Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 375
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Mol Biol Evol ; 41(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38606901

RESUMO

Y chromosomes are thought to undergo progressive degeneration due to stepwise loss of recombination and subsequent reduction in selection efficiency. However, the timescales and evolutionary forces driving degeneration remain unclear. To investigate the evolution of sex chromosomes on multiple timescales, we generated a high-quality phased genome assembly of the massive older (<10 MYA) and neo (<200,000 yr) sex chromosomes in the XYY cytotype of the dioecious plant Rumex hastatulus and a hermaphroditic outgroup Rumex salicifolius. Our assemblies, supported by fluorescence in situ hybridization, confirmed that the neo-sex chromosomes were formed by two key events: an X-autosome fusion and a reciprocal translocation between the homologous autosome and the Y chromosome. The enormous sex-linked regions of the X (296 Mb) and two Y chromosomes (503 Mb) both evolved from large repeat-rich genomic regions with low recombination; however, the complete loss of recombination on the Y still led to over 30% gene loss and major rearrangements. In the older sex-linked region, there has been a significant increase in transposable element abundance, even into and near genes. In the neo-sex-linked regions, we observed evidence of extensive rearrangements without gene degeneration and loss. Overall, we inferred significant degeneration during the first 10 million years of Y chromosome evolution but not on very short timescales. Our results indicate that even when sex chromosomes emerge from repetitive regions of already-low recombination, the complete loss of recombination on the Y chromosome still leads to a substantial increase in repetitive element content and gene degeneration.


Assuntos
Cromossomos de Plantas , Evolução Molecular , Genoma de Planta , Rumex , Rumex/genética , Cromossomos Sexuais/genética , Recombinação Genética , Hibridização in Situ Fluorescente
2.
BMC Plant Biol ; 24(1): 523, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38853237

RESUMO

Allelopathy is a biological process in which one organism releases biochemicals that affect the growth and development of other organisms. The current investigation sought to determine the allelopathic effect of Rumex acetosella on white clover (Trifolium repens) growth and development by using its shoot extract (lower IC50 value) as a foliar treatment. Here, different concentrations (25, 50, 100, and 200 g/L) of shoot extract from Rumex acetosella were used as treatments. With increasing concentrations of shoot extract, the plant growth parameters, chlorophyll and total protein content of Trifolium repens decreased. On the other hand, ROS, such as O2.- and H2O2, and antioxidant enzymes, including SOD, CAT, and POD, increased with increasing shoot extract concentration. A phytohormonal study indicated that increased treatment concentrations increased ABA and SA levels while JA levels were reduced. For the identification of allelochemicals, liquid‒liquid extraction, thin-layer chromatography, and open-column chromatography were conducted using R. acetosella shoot extracts, followed by a seed bioassay on the separated layer. A lower IC50 value was obtained through GC/MS analysis. gammaSitosterol was identified as the most abundant component. The shoot extract of Rumex acetosella has strong allelochemical properties that may significantly impede the growth and development of Trifolium repens. This approach could help to understand the competitive abilities of this weed species and in further research provide an alternate weed management strategy.


Assuntos
Alelopatia , Antioxidantes , Extratos Vegetais , Reguladores de Crescimento de Plantas , Rumex , Trifolium , Trifolium/crescimento & desenvolvimento , Trifolium/metabolismo , Trifolium/efeitos dos fármacos , Extratos Vegetais/farmacologia , Antioxidantes/metabolismo , Rumex/crescimento & desenvolvimento , Rumex/metabolismo , Rumex/efeitos dos fármacos , Rumex/química , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Metanol , Plantas Daninhas/efeitos dos fármacos , Plantas Daninhas/crescimento & desenvolvimento , Feromônios/farmacologia , Feromônios/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Brotos de Planta/química
3.
Mol Phylogenet Evol ; 182: 107755, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36906194

RESUMO

The genus Rumex L. (Polygonaceae) provides a unique system for investigating the evolutionary development of sex determination and molecular rate evolution. Historically, Rumex has been divided, both taxonomically and colloquially into two groups: 'docks' and 'sorrels'. A well-resolved phylogeny can help evaluate a genetic basis for this division. Here we present a plastome phylogeny for 34 species of Rumex, inferred using maximum likelihood criteria. The historical 'docks' (Rumex subgenus Rumex) were resolved as monophyletic. The historical 'sorrels' (Rumex subgenera Acetosa and Acetosella) were resolved together, though not monophyletic due to the inclusion of R. bucephalophorus (Rumex subgenus Platypodium). Emex is supported as its own subgenus within Rumex, instead of resolved as sister taxa. We found remarkably low nucleotide diversity among the docks, consistent with recent diversification in that group, especially as compared to the sorrels. Fossil calibration of the phylogeny suggested that the common ancestor for Rumex (including Emex) has origins in the lower Miocene (22.13 MYA). The sorrels appear to have subsequently diversified at a relatively constant rate. The origin of the docks, however, was placed in the upper Miocene, but with most speciation occurring in the Plio-Pleistocene.


Assuntos
Polygonaceae , Rumex , Filogenia , Rumex/genética , Evolução Biológica , Evolução Molecular
4.
J Chem Ecol ; 49(5-6): 276-286, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37121960

RESUMO

Compared to their native range, non-native plants often experience reduced levels of herbivory in the introduced range. This may result in reduced pressure to produce chemical defences that act against herbivores. We measured the most abundant secondary metabolites found in Rumex spp., namely oxalates, phenols and tannins. To test this hypothesis, we compared native (UK) and introduced (NZ) provenances of three different Rumex species (R. obtusifolius, R. crispus and R. conglomeratus, Polygonaceae) to assess whether any significant differences existed in their levels of chemical defences in either leaves and roots. All three species have previously been shown to support a lower diversity of insect herbivores and experience less herbivory in the introduced range. We further examined leaf herbivory on plants from both provenances when grown together in a common garden experiment in New Zealand to test whether any differences in damage might be consistent with variation in the quantity of chemical defences. We found that two Rumex species (R. obtusifolius and R. crispus) showed no evidence for a reduction in chemical defences, while a third (R. conglomeratus) showed only limited evidence. The common garden experiment revealed that the leaves analysed had low levels of herbivory (~ 0.5%) with no differences in damage between provenances for any of the three study species. Roots tended to have a higher concentration of tannins than shoots, but again showed no difference between the provenances. As such, the findings of this study provide no evidence for lower plant investments in chemical defences, suggesting that other factors explain the success of Rumex spp. in New Zealand.


Assuntos
Rumex , Plantas , Taninos , Herbivoria , Folhas de Planta , Espécies Introduzidas
5.
Planta Med ; 89(11): 1052-1062, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34953469

RESUMO

Rumex acetosa significantly inhibits the adhesion of Porphyromonas gingivalis (P. g.) to eukaryotic host cells in vitro. The objective of this randomized placebo-controlled pilot-trial was to analyze effects of a mouth rinse containing 0.8% (w/w) of a quantified proanthocyanidin-enriched extract from Rumex acetosa (RA1) on microbiological, clinical, and cytological parameters in systemically healthy individuals without history of periodontitis, harboring P. g. intraorally. 35 subjects received a supragingival debridement (SD) followed by mouth rinsing (3 times daily) with either RA1 mouth rinse solution (test) or placebo (control) for 7 days as adjunct to routine oral hygiene. Supragingival biofilm samples were taken at screening visit, baseline (BL), 2, 4, 7 and 14 days after SD. P. g. and 11 other oral microorganisms were detected and quantified by rtPCR. Changes in the oral microbiota composition of one test and one control subject were assessed via high throughput 16S rRNS gene amplicon sequencing. Approximal Plaque Index (API) and the modified Sulcular Bleeding Index (SBI) were assessed at BL, 7- and 14-days following SD. Brush biopsies were taken at BL and 14 d following SD. Intergroup comparisons revealed no significant microbiological, cytological, and clinical differences at any timepoint. However, a significant reduction in SBI at day 14 (p = 0.003) and API at day 7 (p = 0.02) and day 14 (p = 0.009) was found in the test group by intragroup comparison. No severe adverse events were observed. The results indicate that RA1 mouth rinse is safe but does not seem to inhibit colonization of P. g. or improve periodontal health following SD.


Assuntos
Antissépticos Bucais , Proantocianidinas , Rumex , Antissépticos Bucais/farmacologia , Antissépticos Bucais/uso terapêutico , Projetos Piloto , Porphyromonas gingivalis , Proantocianidinas/farmacologia
6.
Molecules ; 28(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36903594

RESUMO

The composition of an ethanol extract from the roots of Rumex tianschanicus Losinsk of the Trans-Ili Alatau wild flora was studied in order to determine its antiulcer activity. The phytochemical composition of the anthraquinone-flavonoid complex from (AFC) R. tianschanicus revealed the presence of numerous polyphenolic compounds, the most abundant of which are anthraquinones (1.77%), flavonoids (6.95%), and tannins (13.39%). The use of column chromatography (CC) and thin-layer chromatography (TLC) in conjunction with UV, IR, NMR spectroscopy, and mass spectrometry data allowed the researchers to isolate and identify the major components of the anthraquinone-flavonoid complex's polyphenol fraction: physcion, chrysophanol, emodin, isorhamnetin, quercetin, and myricetin. The gastroprotective effect of the polyphenolic fraction of the anthraquinone-flavonoid complex (AFC) of R. tianschanicus roots was examined in an experimental model of rat gastric ulcer induced by indomethacin. The preventive and therapeutic effect of the anthraquinone-flavonoid complex at a dose of 100 mg/kg was analyzed using intragastric administration per day for 1 to 10 days, followed by a histological examination of stomach tissues. It has been demonstrated that prophylactic and prolonged use of the AFC R. tianschanicus in laboratory animals resulted in significantly less pronounced hemodynamic and desquamative changes in the epithelium of gastric tissues. The acquired results thus offer fresh insight into the anthraquinone and flavonoid metabolite component composition of R. tianschanicus roots, and they imply that the examined extract can be used to develop herbal medicines with antiulcer activity.


Assuntos
Antiulcerosos , Rumex , Úlcera Gástrica , Ratos , Animais , Rumex/química , Antraquinonas/química , Extratos Vegetais/química , Flavonoides/uso terapêutico , Antiulcerosos/química , Úlcera Gástrica/induzido quimicamente
7.
Molecules ; 28(9)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37175076

RESUMO

Among biological methods, green synthesis of the nanomaterials using plant extracts was shown to be an environmentally friendly, economical, and simple approach. In the current study, the biogenic synthesis of silver nanoparticles (AgNPs) was achieved using the leaf extract of Hibiscus tiliaceus, in order to prevent the contamination of the tissue culture media and induce callus growth. The nanostructures of the fabricated AgNPs were characterized using UV-visible spectroscopy, Fourier transform infra-red spectra (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), zeta size, and zeta potential techniques. Our results indicate that The UV-vis spectrum of AgNPs exhibited an absorption band at 415 nm. The FTIR analysis identified the functional groups which could involve in the reduction of silver ions to AgNPs, this was also confirmed by the (hkl) diffraction peaks in the XRD diffractogram. Moreover, the TEM analysis showed a spherical nanoparticle with a size ranging from 21 and 26 nm. Thereafter, the potential antibacterial and antifungal activity of the biogenic AgNPs was evaluated against Bacillus pumilus and Alternaria alternata which were isolated from the in vitro culture media and identified based on 16S rDNA and ITS rDNA sequences, respectively. The results showed that the AgNPs significantly inhibited the growth of Alternaria alternata and Bacillus pumilus at all applied concentrations (5, 10, 20 and 40 mg/L). Compared to the control more fungal radial growth reduction (42.59%,) and bacterial inhibition (98.12%) were registered in the plates containing high doses of AgNPs (40 mg/L). Using Rumex nervosus explants, the biosynthesized AgNPs were tested for their impact to promote callus growth. The obtained results showed a significant effect of AgNPs on callus fresh weight at all applied doses. Moreover, AgNPs treatments showed a polymorphism of 12.5% which was detected by RAPD markers. In summary, the results revealed that AgNPs (40 mg/L) can be effectively added to the in vitro culture media for reducing microbial contamination and improving callus growth while greatly maintaining its genetic stability.


Assuntos
Nanopartículas Metálicas , Rumex , Nanopartículas Metálicas/química , Prata/farmacologia , Prata/química , Meios de Cultura , Técnica de Amplificação ao Acaso de DNA Polimórfico , Antibacterianos/farmacologia , Difração de Raios X , Extratos Vegetais/química , Espectroscopia de Infravermelho com Transformada de Fourier
8.
Molecules ; 28(15)2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37570730

RESUMO

Among antihyperglycemic drugs used for treating diabetes, α-glucosidase inhibitors generate the least adverse effects. This contribution aimed to evaluate the potential antidiabetic activity of Rumex crispus L. by testing its in vitro α-glucosidase inhibition and in vivo antihyperglycemic effects on rats with streptozotocin (STZ)-induced diabetes. Better inhibition of α-glucosidase was found with the methanol extract versus the n-hexane and dichloromethane extracts. The methanol extract of the flowers (RCFM) was more effective than that of the leaves (RCHM), with an IC50 of 7.3 ± 0.17 µg/mL for RCFM and 112.0 ± 1.23 µg/mL for RCHM. A bioactive fraction (F89s) also showed good α-glucosidase inhibition (IC50 = 3.8 ± 0.11 µg/mL). In a preliminary study, RCHM and RCFM at 150 mg/kg and F89s at 75 mg/kg after 30 days showed a significant effect on hyperglycemia, reducing glucose levels (82.2, 80.1, and 84.1%, respectively), and improved the lipid, renal, and hepatic profiles of the rats, comparable with the effects of metformin and acarbose. According to the results, the activity of R. crispus L. may be mediated by a diminished rate of disaccharide hydrolysis, associated with the inhibition of α-glucosidase. Thus, R. crispus L. holds promise for the development of auxiliary drugs to treat diabetes mellitus.


Assuntos
Diabetes Mellitus Experimental , Rumex , Ratos , Animais , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , alfa-Glucosidases , Metanol , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/uso terapêutico , Folhas de Planta , Diabetes Mellitus Experimental/tratamento farmacológico , Flores
9.
Molecules ; 28(13)2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37446627

RESUMO

Plants are commonly used in folk medicine. Research indicates that the mechanisms of biological activity of plant extracts may be essential in the treatment of various diseases. In this respect, we decided to test the ethanolic extracts of Bidens tripartita herb (BTH), Galium verum herb (GVH), and Rumicis hydrolapathum root (RHR) on angiogenic, anti-inflammatory, and antioxidant properties and their total polyphenols content. In vitro studies using endothelial cells were used to see tested extracts' angiogenic/angiostatic and anti-inflammatory properties. The DPPH assay and FRAP analysis were used to detect antioxidant properties of extracts. The Folin-Ciocalteu analysis was used to determine the content of total polyphenols. The results of gas chromatography-mass spectrometry analysis was also presented. In vitro study demonstrated that BTH, GVH, and RHR ethanolic extracts significantly increased cell invasiveness, compared with the control group. Increased endothelial proangiogenic invasiveness was accompanied by reduced metalloproteinase inhibitor 1 (TIMP-1) and raised in metalloproteinase 9 (MMP-9). Only BTH and GVH significantly reduced cell proliferation, while BTH and RHR facilitated migration. Additionally, tested extracts reduced the production of proangiogenic platelet-derived growth factor (PDGF) and hepatocyte growth factor (HGF). The most potent anti-inflammatory capacity showed BTH and GVH, reducing proinflammatory interleukin 8 (CXCL8) and interleukin 6 (Il-6), compared to RHR extract that has slightly less inhibited CXCL8 production without affecting IL-6 production. Moreover, we confirmed the antioxidant properties of all examined extracts. The highest activity was characterized by RHR, which has been correlated with the high content of polyphenols. In conclusion, the modifying influence of examined extracts can be promising in disorders with pathogenesis related to angiogenesis, inflammation and free radicals formation. BTH is the best choice among the three tested extracts with its antiangiogenic and anti-inflammatory properties.


Assuntos
Galium , Rumex , Antioxidantes/farmacologia , Antioxidantes/química , Galium/química , Células Endoteliais , Interleucina-6 , Polifenóis/farmacologia , Extratos Vegetais/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Etanol
10.
Mol Biol Evol ; 38(3): 1018-1030, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33095227

RESUMO

Classical models suggest that recombination rates on sex chromosomes evolve in a stepwise manner to localize sexually antagonistic variants in the sex in which they are beneficial, thereby lowering rates of recombination between X and Y chromosomes. However, it is also possible that sex chromosome formation occurs in regions with preexisting recombination suppression. To evaluate these possibilities, we constructed linkage maps and a chromosome-scale genome assembly for the dioecious plant Rumex hastatulus. This species has a polymorphic karyotype with a young neo-sex chromosome, resulting from a Robertsonian fusion between the X chromosome and an autosome, in part of its geographic range. We identified the shared and neo-sex chromosomes using comparative genetic maps of the two cytotypes. We found that sex-linked regions of both the ancestral and the neo-sex chromosomes are embedded in large regions of low recombination. Furthermore, our comparison of the recombination landscape of the neo-sex chromosome to its autosomal homolog indicates that low recombination rates mainly preceded sex linkage. These patterns are not unique to the sex chromosomes; all chromosomes were characterized by massive regions of suppressed recombination spanning most of each chromosome. This represents an extreme case of the periphery-biased recombination seen in other systems with large chromosomes. Across all chromosomes, gene and repetitive sequence density correlated with recombination rate, with patterns of variation differing by repetitive element type. Our findings suggest that ancestrally low rates of recombination may facilitate the formation and subsequent evolution of heteromorphic sex chromosomes.


Assuntos
Evolução Biológica , Cromossomos de Plantas , Recombinação Genética , Rumex/genética , Cromossomos Sexuais , Genoma de Planta
11.
Mol Ecol ; 31(13): 3708-3721, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35569016

RESUMO

Natural hybrid zones provide opportunities for studies of the evolution of reproductive isolation in wild populations. Although recent investigations have found that the formation of neo-sex chromosomes is associated with reproductive isolation, the mechanisms remain unclear in most cases. Here, we assess the contemporary structure of gene flow in the contact zone between largely allopatric cytotypes of the dioecious plant Rumex hastatulus, a species with evidence of sex chromosome turn-over. Males to the west of the Mississippi river, USA, have an X and a single Y chromosome, whereas populations to the east of the river have undergone a chromosomal rearrangement giving rise to a larger X and two Y chromosomes. Using reduced-representation sequencing, we provide evidence that hybrids form readily and survive multiple backcross generations in the field, demonstrating the potential for ongoing gene flow between the cytotypes. Cline analysis of each chromosome separately captured no signals of difference in cline shape between chromosomes. However, principal component regression revealed a significant increase in the contribution of individual SNPs to inter-cytotype differentiation on the neo-X chromosome, but no correlation with recombination rate. Cline analysis revealed that the only SNPs with significantly steeper clines than the genome average were located on the neo-X. Our data are consistent with a role for neo-sex chromosomes in reproductive isolation between R. hastatulus cytotypes. Our investigation highlights the importance of studying plant hybrid zones for understanding the evolution of sex chromosomes.


Assuntos
Rumex , Cromossomos de Plantas/genética , Evolução Molecular , Genômica , Rumex/genética , Cromossomos Sexuais , Cromossomo X , Cromossomo Y
12.
Arch Microbiol ; 204(7): 443, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35776209

RESUMO

Rumex gmelinii Turcz. (RGT) is a medicinal plant of the genus Rumex, family Polygonaceae. Our research group isolated an endophytic fungus, Plectosphaerella cucumerina (Strain J-G) from RGT, which could significantly promote host growth when co-cultured with host seedlings. In this study, we used transcriptome analysis and verification experiments to explore the molecular mechanisms underlying this growth-promoting effect. We found that, during co-culture with Strain J-G, the expression of genes encoding key enzymes in amino acid metabolism and carbohydrate synthesis and metabolism were up-regulated in RGT tissue culture seedlings, providing additional substrate and energy for plant growth. In addition, the expression of genes encoding the responser of RGT seedlings to hormones, including auxin and cytokinin, were significantly enhanced, promoting plant growth and development. Furthermore, RGT seedling defense systems were mobilized by Strain J-G; therefore, more secondary metabolites and substances involved in stress resistance were produced, ensuring normal plant growth and metabolism. The research showed Strain J-G significantly promote the accumulation of biomass and effective components of RGT, which provide basis for its application. This research also provides a reference method for the study of growth-promoting mechanism of endophytic fungi.


Assuntos
Rumex , Fungos , Perfilação da Expressão Gênica , Desenvolvimento Vegetal , Rumex/genética , Plântula , Transcriptoma
13.
Arch Microbiol ; 204(9): 583, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36042050

RESUMO

Potato is constantly exposed to various kinds of phytopathogens which cause diseases during the developmental stage and post-harvest storage. This investigation was designed to assay the anti-phytopathogen activity of bacterial endophytes and their suppressive effects on rot disease in potato. The study also aimed to screen isolates for their plant growth-promoting traits and establish GC-MS-based metabolite profile of the potent isolate. Endophytes were isolated from Rumex dentatus and identified based on 16S rRNA gene. They were screened in dual culture assay against fungal phytopathogens and the potent isolate was tested for its capability to suppress Fusarium rot disease in potato tubers. The mechanism of action of endophytes on the phytopathogens was assessed using scanning electron microcopy. Isolates were also screened in vitro to assay their capability to produce phytohormones, hydrolytic enzymes, and to solubilize phosphates. Endophytic isolates produced proteases with a diameter of halo zone ranging from 7 to 32 mm. Bacillus sp. KL5 exhibited the highest production of indole acetic acid (IAA) with the amount of 104.28 µg/mL and was the most potent antagonist of Fusarium oxysporum and Verticillium dahliae with an inhibitory percentage of 61.53 and 100%, respectively. It showed a reduction of potato rot disease severity by more than 50%. GC-MS of active fractions of KL5 showed the presence of dibutylphthalate and 2,4-di-tert-butylphenol as major metabolites. From this study, it is evident that endophytic Bacillus species from R. dentatus are potent antagonists of F. oxysporum and V. dahliae. Bacillus sp. KL5 is a potent inhibitor of pathogenic F. oxysporum in potato tubers and can be developed as a biocontrol agent.


Assuntos
Bacillus , Rumex , Solanum tuberosum , Bacillus/genética , Endófitos , Cromatografia Gasosa-Espectrometria de Massas , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , RNA Ribossômico 16S/genética , Rumex/genética , Solo
14.
J Chem Ecol ; 48(2): 165-178, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35015177

RESUMO

The Polygonaceae weed, Rumex dentatus L. grows in association with wheat, mustard and potato, while Polygonum glabrum Willd. grows in association with rice in India. Both larvae and adults of Galerucella placida Baly (Coleoptera: Chrysomelidae) voraciously consume these weeds. Applications of synthetic herbicides to control weeds are harmful to the environment including beneficial organisms. We propose to find volatile organic compounds (VOCs) from both weeds causing attraction of the biocontrol agent, G. placida, in order to attempt to use the insect as a biological weed control. Behavioral responses of G. placida towards volatile blends characteristic of undamaged (UD), insect-damaged (ID), jasmonic acid-treated (JA) or mechanically-damaged (MD) plants were conducted by Y-tube olfactometer bioassays. Cuminaldehyde was predominant in VOCs of UD R. dentatus, ID P. glabrum, and both JA and MD R. dentatus and P. glabrum. Geraniol was predominant in VOCs of UD P. glabrum, while 1,3-diethylbenzene predominated in VOCs of ID R. dentatus. Females were more attracted towards volatile blends of ID plants compared to UD or JA plants. Females did not show attraction towards volatile blends of JA plants. We identified two bioactive synthetics blends, one comprised of seven compounds - 16.65 µg 1,3-diethylbenzene, 10.72 µg acetophenone, 6.52 µg 2,6-(E,Z)-nonadienal, 2.46 µg 1-nonanol, 4.19 µg decanal, 9.86 µg 4-ethylacetophenone and 3.34 µg 1-hexadecene dissolved in 25 µl CH2Cl2 and the other containing five compounds - 2.50 µg 2-octanol, 6.84 µg limonene, 0.64 µg dodecane, 6.63 µg 4-ethylacetophenone and 0.24 µg geranyl acetone dissolved in 25 µl CH2Cl2. These two blends of volatile compounds could be used to attract the biocontrol agent during early vegetative period of these two weeds, which could lead to eradication of weeds from crop fields.


Assuntos
Besouros , Polygonum , Rumex , Compostos Orgânicos Voláteis , Animais , Besouros/fisiologia , Plantas Daninhas , Compostos Orgânicos Voláteis/farmacologia
15.
Appl Microbiol Biotechnol ; 106(7): 2603-2617, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35262787

RESUMO

Rice (Oryza sativa L.) is one of the most important staple foods consumed in many countries of the world. It is mostly consumed in developing countries where different chemical fertilizers are used to improve the productivity of the crop plant. In the present study, endophytic actinomycetes isolated from Rumex dentatus were identified morphologically and by scanning electron microscopy. Butyl isobutyl phthalate (BIBP) was isolated from the root endophyte Streptomyces sp. JR9 using column chromatography and HPLC methods. The compound was tested for its effect on rice seed germination. BIBP, extracts, and isolates were evaluated for their plant growth effect on rice in a growth chamber. Isolates were also screened in vitro for phosphate solubilization activity and enzyme production. Indole-3-acetic acid (IAA) and BIBP produced in extracts were quantified and detected using high performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS) methods, respectively. BIBP was found to increase the germination of rice seeds by 6 to 12% in treated samples and displayed potent effect at lowest concentration (0.437 µM). Both the compound and the extract depicted significant increases in almost all growth parameters at lowest concentration of 0.125 µg/mL and 62.5 µg/mL, respectively. BIBP also increased significantly shoot length, fresh root, fresh shoot, and dried shoot weight at high concentrations and was more potent than the standard phytohormone IAA. HPLC quantification showed 7.952 µg/mg and 0.371 µg/mg of IAA in extracts of Streptomyces sp. JR9 and the stem endophyte Streptomyces sp. KS3, respectively. IAA containing extract of JR9 increased significantly most growth parameters at lowest concentration (125 µg/mL). The extract of KS3 depicted significant increases in almost all growth parameters at high concentration (500 µg/mL). Our investigation showed that streptomycetes isolated from R. dentatus and BIBP are potent growth promoting agents and can be used in agriculture as bio-fertilizer to improve the growth and productivity of rice. KEY POINTS: • Butyl isobutyl phthalate (BIBP) isolated from endophytic Streptomyces sp. JR9 is a potent rice seed germination activator and promotes significantly the growth of rice • Isolated endophytes showed the ability to produce enzymes and phytohormone IAA • Isolates enhanced significantly the growth of rice.


Assuntos
Oryza , Rumex , Streptomyces , Endófitos , Ácidos Ftálicos , Extratos Vegetais , Reguladores de Crescimento de Plantas
16.
Planta Med ; 88(9-10): 753-761, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34695862

RESUMO

Plants have a long history of use for their medicinal properties. The complexity of botanical extracts presents unique challenges and necessitates the application of innovative approaches to correctly identify and quantify bioactive compounds. For this study, we used untargeted metabolomics to explore the antimicrobial activity of Rumex crispus (yellow dock), a member of the Polygonaceae family used as an herbal remedy for bacterial infections. Ultra-performance liquid chromatography coupled with high resolution mass-spectrometry (UPLC-MS) was used to identify and quantify the known antimicrobial compound emodin. In addition, we used biochemometric approaches to integrate data measuring antimicrobial activity from R. crispus root starting material and fractions against methicillin-resistant Staphylococcus aureus (MRSA) with UPLC-MS data. Our results support the hypothesis that multiple constituents, including the anthraquinone emodin, contribute to the antimicrobial activity of R. crispus against MRSA.


Assuntos
Emodina , Staphylococcus aureus Resistente à Meticilina , Rumex , Antibacterianos/farmacologia , Cromatografia Líquida , Análise de Dados , Emodina/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Rumex/química , Espectrometria de Massas em Tandem
17.
Curr Microbiol ; 80(1): 7, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36445554

RESUMO

Rumex abyssinicus Jacq. is a perennial medicinal herb widely used in traditional medicine to treat many diseases. Phytochemicals of the plant were isolated using column chromatography and thin layer chromatography techniques. Extract, fractions and pure compounds were screened for antimicrobial activity against sensitive and multi-drug resistant microbes and their cytotoxicity was performed on different cancer cell lines. The mechanism of action of purified helminthosporin as well as the potent fraction containing a mixture of two compounds was assessed. Fraction R7C3 was the most potent antibacterial with the lowest MIC value of 0.12 µg/mL. Helminthosporin was the most potent compound with the lowest MIC value of 1.95 µg/mL. The compound was more potent than the antibiotic chloramphenicol against multi-drug resistant (MDR) bacteria with MIC equal to 16 µg/mL. The fraction and helminthosporin were shown to destroy the cell wall of the yeast and bacteria, and DNA fragmentation effect on the genome of Candida albicans and Bacillus cereus. Helminthosporin was the most cytotoxic compound with IC50 ˂ 10 µM. Fraction R7C3 showed the most potent cytotoxic effects on all cancer cell lines, with IC50 ranging from ˂1 to 4.35 ng/mL. Our study is the first report on the mechanism of action of helminthosporin, a potent candidate in the development of new drugs against multi-resistant bacteria and cancer cells. In addition, this study uncovered Rumex abyssinicus as a new source of syringic acid and bis(2-ethyloctyl) phthalate.


Assuntos
Anti-Infecciosos , Antineoplásicos , Rumex , Anti-Infecciosos/farmacologia , Antibacterianos
18.
J Dairy Sci ; 105(3): 2011-2024, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34955261

RESUMO

Multidrug-resistant (MDR) Staphylococcus aureus and its biofilm formation have been challenging to control in milk and dairy industries. Biofilms formed by Staph. aureus may result in the failure of antibacterial agents and disinfectants to penetrate the biofilm in an attempt to control contamination. Novel natural antibacterial agents are required to combat MDR bacteria and biofilms. In this study, we evaluated the bactericidal, antibiofilm, and antimotility effects of Rumex japonicus Houtt. (RJH) extract on MDR Staph. aureus isolated from milk. The RJH extract exhibited good antibacterial activity against MDR strains with minimum inhibitory concentrations (MIC) ranging from 0.78 to 6.25 mg/mL and minimum bactericidal concentrations ranging from 3.125 to 12.5 mg/mL. The extract showed strong inhibition of biofilm formation (81.9%) at sub-MIC value and eradication of biofilm at higher concentrations. The motility of Staph. aureus was effectively blocked by the extract. Major compounds emodin, chrysophanol, and physcion were identified in RJH extract using HPLC-linear trap quadrupole (LTQ)/Orbitrap-mass spectrometry. The extract was nontoxic to human epithelial cell lines such as Caco-2 and HT-29 cell lines at concentrations ranging from 0.1 to 0.5 mg/mL, and from 0.1 to 0.75 mg/mL, respectively. These findings suggest that RJH extract could be an alternative to synthetic preservatives in milk and dairy products.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Rumex , Animais , Antibacterianos/farmacologia , Biofilmes , Células CACO-2 , Humanos , Testes de Sensibilidade Microbiana/veterinária , Leite , Extratos Vegetais/farmacologia , Staphylococcus aureus
19.
Molecules ; 27(10)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35630653

RESUMO

The objective of this study was to assess the biological potency and chemical composition of Rumex vesicarius aboveground parts using GC-MS. In this approach, 44 components were investigated, comprising 99.99% of the total volatile compounds. The major components were classified as fatty acids and lipids (51.36%), oxygenated hydrocarbons (33.59%), amines (7.35%), carbohydrates (6.06%), steroids (1.21%), and alkaloids (0.42%). The major components were interpreted as 1,3-dihydroxypropan-2-yl oleate (oxygenated hydrocarbons, 18.96%), ethyl 2-hydroxycyclohexane-1-carboxylate (ester of fatty acid, 17.56%), and 2-propyltetrahydro-2H-pyran-3-ol (oxygenated hydrocarbons, 11.18%). The DPPH antioxidant activity of the extracted components of R. vesicarius verified that the shoot extract was the most potent with IC50 = 28.89 mg/L, with the percentages of radical scavenging activity at 74.28% ± 3.51%. The extracted plant, on the other hand, showed substantial antibacterial activity against the diverse bacterial species, namely, Salmonella typhi (23.46 ± 1.69), Bacillus cereus (22.91 ± 0.96), E. coli (21.07 ± 0.80), and Staphylococcus aureus (17.83 ± 0.67). In addition, the extracted plant was in vitro assessed as a considerable anticancer agent on HepG2 cells, in which MTT, cell proliferation cycle, and DNA fragmentation assessments were applied on culture and treated cells. The larvicidal efficacy of the extracted plant was also evaluated against Aedes aegypti, the dengue disease vector. As a result, we may infer that R. vesicarius extract increased cytocompatibility and cell migratory capabilities, and that it may be effective in mosquito control without causing harm.


Assuntos
Anti-Infecciosos , Antineoplásicos , Rumex , Animais , Antibacterianos/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Escherichia coli , Mosquitos Vetores , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Rumex/química
20.
Molecules ; 27(3)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35163925

RESUMO

Outbreaks and prevalence of infectious diseases worldwide are some of the major contributors to morbidity and morbidity in humans. Pharmacophageous plants are the best source for searching antibacterial compounds with low toxicity to humans. In this study, we identified, for the first time, antibacterial components and action modes of methanol-phase extract from such one edible herbaceous plant Rumex madaio Makino. The bacteriostatic rate of the extract was 75% against 23 species of common pathogenic bacteria. The extract was further purified using the preparative high-performance liquid chromatography (Prep-HPLC) technique, and five separated componential complexes (CC) were obtained. Among these, the CC 1 significantly increased cell surface hydrophobicity and membrane permeability and decreased membrane fluidity, which damaged cell structure integrity of Gram-positive and -negative pathogens tested. A total of 58 different compounds in the extract were identified using ultra-HPLC and mass spectrometry (UHPLC-MS) techniques. Comparative transcriptomic analyses revealed a number of differentially expressed genes and various changed metabolic pathways mediated by the CC1 action, such as down-regulated carbohydrate transport and/or utilization and energy metabolism in four pathogenic strains tested. Overall, the results in this study demonstrated that the CC1 from R. madaio Makino are promising candidates for antibacterial medicine and human health care products.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Metanol/química , Extratos Vegetais/farmacologia , Rumex/química , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA