF)-α and interleukin (IL)-6 production in mouse macrophage cell line RAW264.7 cells. They subsequently exhibited enhanced ConA-induced T-cell and LPS-induced B-cell proliferative responses. We also examined the cytokines that were produced from splenocytes following in vitro RTB administration. Increased levels of IL-2, interferon (IFN)-γ and TNF-α were observed, while IL-4 and IL-5 were unaffected. These results demonstrate that recombinant RTB can act on the immune system and activate T-cells by introducing a Th1 immune response. Th1 cells might be the primary cellular target affected by RTB. Our results suggest that the recombinant RTB can promote the activation of macrophages and has a beneficial effect on immunomodulatory activity.


Assuntos
Fatores Imunológicos/farmacologia , Subunidades Proteicas/farmacologia , Proteínas Recombinantes/farmacologia , Ricina/farmacologia , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citocinas/biossíntese , Feminino , Camundongos Endogâmicos BALB C , Óxido Nítrico/biossíntese , Proteínas Recombinantes/isolamento & purificação , Ricina/isolamento & purificação , Baço/citologia
16.
Eur J Pharmacol ; 955: 175894, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37429519

RESUMO

The Epidermal Growth Factor Receptor (EGFR) has been of high importance as it is over expressed in a wide diversity of epithelial cancers, promoting cell proliferation and survival pathways. Recombinant immunotoxins (ITs) have emerged as a promising targeted therapy for cancer treatment. In this study, we aimed to investigate the antitumor activity of a novel recombinant immunotoxin designed against EGFR. Using an in silico approach, we confirmed the stability of the RTA-scFv fusion protein. The immunotoxin was successfully cloned and expressed in the pET32a vector, and the purified protein was analyzed by electrophoresis and western blotting. In vitro evaluations were conducted to assess the biological activities of the recombinant proteins (RTA-scFv, RTA, scFv). The novel immunotoxin demonstrated significant anti-proliferative and pro-apoptotic effects against cancer cell lines. The MTT cytotoxicity assay revealed a decrease in cell viability in the treated cancer cell lines. Additionally, Annexin V/Propidium iodide staining followed by flow cytometry analysis showed a significant induction of apoptosis in the cancer cell lines, with half maximal inhibitory concentration (IC50) values of 81.71 nM for MDA-MB-468 and 145.2 nM for HCT116 cells (P < 0.05). Furthermore, the EGFR-specific immunotoxin exhibited non-allergenic properties. The recombinant protein demonstrated high affinity binding to EGFR. Overall, this study presents a promising strategy for the development of recombinant immunotoxins as potential candidates for the treatment of EGFR-expressing cancers.


Assuntos
Neoplasias da Mama , Neoplasias Colorretais , Imunotoxinas , Panitumumabe , Ricina , Humanos , Neoplasias Colorretais/tratamento farmacológico , Receptores ErbB/metabolismo , Imunotoxinas/farmacologia , Panitumumabe/farmacologia , Proteínas Recombinantes de Fusão , Proteínas Recombinantes/metabolismo , Ricina/farmacologia , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral
17.
Pharmazie ; 67(7): 618-21, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22888519

RESUMO

Cobra venom cytotoxin (CVC) loaded in poly (lactide-co-glycolide) (PLGA) microspheres was mixed with ricin and encapsulated in a thermosensitive PLGA-PEG-PLGA hydrogel for this study. This sequential sustained-release preparation (SSRP) containing ricin and CVC could avoid burst release effect of CVC from microspheres. In addition, in SSRP, the two biotoxins have different drug release rates and antitumor mechanisms, which can be complementary to each other. Ricin has a faster release rate than CVC. It can combine with the tumor cell membrane and enter the cell, inhibiting protein synthesis within 2 weeks. Whereas CVC releases slowly in 5 weeks directly dissolving the tumor cell membrane and killing the cells which are less-sensitive to ricin. The in vivo experiments showed that intratumoral injection of SSRP could inhibit hepatocellular carcinoma growth significantly, and the tumor growth inhibition rate reached 73.5%. It appears that a new medicine preparation for cancer local treatment should be further studied for clinical applications.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Venenos Elapídicos/administração & dosagem , Venenos Elapídicos/farmacologia , Ricina/administração & dosagem , Ricina/farmacologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Preparações de Ação Retardada , Portadores de Fármacos , Venenos Elapídicos/química , Excipientes , Humanos , Hidrogéis , Ácido Láctico , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Microscopia Eletrônica de Varredura , Microesferas , Transplante de Neoplasias , Tamanho da Partícula , Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ricina/química , Temperatura , Ensaios Antitumorais Modelo de Xenoenxerto
18.
J Biomol Struct Dyn ; 40(12): 5309-5319, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-33410376

RESUMO

Ricin is a potent cytotoxin with no available antidote. Its catalytic subunit, RTA, damages the ribosomal RNA (rRNA) of eukaryotic cells, preventing protein synthesis and eventually leading to cell death. The combination between easiness of obtention and high toxicity turns ricin into a potential weapon for terrorist attacks, urging the need of discovering effective antidotes. On this context, we used computational techniques, in order to identify potential ricin inhibitors among approved drugs. Two libraries were screened by two different docking algorithms, followed by molecular dynamics simulations and MM-PBSA calculations in order to corroborate the docking results. Three drugs were identified as potential ricin inhibitors: deferoxamine, leucovorin and plazomicin. Our calculations showed that these compounds were able to, simultaneously, form hydrogen bonds with residues of the catalytic site and the secondary binding site of RTA, qualifying as potential antidotes against intoxication by ricin.Communicated by Ramaswamy H. Sarma.


Assuntos
Ricina , Antídotos , Reposicionamento de Medicamentos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ricina/química , Ricina/metabolismo , Ricina/farmacologia
19.
J Biomol Struct Dyn ; 40(12): 5427-5445, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-33526002

RESUMO

Ricin is a potent toxin derived from the castor bean plant and comprises two subunits, RTA and RTB. Because of its cytotoxicity, ricin has alarmed world authorities for its potential use as a chemical weapon. Ricin also affects castor bean agribusiness, given the risk of animal and human poisoning. Over the years, many groups attempted to propose small-molecules that bind to the RTA active site, the catalytic chain. Despite such efforts, there is still no effective countermeasure against ricin poisoning. The computational study carried out in the present work renews the discussion about small-molecules that may inhibit this toxin. Here, a structure-based virtual screening protocol capable of discerning active RTA inhibitors from inactive ones was performed to screen over 2 million compounds from the ZINC database to find novel scaffolds that strongly bind into the active site of the RTA. Besides, a novel score method based on ligand undocking force profiles and semi-empirical quantum chemical calculations provided insights into the rescore of docking poses. Summing up, the filtering steps pointed out seven main compounds, with the SCF00-451 as a promising candidate to inhibit the killing activity of such potent phytotoxin.


Assuntos
Ricina , Toxinas Biológicas , Animais , Humanos , Ligantes , Simulação de Dinâmica Molecular , Ricina/química , Ricina/metabolismo , Ricina/farmacologia
20.
Med Sci Monit Basic Res ; 28: e936683, 2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35849510

RESUMO

BACKGROUND Ricin protein derived from Ricinus communis seeds is known to have a high toxicity to humans and animals. Several studies revealed that ricin, belonging to ribosome inactivating protein-I, has cytotoxic properties against various types of cancer cell lines. MATERIAL AND METHODS Crude ricin (CR) from the seeds of R. communis was investigated for its cytotoxicity on the A549 cancer cell lines using the MTS assay, and the cell death mechanism was explored using flow cytometry and Western blot methods. The cell migration was measured using a scratch/wound-healing method and the autophagy activity was explored using Western blotting. RESULTS CR showed cytotoxicity against A549 cancer cell lines, with an IC50 of 40.94 ppm. CR induced apoptosis and necrosis, but apoptosis occurred more frequently than necrosis. Apoptosis induced by CR was mediated by the activation of caspase-9 and caspase-3. CR inhibited cell migration in a concentration- and time-dependent manner, with the highest effect occurred at the concentration of 1.0 ppm. The autophagic experiment showed that CR inhibited autophagy in A549 lung cancer cells by decreasing Beclin-1 levels while increasing Atg5 levels in a concentration-dependent manner and CR decreased LC3-II level while increasing p62 level. Cisplatin treatment also inhibited autophagy as it exhibited the same effect on those autophagic proteins as CR. CONCLUSIONS Our findings suggest that CR might be a potential candidate for anticancer drugs, but further study is needed to verify its anticancer properties.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Ricina , Células A549 , Animais , Antineoplásicos/farmacologia , Apoptose , Autofagia , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Necrose , Ricina/farmacologia , Ricina/uso terapêutico , Ricinus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA