Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 291
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Mol Med ; 30(1): 1, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172662

RESUMO

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating illness associated with a constellation of other symptoms. While the most common symptom is unrelenting fatigue, many individuals also report suffering from rhinitis, dry eyes and a sore throat. Mucin proteins are responsible for contributing to the formation of mucosal membranes throughout the body. These mucosal pathways contribute to the body's defense mechanisms involving pathogenic onset. When compromised by pathogens the epithelium releases numerous cytokines and enters a prolonged state of inflammation to eradicate any particular infection. Based on genetic analysis, and computational theory and modeling we hypothesize that mucin protein dysfunction may contribute to ME/CFS symptoms due to the inability to form adequate mucosal layers throughout the body, especially in the ocular and otolaryngological pathways leading to low grade chronic inflammation and the exacerbation of symptoms.


Assuntos
Síndrome de Fadiga Crônica , Humanos , Síndrome de Fadiga Crônica/metabolismo , Citocinas , Inflamação , Mucinas
2.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34400495

RESUMO

Although most patients recover from acute COVID-19, some experience postacute sequelae of severe acute respiratory syndrome coronavirus 2 infection (PASC). One subgroup of PASC is a syndrome called "long COVID-19," reminiscent of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). ME/CFS is a debilitating condition, often triggered by viral and bacterial infections, leading to years-long debilitating symptoms including profound fatigue, postexertional malaise, unrefreshing sleep, cognitive deficits, and orthostatic intolerance. Some are skeptical that either ME/CFS or long COVID-19 involves underlying biological abnormalities. However, in this review, we summarize the evidence that people with acute COVID-19 and with ME/CFS have biological abnormalities including redox imbalance, systemic inflammation and neuroinflammation, an impaired ability to generate adenosine triphosphate, and a general hypometabolic state. These phenomena have not yet been well studied in people with long COVID-19, and each of them has been reported in other diseases as well, particularly neurological diseases. We also examine the bidirectional relationship between redox imbalance, inflammation, energy metabolic deficits, and a hypometabolic state. We speculate as to what may be causing these abnormalities. Thus, understanding the molecular underpinnings of both PASC and ME/CFS may lead to the development of novel therapeutics.


Assuntos
COVID-19/metabolismo , Encefalomielite/metabolismo , Síndrome de Fadiga Crônica/metabolismo , Animais , COVID-19/complicações , COVID-19/etiologia , COVID-19/imunologia , Encefalomielite/imunologia , Síndrome de Fadiga Crônica/imunologia , Humanos , Oxirredução , Síndrome de COVID-19 Pós-Aguda
3.
J Therm Biol ; 120: 103813, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38412735

RESUMO

Heat treatment or hyperthermia is a promising therapy for many diseases, especially cancer, and can be traced back thousands of years. Despite its long history, little is known about the cellular and molecular effects of heat on human cells. Therefore, we investigated the impact of water-filtered infrared-A (wIRA) irradiation (39 °C, 60 min) on key cellular mechanisms, namely autophagy, mitochondrial function and mRNA expression, in human fibroblasts and peripheral blood mononuclear cells (PBMCs) from healthy donors and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) patients. Our results show an induction of autophagy in healthy fibroblasts and PBMCs from healthy donors and ME/CFS patients. ME/CFS patients have higher mitochondrial function compared to healthy donors. The wIRA treatment leads to a slight reduction in mitochondrial function in PBMCs from ME/CFS patients, thereby approaching the level of mitochondrial function of healthy donors. Furthermore, an activation of the mRNA expression of the autophagy-related genes MAP1LC3B and SIRT1 as well as for HSPA1, which codes for a heat shock protein, can be observed. These results confirm an impact of heat treatment in human cells on key cellular mechanisms, namely autophagy and mitochondrial function, in health and disease, and provide hope for a potential treatment option for ME/CFS patients.


Assuntos
Síndrome de Fadiga Crônica , Hipertermia Induzida , Humanos , Síndrome de Fadiga Crônica/terapia , Síndrome de Fadiga Crônica/metabolismo , Leucócitos Mononucleares/metabolismo , Mitocôndrias/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
Int J Mol Sci ; 25(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38338957

RESUMO

Patients suffering from chronic fatigue syndrome (CFS) or post-COVID syndrome (PCS) exhibit a reduced physiological performance capability. Impaired mitochondrial function and morphology may play a pivotal role. Thus, we aimed to measure the muscle mitochondrial oxidative phosphorylation (OXPHOS) capacity and assess mitochondrial morphology in CFS and PCS patients in comparison to healthy controls (HCs). Mitochondrial OXPHOS capacity was measured in permeabilized muscle fibers using high-resolution respirometry. Mitochondrial morphology (subsarcolemmal/intermyofibrillar mitochondrial form/cristae/diameter/circumference/area) and content (number and proportion/cell) were assessed via electron microscopy. Analyses included differences in OXPHOS between HC, CFS, and PCS, whereas comparisons in morphology/content were made for CFS vs. PCS. OXPHOS capacity of complex I, which was reduced in PCS compared to HC. While the subsarcolemmal area, volume/cell, diameter, and perimeter were higher in PCS vs. CFS, no difference was observed for these variables in intermyofibrillar mitochondria. Both the intermyofibrillar and subsarcolemmal cristae integrity was higher in PCS compared to CFS. Both CFS and PCS exhibit increased fatigue and impaired mitochondrial function, but the progressed pathological morphological changes in CFS suggest structural changes due to prolonged inactivity or unknown molecular causes. Instead, the significantly lower complex I activity in PCS suggests probably direct virus-induced alterations.


Assuntos
COVID-19 , Síndrome de Fadiga Crônica , Humanos , Síndrome de Fadiga Crônica/metabolismo , COVID-19/complicações , COVID-19/metabolismo , Mitocôndrias Musculares/metabolismo , Mitocôndrias , Fibras Musculares Esqueléticas/metabolismo
5.
Biochem J ; 479(16): 1653-1708, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36043493

RESUMO

Ischaemia-reperfusion (I-R) injury, initiated via bursts of reactive oxygen species produced during the reoxygenation phase following hypoxia, is well known in a variety of acute circumstances. We argue here that I-R injury also underpins elements of the pathology of a variety of chronic, inflammatory diseases, including rheumatoid arthritis, ME/CFS and, our chief focus and most proximally, Long COVID. Ischaemia may be initiated via fibrin amyloid microclot blockage of capillaries, for instance as exercise is started; reperfusion is a necessary corollary when it finishes. We rehearse the mechanistic evidence for these occurrences here, in terms of their manifestation as oxidative stress, hyperinflammation, mast cell activation, the production of marker metabolites and related activities. Such microclot-based phenomena can explain both the breathlessness/fatigue and the post-exertional malaise that may be observed in these conditions, as well as many other observables. The recognition of these processes implies, mechanistically, that therapeutic benefit is potentially to be had from antioxidants, from anti-inflammatories, from iron chelators, and via suitable, safe fibrinolytics, and/or anti-clotting agents. We review the considerable existing evidence that is consistent with this, and with the biochemical mechanisms involved.


Assuntos
Artrite Reumatoide , COVID-19 , Síndrome de Fadiga Crônica , Traumatismo por Reperfusão , Artrite Reumatoide/terapia , COVID-19/complicações , Síndrome de Fadiga Crônica/metabolismo , Humanos , Estresse Oxidativo/fisiologia , Traumatismo por Reperfusão/terapia , Síndrome de COVID-19 Pós-Aguda
6.
Mol Cell Neurosci ; 120: 103731, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35487443

RESUMO

Myalgic Encephalomyelitis, also known as Chronic Fatigue Syndrome (ME/CFS), is a multisystem illness characterized by extreme muscle fatigue associated with pain, neurocognitive impairment, and chronic inflammation. Despite intense investigation, the molecular mechanism of this disease is still unknown. Here we demonstrate that autophagy-related protein ATG13 is strongly upregulated in the serum of ME/CFS patients, indicative of impairment in the metabolic events of autophagy. A Thioflavin T-based protein aggregation assay, array screening for autophagy-related factors, densitometric analyses, and confirmation with ELISA revealed that the level of ATG13 was strongly elevated in serum samples of ME/CFS patients compared to age-matched controls. Moreover, our microglia-based oxidative stress response experiments indicated that serum samples of ME/CFS patients evoke the production of reactive oxygen species (ROS) and nitric oxide in human HMC3 microglial cells, whereas neutralization of ATG13 strongly diminishes the production of ROS and NO, suggesting that ATG13 plays a role in the observed stress response in microglial cells. Finally, an in vitro ligand binding assay provided evidence that ATG13 employs the Receptor for Advanced Glycation End-products (RAGE) to stimulate ROS in microglial cells. Collectively, our results suggest that an impairment of autophagy following the release of ATG13 into serum could be a pathological signal in ME/CFS.


Assuntos
Síndrome de Fadiga Crônica , Proteínas Relacionadas à Autofagia/metabolismo , Síndrome de Fadiga Crônica/metabolismo , Síndrome de Fadiga Crônica/patologia , Humanos , Microglia/metabolismo , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Fatores de Transcrição/metabolismo
7.
Int J Mol Sci ; 24(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37569313

RESUMO

Millions globally suffer from myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). The inflammatory symptoms, illness onset, recorded outbreak events, and physiological variations provide strong indications that ME/CFS, at least sometimes, has an infectious origin, possibly resulting in a chronic unidentified viral infection. Meanwhile, studies exposing generalized metabolic disruptions in ME/CFS have stimulated interest in isolated immune cells with an altered metabolic state. As the metabolism dictates the cellular function, dissecting the biomechanics of dysfunctional immune cells in ME/CFS can uncover states such as exhaustion, senescence, or anergy, providing insights into the consequences of these phenotypes in this disease. Despite the similarities that are seen metabolically between ME/CFS and other chronic viral infections that result in an exhausted immune cell state, immune cell exhaustion has not yet been verified in ME/CFS. This review explores the evidence for immunometabolic dysfunction in ME/CFS T cell and natural killer (NK) cell populations, comparing ME/CFS metabolic and functional features to dysfunctional immune cell states, and positing whether anergy, exhaustion, or senescence could be occurring in distinct immune cell populations in ME/CFS, which is consistent with the hypothesis that ME/CFS is a chronic viral disease. This comprehensive review of the ME/CFS immunometabolic literature identifies CD8+ T cell exhaustion as a probable contender, underscores the need for further investigation into the dysfunctional state of CD4+ T cells and NK cells, and explores the functional implications of molecular findings in these immune-cell types. Comprehending the cause and impact of ME/CFS immune cell dysfunction is critical to understanding the physiological mechanisms of ME/CFS, and developing effective treatments to alleviate the burden of this disabling condition.


Assuntos
Síndrome de Fadiga Crônica , Humanos , Síndrome de Fadiga Crônica/metabolismo , Células Matadoras Naturais , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos
8.
Int J Mol Sci ; 24(12)2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37373402

RESUMO

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex, multi-symptom illness characterized by debilitating fatigue and post-exertional malaise (PEM). Numerous studies have reported sex differences at the epidemiological, cellular, and molecular levels between male and female ME/CFS patients. To gain further insight into these sex-dependent changes, we evaluated differential gene expression by RNA-sequencing (RNA-Seq) in 33 ME/CFS patients (20 female, 13 male) and 34 matched healthy controls (20 female and 14 male) before, during, and after an exercise challenge intended to provoke PEM. Our findings revealed that pathways related to immune-cell signaling (including IL-12) and natural killer cell cytotoxicity were activated as a result of exertion in the male ME/CFS cohort, while female ME/CFS patients did not show significant enough changes in gene expression to meet the criteria for the differential expression. Functional analysis during recovery from an exercise challenge showed that male ME/CFS patients had distinct changes in the regulation of specific cytokine signals (including IL-1ß). Meanwhile, female ME/CFS patients had significant alterations in gene networks related to cell stress, response to herpes viruses, and NF-κß signaling. The functional pathways and differentially expressed genes highlighted in this pilot project provide insight into the sex-specific pathophysiology of ME/CFS.


Assuntos
Síndrome de Fadiga Crônica , Humanos , Masculino , Feminino , Síndrome de Fadiga Crônica/genética , Síndrome de Fadiga Crônica/metabolismo , Projetos Piloto , Células Matadoras Naturais/metabolismo , Interleucina-12/metabolismo , Citocinas/metabolismo
9.
Hum Mol Genet ; 29(R1): R117-R124, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32744306

RESUMO

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex multisystem illness that lacks effective therapy and a biomedical understanding of its causes. Despite a prevalence of ∼0.2-0.4% and its high public health burden, and evidence that it has a heritable component, ME/CFS has not yet benefited from the advances in technology and analytical tools that have improved our understanding of many other complex diseases. Here we critically review existing evidence that genetic factors alter ME/CFS risk before concluding that most ME/CFS candidate gene associations are not replicated by the larger CFS cohort within the UK Biobank. Multiple genome-wide association studies of this cohort also have not yielded consistently significant associations. Ahead of upcoming larger genome-wide association studies, we discuss how these could generate new lines of enquiry into the DNA variants, genes and cell types that are causally involved in ME/CFS disease.


Assuntos
Epigênese Genética , Síndrome de Fadiga Crônica/patologia , Regulação da Expressão Gênica , Marcadores Genéticos , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Estudos de Coortes , Síndrome de Fadiga Crônica/etiologia , Síndrome de Fadiga Crônica/metabolismo , Humanos , Fatores de Risco
10.
Int J Mol Sci ; 23(19)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36233152

RESUMO

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a complex disease with variable severity. Patients experience frequent relapses where symptoms increase in severity, leaving them with a marked reduction in quality of life. Previous work has investigated molecular differences between ME/CFS patients and healthy controls, but not the dynamic changes specific to each individual patient. We applied precision medicine here to map genomic changes in two selected ME/CFS patients through a period that contained a relapse recovery cycle. DNA was isolated from two patients and a healthy age/gender matched control at regular intervals and captured the patient relapse in each case. Reduced representation DNA methylation sequencing profiles were obtained spanning the relapse recovery cycle. Both patients showed a significantly larger methylome variability (10-20-fold) through the period of sampling compared with the control. During the relapse, changes in the methylome profiles of the two patients were detected in regulatory-active regions of the genome that were associated, respectively, with 157 and 127 downstream genes, indicating disturbed metabolic, immune and inflammatory functions. Severe health relapses in the ME/CFS patients resulted in functionally important changes in their DNA methylomes that, while differing between the two patients, led to very similar compromised physiology. DNA methylation as a signature of disease variability in ongoing ME/CFS may have practical applications for strategies to decrease relapse frequency.


Assuntos
Síndrome de Fadiga Crônica , Epigênese Genética , Epigenômica , Síndrome de Fadiga Crônica/genética , Síndrome de Fadiga Crônica/metabolismo , Humanos , Qualidade de Vida , Recidiva
11.
J Endocrinol Invest ; 44(12): 2809-2817, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34003462

RESUMO

PURPOSE: Many patients who undergo bone marrow transplantation (BMT) in adulthood experience unexplained chronic fatigue which can have a major impact on their health-related quality of life (QoL). Pre-BMT treatment regimens increase the risk of developing acquired growth hormone deficiency (GHD), which results in a clinical syndrome with decreased energy and has additionally been linked to metabolic syndrome. METHODS: Using the gold-standard insulin hypoglycemic test (IHT), we evaluated the prevalence of GHD in 18 post-BMT adult patients with unexplained chronic fatigue, as well as the correlation between peak serum GH response and QoL scores, the metabolic syndrome, and insulin resistance. Peak serum GH cut-point less than 3.0 ug/L was used for the diagnosis of severe GHD. The Fatigue Severity Scale and Quality of Life in Adult GHD Assessment questionnaires were used to quantify fatigue symptoms. RESULTS: The prevalence of severe GHD within this sample of 18 patients was 50%. A trend between lower peak serum GH response and higher fatigue and QoL-AGHDA scores was observed. CONCLUSIONS: GHD may represent a remediable contributor to post-BMT chronic fatigue in adults, further studies are needed to evaluate the potential role of screening and GH replacement therapy in this vulnerable patient population. IMPLICATIONS FOR CANCER SURVIVORS: GHD may be a treatable explanation for disabling post-BMT fatigue pending results of intervention studies.


Assuntos
Transplante de Medula Óssea/efeitos adversos , Síndrome de Fadiga Crônica , Hormônio do Crescimento , Síndrome Metabólica , Complicações Pós-Operatórias , Qualidade de Vida , Transplante de Medula Óssea/métodos , Sobreviventes de Câncer , Estudos Transversais , Síndrome de Fadiga Crônica/etiologia , Síndrome de Fadiga Crônica/metabolismo , Síndrome de Fadiga Crônica/psicologia , Síndrome de Fadiga Crônica/terapia , Feminino , Hormônio do Crescimento/sangue , Hormônio do Crescimento/deficiência , Terapia de Reposição Hormonal/métodos , Humanos , Resistência à Insulina , Masculino , Síndrome Metabólica/diagnóstico , Síndrome Metabólica/etiologia , Pessoa de Meia-Idade , Complicações Pós-Operatórias/diagnóstico , Complicações Pós-Operatórias/metabolismo , Complicações Pós-Operatórias/psicologia , Complicações Pós-Operatórias/terapia , Prevalência , Inquéritos e Questionários , Avaliação de Sintomas/métodos
12.
Int J Mol Sci ; 22(5)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806649

RESUMO

Myalgic encephalomyelitis (ME)/chronic fatigue syndrome (CFS) is one of the most refractory diseases in humans and is characterized by severe central fatigue accompanied with various symptoms that affect daily life, such as impaired memory, depression, and somatic pain. However, the etiology and pathophysiological mechanisms of CFS remain unknown. To investigate the pathophysiological role of transforming growth factor (TGF)-ß1, we injected a cytokine into the lateral ventricle of a C57BL/6 mouse. The intracranial injection of TGF-ß1 increased the immobility duration in a forced swimming test (FST) and time spent at the closed arm in elevated plus maze (EPM) analysis. The mice injected with TGF-ß1 into their brain showed increased sensitivity to pain in a von Frey test, and had a decreased retention time on rotarod and latency time in a bright box in a passive avoidance test. In addition, the serum levels of muscle fatigue biomarkers, lactate dehydrogenase (LDH) and creatine kinase (CK), were significantly increased after administration of TGF-ß1. Intracranial injection of TGF-ß1 significantly reduced the production of tyrosine hydroxylase (TH) in the ventral tegmental area, accompanied by a decreased level of dopamine in the striatum. The suppression of TH expression by TGF-ß1 was confirmed in the human neuroblastoma cell line, SH-SY5Y. These results, which show that TGF-ß1 induced fatigue-like behaviors by suppressing dopamine production, suggest that TGF-ß1 plays a critical role in the development of central fatigue and is, therefore, a potential therapeutic target of the disease.


Assuntos
Dopamina/metabolismo , Fadiga/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Área Tegmentar Ventral/metabolismo , Animais , Biomarcadores/metabolismo , Linhagem Celular Tumoral , Citocinas/metabolismo , Síndrome de Fadiga Crônica/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Natação/fisiologia
13.
Int J Mol Sci ; 22(4)2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669532

RESUMO

Although understanding of the biomedical basis of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is growing, the underlying pathological mechanisms remain uncertain. We recently reported a reduction in the proportion of basal oxygen consumption due to ATP synthesis by Complex V in ME/CFS patient-derived lymphoblast cell lines, suggesting mitochondrial respiratory inefficiency. This was accompanied by elevated respiratory capacity, elevated mammalian target of rapamycin complex 1 (mTORC1) signaling activity and elevated expression of enzymes involved in the TCA cycle, fatty acid ß-oxidation and mitochondrial transport. These and other observations led us to hypothesise the dysregulation of pathways providing the mitochondria with oxidisable substrates. In our current study, we aimed to revisit this hypothesis by applying a combination of whole-cell transcriptomics, proteomics and energy stress signaling activity measures using subsets of up to 34 ME/CFS and 31 healthy control lymphoblast cell lines from our growing library. While levels of glycolytic enzymes were unchanged in accordance with our previous observations of unaltered glycolytic rates, the whole-cell proteomes of ME/CFS lymphoblasts contained elevated levels of enzymes involved in the TCA cycle (p = 1.03 × 10-4), the pentose phosphate pathway (p = 0.034, G6PD p = 5.5 × 10-4), mitochondrial fatty acid ß-oxidation (p = 9.2 × 10-3), and degradation of amino acids including glutamine/glutamate (GLS p = 0.034, GLUD1 p = 0.048, GOT2 p = 0.026), branched-chain amino acids (BCKDHA p = 0.028, BCKDHB p = 0.031) and essential amino acids (FAH p = 0.036, GCDH p = 0.006). The activity of the major cellular energy stress sensor, AMPK, was elevated but the increase did not reach statistical significance. The results suggest that ME/CFS metabolism is dysregulated such that alternatives to glycolysis are more heavily utilised than in controls to provide the mitochondria with oxidisable substrates.


Assuntos
Síndrome de Fadiga Crônica/metabolismo , Linfócitos/metabolismo , Mitocôndrias/metabolismo , Adulto , Idoso , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Redes e Vias Metabólicas , Pessoa de Meia-Idade , Oxirredução , Fosforilação Oxidativa , Complexo de Endopeptidases do Proteassoma/metabolismo , Subunidades Proteicas/metabolismo , Proteoma/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Especificidade por Substrato , Transcriptoma/genética
14.
Curr Opin Neurol ; 33(3): 391-396, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32304437

RESUMO

PURPOSE OF REVIEW: Chronic fatigue is common in cancer, neurodegenerative, and chronic inflammatory diseases and is regarded by many patients as their absolutely worst problem. Lately, fatigue is increasingly understood to have a genetic and molecular basis. RECENT FINDINGS: Biologically, fatigue occurs as part of the sickness behavior response, a complex and automated behavior triggered by the activation of innate immunity and neuroinflammation. IL-1ß causes neuronal activation in the brain and subsequent fatigue. In addition to proinflammatory molecules, potential partners in the complex brain signaling of fatigue include downregulatory mechanisms for inflammation and cellular stress responses and the neuropeptide hypocretin-1. These mechanisms all become constantly activated in chronic conditions. Genetic studies indicate that fatigue may have evolved to enhance survival during infection and injury. SUMMARY: Fatigue is a major clinical problem. Finding the right treatment is challenging, as no specific options exist and only a few of the mechanisms contributing to fatigue are known. Because fatigue is generated in the brain, further studies should focus on proteomics and specific candidate proteins in cerebrospinal fluid. Studies on genetic variants, gene activation, and epigenetics are also required.


Assuntos
Encéfalo/imunologia , Síndrome de Fadiga Crônica/imunologia , Fadiga/imunologia , Imunidade Inata/fisiologia , Inflamação/imunologia , Animais , Encéfalo/metabolismo , Fadiga/metabolismo , Síndrome de Fadiga Crônica/metabolismo , Humanos , Inflamação/metabolismo , Neurônios/imunologia , Neurônios/metabolismo
15.
Int J Mol Sci ; 21(3)2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32041178

RESUMO

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is an enigmatic condition characterized by exacerbation of symptoms after exertion (post-exertional malaise or "PEM"), and by fatigue whose severity and associated requirement for rest are excessive and disproportionate to the fatigue-inducing activity. There is no definitive molecular marker or known underlying pathological mechanism for the condition. Increasing evidence for aberrant energy metabolism suggests a role for mitochondrial dysfunction in ME/CFS. Our objective was therefore to measure mitochondrial function and cellular stress sensing in actively metabolizing patient blood cells. We immortalized lymphoblasts isolated from 51 ME/CFS patients diagnosed according to the Canadian Consensus Criteria and an age- and gender-matched control group. Parameters of mitochondrial function and energy stress sensing were assessed by Seahorse extracellular flux analysis, proteomics, and an array of additional biochemical assays. As a proportion of the basal oxygen consumption rate (OCR), the rate of ATP synthesis by Complex V was significantly reduced in ME/CFS lymphoblasts, while significant elevations were observed in Complex I OCR, maximum OCR, spare respiratory capacity, nonmitochondrial OCR and "proton leak" as a proportion of the basal OCR. This was accompanied by a reduction of mitochondrial membrane potential, chronically hyperactivated TOR Complex I stress signaling and upregulated expression of mitochondrial respiratory complexes, fatty acid transporters, and enzymes of the ß-oxidation and TCA cycles. By contrast, mitochondrial mass and genome copy number, as well as glycolytic rates and steady state ATP levels were unchanged. Our results suggest a model in which ME/CFS lymphoblasts have a Complex V defect accompanied by compensatory upregulation of their respiratory capacity that includes the mitochondrial respiratory complexes, membrane transporters and enzymes involved in fatty acid ß-oxidation. This homeostatically returns ATP synthesis and steady state levels to "normal" in the resting cells, but may leave them unable to adequately respond to acute increases in energy demand as the relevant homeostatic pathways are already activated.


Assuntos
Trifosfato de Adenosina/metabolismo , Síndrome de Fadiga Crônica/metabolismo , Linfócitos/citologia , ATPases Mitocondriais Próton-Translocadoras/deficiência , Adulto , Idoso , Canadá , Técnicas de Cultura de Células , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Metabolismo Energético , Feminino , Humanos , Linfócitos/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Consumo de Oxigênio , Proteômica/métodos
16.
Mol Med ; 25(1): 14, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31014226

RESUMO

BACKGROUND: Chronic Fatigue Syndrome/ Myalgic Encephalomyelitis (CFS/ME) is a complex multifactorial disorder of unknown cause having multi-system manifestations. Although the aetiology of CFS/ME remains elusive, immunological dysfunction and more particularly reduced cytotoxic activity in natural killer (NK) cells is the most consistent laboratory finding. The Transient Receptor Potential (TRP) superfamily of cation channels play a pivotal role in the pathophysiology of immune diseases and are therefore potential therapeutic targets. We have previously identified single nucleotide polymorphisms in TRP genes in peripheral NK cells from CFS/ME patients. We have also described biochemical pathway changes and calcium signaling perturbations in NK cells from CFS/ME patients. Notably, we have previously reported a decrease of TRP cation channel subfamily melastatin member 3 (TRPM3) function in NK cells isolated from CFS/ME patients compared with healthy controls after modulation with pregnenolone sulfate and ononetin using a patch-clamp technique. In the present study, we aim to confirm the previous results describing an impaired TRPM3 activity in a new cohort of CFS/ME patients using a whole cell patch-clamp technique after modulation with reversible TRPM3 agonists, pregnenolone sulfate and nifedipine, and an effective TRPM3 antagonist, ononetin. Indeed, no formal research has commented on using pregnenolone sulfate or nifedipine to treat CFS/ME patients while there is evidence that clinicians prescribe calcium channel blockers to improve different symptoms. METHODS: Whole-cell patch-clamp technique was used to measure TRPM3 activity in isolated NK cells from twelve age- and sex-matched healthy controls and CFS/ME patients, after activation with pregnenolone sulfate and nifedipine and inhibition with ononetin. RESULTS: We confirmed a significant reduction in amplitude of TRPM3 currents after pregnenolone sulfate stimulation in isolated NK cells from another cohort of CFS/ME patients compared with healthy controls. The pregnenolone sulfate-evoked ionic currents through TRPM3 channels were again significantly modulated by ononetin in isolated NK cells from healthy controls compared with CFS/ME patients. In addition, we used nifedipine, another reversible TRPM3 agonist to support the previous findings and found similar results confirming a significant loss of the TRPM3 channel activity in CFS/ME patients. CONCLUSIONS: Impaired TRPM3 activity was validated in NK cells isolated from CFS/ME patients using different pharmacological tools and whole-cell patch-clamp technique as the gold standard for ion channel research. This investigation further helps to establish TRPM3 channels as a prognostic marker and/ or a potential therapeutic target for CFS/ME.


Assuntos
Síndrome de Fadiga Crônica/metabolismo , Células Matadoras Naturais/metabolismo , Canais de Cátion TRPM/metabolismo , Adulto , Cálcio/metabolismo , Feminino , Humanos , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Técnicas de Patch-Clamp
17.
J Transl Med ; 17(1): 157, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31088495

RESUMO

BACKGROUND: Q fever fatigue syndrome (QFS) is a well-documented state of prolonged fatigue following around 20% of acute Q fever infections. It has been hypothesized that low grade inflammation plays a role in its aetiology. In this study, we aimed to identify transcriptome profiles that could aid to better understand the pathophysiology of QFS. METHODS: RNA of monocytes was collected from QFS patients (n = 10), chronic fatigue syndrome patients (CFS, n = 10), Q fever seropositive controls (n = 10), and healthy controls (n = 10) who were age- (± 5 years) and sex-matched. Transcriptome analysis was performed using RNA sequencing. RESULTS: Mitochondrial-derived peptide (MDP)-coding genes MT-RNR2 (humanin) and MT-RNR1 (MOTS-c) were differentially expressed when comparing QFS (- 4.8 log2-fold-change P = 2.19 × 10-9 and - 4.9 log2-fold-change P = 4.69 × 10-8), CFS (- 5.2 log2-fold-change, P = 3.49 × 10-11 - 4.4 log2-fold-change, P = 2.71 × 10-9), and Q fever seropositive control (- 3.7 log2-fold-change P = 1.78 × 10-6 and - 3.2 log2-fold-change P = 1.12 × 10-5) groups with healthy controls, resulting in a decreased median production of humanin in QFS patients (371 pg/mL; Interquartile range, IQR, 325-384), CFS patients (364 pg/mL; IQR 316-387), and asymptomatic Q fever seropositive controls (354 pg/mL; 292-393). CONCLUSIONS: Expression of MDP-coding genes MT-RNR1 (MOTS-c) and MT-RNR2 (humanin) is decreased in CFS, QFS, and, to a lesser extent, in Q fever seropositive controls, resulting in a decreased production of humanin. These novel peptides might indeed be important in the pathophysiology of both QFS and CFS.


Assuntos
Síndrome de Fadiga Crônica/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Febre Q/metabolismo , Adulto , Síndrome de Fadiga Crônica/genética , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Componente Principal , Febre Q/genética
18.
J Transl Med ; 17(1): 401, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31796045

RESUMO

BACKGROUND: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is hallmarked by a significant reduction in natural killer (NK) cell cytotoxicity, a mechanism tightly regulated by calcium (Ca2+). Interestingly, interleukin-2 (IL-2) increases NK cell cytotoxicity. Transient receptor potential melastatin 2 (TRPM2) ion channels are fundamental for Ca2+ signalling in NK cells. This pilot investigation aimed to characterise TRPM2 and CD38 surface expression in vitro on NK cells in ME/CFS patients. This investigation furthermore examined the pharmaceutical effect of 8-bromoadenosine phosphoribose (8-Br-ADPR) and N6-Benzoyladenosine-3',5'-cyclic monophosphate (N6-Bnz-cAMP) on TRPM2 and CD38 surface expression and NK cell cytotoxicity between ME/CFS and healthy control (HC) participants. METHODS: Ten ME/CFS patients (43.45 ± 12.36) and 10 HCs (43 ± 12.27) were age and sex-matched. Isolated NK cells were labelled with fluorescent antibodies to determine baseline and drug-treated TRPM2 and CD38 surface expression on NK cell subsets. Following IL-2 stimulation, NK cell cytotoxicity was measured following 8-Br-ADPR and N6-Bnz-cAMP drug treatments by flow cytometry. RESULTS: Baseline TRPM2 and CD38 surface expression was significantly higher on NK cell subsets in ME/CFS patients compared with HCs. Post IL-2 stimulation, TRPM2 and CD38 surface expression solely decreased on the CD56DimCD16+ subset. 8-Br-ADPR treatment significantly reduced TRPM2 surface expression on the CD56BrightCD16Dim/- subset within the ME/CFS group. Baseline cell cytotoxicity was significantly reduced in ME/CFS patients, however no changes were observed post drug treatment in either group. CONCLUSION: Overexpression of TRPM2 on NK cells may function as a compensatory mechanism to alert a dysregulation in Ca2+ homeostasis to enhance NK cell function in ME/CFS, such as NK cell cytotoxicity. As no improvement in NK cell cytotoxicity was observed within the ME/CFS group, an impairment in the TRPM2 ion channel may be present in ME/CFS patients, resulting in alterations in [Ca2+]i mobilisation and influx, which is fundamental in driving NK cell cytotoxicity. Differential expression of TRPM2 between NK cell subtypes may provide evidence for their role in the pathomechanism involving NK cell cytotoxicity activity in ME/CFS.


Assuntos
Síndrome de Fadiga Crônica/metabolismo , Canais de Cátion TRPM/metabolismo , ADP-Ribosil Ciclase 1/metabolismo , Adulto , ADP-Ribose Cíclica/análogos & derivados , ADP-Ribose Cíclica/farmacologia , Citotoxicidade Imunológica/efeitos dos fármacos , Síndrome de Fadiga Crônica/sangue , Síndrome de Fadiga Crônica/imunologia , Feminino , Humanos , Células Matadoras Naturais/metabolismo , Masculino , Canais de Cátion TRPM/sangue
19.
Metabolomics ; 15(12): 158, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31776682

RESUMO

INTRODUCTION: Manifestations of fatigue range from chronic fatigue up to a severe syndrome and myalgic encephalomyelitis. Fatigue grossly affects the functional status and quality of life of affected individuals, prompting the World Health Organization to recognize it as a chronic non-communicable condition. OBJECTIVES: Here, we explore the potential of urinary metabolite information to complement clinical criteria of fatigue, providing an avenue towards an objective measure of fatigue in patients presenting with the full spectrum of fatigue levels. METHODS: The experimental group consisted of 578 chronic fatigue female patients. The measurement design was composed of (1) existing clinical fatigue scales, (2) a hepatic detoxification challenge test, and (3) untargeted proton nuclear magnetic resonance (1H-NMR) procedure to generate metabolomics data. Data analysed via an in-house Matlab script that combines functions from a Statistics and a PLS Toolbox. RESULTS: Multivariate analysis of the original 459 profiled 1H-NMR bins for the low (control) and high (patient) fatigue groups indicated complete separation following the detoxification experimental challenge. Important bins identified from the 1H-NMR spectra provided quantitative metabolite information on the detoxification challenge for the fatigue groups. CONCLUSIONS: Untargeted 1H-NMR metabolomics proved its applicability as a global profiling tool to reveal the impact of toxicological interventions in chronic fatigue patients. No clear potential biomarker emerged from this study, but the quantitative profile of the phase II biotransformation products provide a practical visible effect directing to up-regulation of crucial phase II enzyme systems in the high fatigue group in response to a high xenobiotic-load.


Assuntos
Síndrome de Fadiga Crônica/metabolismo , Fadiga/metabolismo , Adulto , Biomarcadores/urina , Fadiga/urina , Síndrome de Fadiga Crônica/urina , Feminino , Humanos , Espectroscopia de Ressonância Magnética/métodos , Metabolômica/métodos , Pessoa de Meia-Idade , Análise Multivariada , Qualidade de Vida
20.
Brain Behav Immun ; 81: 172-177, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31176728

RESUMO

Chronic Fatigue Syndrome (CFS) and Fibromyalgia (FM) are both chronic disorders that have a devastating effect on the lives of the affected patients and their families. Both conditions have overlapping clinical features that partly resemble those of inflammatory disorders. The etiology is still not understood, and it is suggested that the immune system might be a contributing factor. So far, the results are inconclusive. The purpose of this study was to compare the two conditions and investigate the level of the inflammatory marker high-sensitivity CRP (hsCRP) in CFS and FM patients compared to healthy controls. Female participants aged 18-60 years were enrolled in this study. The group consisted of 49 CFS patients, 57 FM patients, and 54 healthy controls. hsCRP levels were significantly higher for both the CFS and the FM groups compared to healthy controls when adjusting for age, smoking, and BMI (p < .001). There was no difference between the two patient groups. The level of hsCRP was affected by BMI but not by age and smoking. Patients with CFS and FM have higher concentrations of hsCRP compared to healthy controls. This remains significant even after adjusting for BMI. CFS and FM cannot be distinguished from each other on the basis of hsCRP in our study.


Assuntos
Proteína C-Reativa/análise , Síndrome de Fadiga Crônica/metabolismo , Fibromialgia/metabolismo , Adulto , Índice de Massa Corporal , Proteína C-Reativa/metabolismo , Doença Crônica , Fumar Cigarros , Síndrome de Fadiga Crônica/sangue , Feminino , Fibromialgia/sangue , Humanos , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA