Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 360
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(14): 3712-3725.e34, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38810646

RESUMO

The cystic fibrosis transmembrane conductance regulator (CFTR) is a crucial ion channel whose loss of function leads to cystic fibrosis, whereas its hyperactivation leads to secretory diarrhea. Small molecules that improve CFTR folding (correctors) or function (potentiators) are clinically available. However, the only potentiator, ivacaftor, has suboptimal pharmacokinetics and inhibitors have yet to be clinically developed. Here, we combine molecular docking, electrophysiology, cryo-EM, and medicinal chemistry to identify CFTR modulators. We docked ∼155 million molecules into the potentiator site on CFTR, synthesized 53 test ligands, and used structure-based optimization to identify candidate modulators. This approach uncovered mid-nanomolar potentiators, as well as inhibitors, that bind to the same allosteric site. These molecules represent potential leads for the development of more effective drugs for cystic fibrosis and secretory diarrhea, demonstrating the feasibility of large-scale docking for ion channel drug discovery.


Assuntos
Aminofenóis , Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Simulação de Acoplamento Molecular , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Humanos , Fibrose Cística/tratamento farmacológico , Fibrose Cística/metabolismo , Aminofenóis/farmacologia , Aminofenóis/química , Aminofenóis/uso terapêutico , Descoberta de Drogas , Microscopia Crioeletrônica , Quinolonas/farmacologia , Quinolonas/química , Quinolonas/uso terapêutico , Sítio Alostérico/efeitos dos fármacos , Animais , Ligantes
2.
Nature ; 632(8025): 672-677, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39112705

RESUMO

The neurotransmitter dopamine has central roles in mood, appetite, arousal and movement1. Despite its importance in brain physiology and function, and as a target for illicit and therapeutic drugs, the human dopamine transporter (hDAT) and mechanisms by which it is inhibited by small molecules and Zn2+ are without a high-resolution structural context. Here we determine the structure of hDAT in a tripartite complex with the competitive inhibitor and cocaine analogue, (-)-2-ß-carbomethoxy-3-ß-(4-fluorophenyl)tropane2 (ß-CFT), the non-competitive inhibitor MRS72923 and Zn2+ (ref. 4). We show how ß-CFT occupies the central site, approximately halfway across the membrane, stabilizing the transporter in an outward-open conformation. MRS7292 binds to a structurally uncharacterized allosteric site, adjacent to the extracellular vestibule, sequestered underneath the extracellular loop 4 (EL4) and adjacent to transmembrane helix 1b (TM1b), acting as a wedge, precluding movement of TM1b and closure of the extracellular gate. A Zn2+ ion further stabilizes the outward-facing conformation by coupling EL4 to EL2, TM7 and TM8, thus providing specific insights into how Zn2+ restrains the movement of EL4 relative to EL2 and inhibits transport activity.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina , Inibidores da Captação de Dopamina , Humanos , Sítio Alostérico/efeitos dos fármacos , Cocaína/análogos & derivados , Cocaína/química , Cocaína/metabolismo , Cocaína/farmacologia , Microscopia Crioeletrônica , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/antagonistas & inibidores , Proteínas da Membrana Plasmática de Transporte de Dopamina/química , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/ultraestrutura , Inibidores da Captação de Dopamina/química , Inibidores da Captação de Dopamina/metabolismo , Inibidores da Captação de Dopamina/farmacologia , Modelos Moleculares , Movimento/efeitos dos fármacos , Conformação Proteica/efeitos dos fármacos , Zinco/metabolismo , Zinco/química , Zinco/farmacologia
3.
Nature ; 626(7999): 643-652, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38109937

RESUMO

Thousands of proteins have been validated genetically as therapeutic targets for human diseases1. However, very few have been successfully targeted, and many are considered 'undruggable'. This is particularly true for proteins that function via protein-protein interactions-direct inhibition of binding interfaces is difficult and requires the identification of allosteric sites. However, most proteins have no known allosteric sites, and a comprehensive allosteric map does not exist for any protein. Here we address this shortcoming by charting multiple global atlases of inhibitory allosteric communication in KRAS. We quantified the effects of more than 26,000 mutations on the folding of KRAS and its binding to six interaction partners. Genetic interactions in double mutants enabled us to perform biophysical measurements at scale, inferring more than 22,000 causal free energy changes. These energy landscapes quantify how mutations tune the binding specificity of a signalling protein and map the inhibitory allosteric sites for an important therapeutic target. Allosteric propagation is particularly effective across the central ß-sheet of KRAS, and multiple surface pockets are genetically validated as allosterically active, including a distal pocket in the C-terminal lobe of the protein. Allosteric mutations typically inhibit binding to all tested effectors, but they can also change the binding specificity, revealing the regulatory, evolutionary and therapeutic potential to tune pathway activation. Using the approach described here, it should be possible to rapidly and comprehensively identify allosteric target sites in many proteins.


Assuntos
Sítio Alostérico , Dobramento de Proteína , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/genética , Sítio Alostérico/efeitos dos fármacos , Sítio Alostérico/genética , Mutação , Ligação Proteica , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Reprodutibilidade dos Testes , Especificidade por Substrato/efeitos dos fármacos , Especificidade por Substrato/genética , Termodinâmica
4.
J Neurochem ; 168(9): 1973-1992, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38131125

RESUMO

Glycine Transporter 2 (GlyT2) inhibitors have shown considerable potential as analgesics for the treatment of neuropathic pain but also display considerable side effects. One potential source of side effects is irreversible inhibition. In this study, we have characterized the mechanism of ORG25543 inhibition of GlyT2 by first considering three potential ligand binding sites on GlyT2-the substrate site, the vestibule allosteric site and the lipid allosteric site. The three sites were tested using a combination of molecular dynamics simulations and analysis of the inhibition of glycine transport of a series point mutated GlyT2 using electrophysiological methods. We demonstrate that the lipid allosteric site on GlyT2 is the most likely binding site for ORG25543. We also demonstrate that cholesterol derived from the cell membrane can form specific interactions with inhibitor-bound transporters to form an allosteric network of regulatory sites. These observations will guide the future design of GlyT2 inhibitors with the objective of minimising on-target side effects and improving the therapeutic window for the treatment of patients suffering from neuropathic pain.


Assuntos
Sítio Alostérico , Analgésicos , Proteínas da Membrana Plasmática de Transporte de Glicina , Proteínas da Membrana Plasmática de Transporte de Glicina/antagonistas & inibidores , Proteínas da Membrana Plasmática de Transporte de Glicina/metabolismo , Analgésicos/farmacologia , Analgésicos/química , Sítio Alostérico/efeitos dos fármacos , Humanos , Animais , Simulação de Dinâmica Molecular , Sítios de Ligação/efeitos dos fármacos , Glicina/farmacologia , Benzamidas
5.
Chembiochem ; 25(15): e202400081, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38830828

RESUMO

Mucopolysaccharidosis type IIIB (MPS IIIB) is an autosomal inherited disease caused by mutations in gene encoding the lysosomal enzyme N-acetyl-alpha-glucosaminidase (NAGLU). These mutations result in reduced NAGLU activity, preventing it from catalyzing the hydrolysis of the glycosaminoglycan heparan sulfate (HS). There are currently no approved treatments for MPS IIIB. A novel approach in the treatment of lysosomal storage diseases is the use of pharmacological chaperones (PC). In this study, we used a drug repurposing approach to identify and characterize novel potential PCs for NAGLU enzyme. We modeled the interaction of natural and artificial substrates within the active cavity of NAGLU (orthosteric site) and predicted potential allosteric sites. We performed a virtual screening for both the orthosteric and the predicted allosteric site against a curated database of human tested molecules. Considering the binding affinity and predicted blood-brain barrier permeability and gastrointestinal absorption, we selected atovaquone and piperaquine as orthosteric and allosteric PCs. The PCs were evaluated by their capacity to bind NAGLU and the ability to restore the enzymatic activity in human MPS IIIB fibroblasts These results represent novel PCs described for MPS IIIB and demonstrate the potential to develop novel therapeutic alternatives for this and other protein deficiency diseases.


Assuntos
Acetilglucosaminidase , Mucopolissacaridose III , Humanos , Mucopolissacaridose III/tratamento farmacológico , Mucopolissacaridose III/metabolismo , Mucopolissacaridose III/patologia , Acetilglucosaminidase/metabolismo , Acetilglucosaminidase/antagonistas & inibidores , Acetilglucosaminidase/química , Acetilglucosaminidase/genética , Sítio Alostérico/efeitos dos fármacos , Regulação Alostérica/efeitos dos fármacos
6.
Bioorg Chem ; 147: 107317, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38583252

RESUMO

By inducing steric activation of the 10CH bond with a 12-acyl group to form a key imine oxime intermediate, 20 novel (10S)-10,12-disubstituted aloperine derivatives were successfully synthesized and assessed for their antiviral efficacy against HCoV-OC43. Of them, compound 3i exhibited the moderate activities against HCoV-OC43, as well as against the SARS-CoV-2 variant EG.5.1 with the comparable EC50 values of 4.7 and 4.1 µM. A mechanism study revealed that it inhibited the protease activity of host TMPRSS2 by binding to an allosteric site, rather than the known catalytic center, different from that of camostat. Also, the combination of compound 3i and molnupiravir, as an RdRp inhibitor, showed an additive antiviral effect against HCoV-OC43. The results provide a new binding mode and lead compound for targeting TMPRSS2, with an advantage in combating broad-spectrum coronavirus.


Assuntos
Sítio Alostérico , Antivirais , Coronavirus Humano OC43 , Quinolizidinas , Serina Endopeptidases , Antivirais/farmacologia , Antivirais/química , Antivirais/síntese química , Serina Endopeptidases/metabolismo , Humanos , Coronavirus Humano OC43/efeitos dos fármacos , Coronavirus Humano OC43/química , Quinolizidinas/química , Quinolizidinas/farmacologia , Quinolizidinas/síntese química , Sítio Alostérico/efeitos dos fármacos , Relação Estrutura-Atividade , Descoberta de Drogas , SARS-CoV-2/efeitos dos fármacos , Estrutura Molecular , Testes de Sensibilidade Microbiana , Relação Dose-Resposta a Droga
7.
Nature ; 559(7712): 125-129, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29950729

RESUMO

Somatic mutations in the isocitrate dehydrogenase 2 gene (IDH2) contribute to the pathogenesis of acute myeloid leukaemia (AML) through the production of the oncometabolite 2-hydroxyglutarate (2HG)1-8. Enasidenib (AG-221) is an allosteric inhibitor that binds to the IDH2 dimer interface and blocks the production of 2HG by IDH2 mutants9,10. In a phase I/II clinical trial, enasidenib inhibited the production of 2HG and induced clinical responses in relapsed or refractory IDH2-mutant AML11. Here we describe two patients with IDH2-mutant AML who had a clinical response to enasidenib followed by clinical resistance, disease progression, and a recurrent increase in circulating levels of 2HG. We show that therapeutic resistance is associated with the emergence of second-site IDH2 mutations in trans, such that the resistance mutations occurred in the IDH2 allele without the neomorphic R140Q mutation. The in trans mutations occurred at glutamine 316 (Q316E) and isoleucine 319 (I319M), which are at the interface where enasidenib binds to the IDH2 dimer. The expression of either of these mutant disease alleles alone did not induce the production of 2HG; however, the expression of the Q316E or I319M mutation together with the R140Q mutation in trans allowed 2HG production that was resistant to inhibition by enasidenib. Biochemical studies predicted that resistance to allosteric IDH inhibitors could also occur via IDH dimer-interface mutations in cis, which was confirmed in a patient with acquired resistance to the IDH1 inhibitor ivosidenib (AG-120). Our observations uncover a mechanism of acquired resistance to a targeted therapy and underscore the importance of 2HG production in the pathogenesis of IDH-mutant malignancies.


Assuntos
Aminopiridinas/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Isocitrato Desidrogenase/antagonistas & inibidores , Isocitrato Desidrogenase/genética , Leucemia Mieloide Aguda/genética , Proteínas Mutantes/genética , Mutação , Multimerização Proteica/genética , Triazinas/farmacologia , Alelos , Sítio Alostérico/efeitos dos fármacos , Sítio Alostérico/genética , Aminopiridinas/química , Aminopiridinas/uso terapêutico , Animais , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase II como Assunto , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Feminino , Glutamina/genética , Glutaratos/sangue , Glutaratos/metabolismo , Células HEK293 , Humanos , Isoleucina/genética , Leucemia Mieloide Aguda/sangue , Leucemia Mieloide Aguda/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Proteínas Mutantes/antagonistas & inibidores , Triazinas/química , Triazinas/uso terapêutico
8.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33536342

RESUMO

Cooperative ligand binding is an important phenomenon in biological systems where ligand binding influences the binding of another ligand at an alternative site of the protein via an intramolecular network of interactions. The underlying mechanisms behind cooperative binding remain poorly understood, primarily due to the lack of structural data of these ternary complexes. Using time-resolved fluorescence resonance energy transfer (TR-FRET) studies, we show that cooperative ligand binding occurs for RORγt, a nuclear receptor associated with the pathogenesis of autoimmune diseases. To provide the crucial structural insights, we solved 12 crystal structures of RORγt simultaneously bound to various orthosteric and allosteric ligands. The presence of the orthosteric ligand induces a clamping motion of the allosteric pocket via helices 4 to 5. Additional molecular dynamics simulations revealed the unusual mechanism behind this clamping motion, with Ala355 shifting between helix 4 and 5. The orthosteric RORγt agonists regulate the conformation of Ala355, thereby stabilizing the conformation of the allosteric pocket and cooperatively enhancing the affinity of the allosteric inverse agonists.


Assuntos
Regulação Alostérica/genética , Descoberta de Drogas , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Conformação Proteica/efeitos dos fármacos , Sítio Alostérico/efeitos dos fármacos , Sítio Alostérico/genética , Sítios de Ligação/genética , Fenômenos Biofísicos , Cristalografia por Raios X , Humanos , Ligantes , Conformação Molecular , Simulação de Dinâmica Molecular , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/química , Ligação Proteica/genética
9.
J Biol Chem ; 298(9): 102284, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35868561

RESUMO

cGMP-dependent protein kinase (PKG) represents a compelling drug target for treatment of cardiovascular diseases. PKG1 is the major effector of beneficial cGMP signaling which is involved in smooth muscle relaxation and vascular tone, inhibition of platelet aggregation and signaling that leads to cardioprotection. In this study, a novel piperidine series of activators previously identified from an ultrahigh-throughput screen were validated to directly bind partially activated PKG1α and subsequently enhance its kinase activity in a concentration-dependent manner. Compounds from initial optimization efforts showed an ability to activate PKG1α independent of the endogenous activator, cGMP. We demonstrate these small molecule activators mimic the effect of cGMP on the kinetic parameters of PKG1α by positively modulating the KM of the peptide substrate and negatively modulating the apparent KM for ATP with increase in catalytic efficiency, kcat. In addition, these compounds also allosterically modulate the binding affinity of cGMP for PKG1α by increasing the affinity of cGMP for the high-affinity binding site (CNB-A) and decreasing the affinity of cGMP for the low-affinity binding site (CNB-B). We show the mode of action of these activators involves binding to an allosteric site within the regulatory domain, near the CNB-B binding site. To the best of our knowledge, these are the first reported non-cGMP mimetic small molecules shown to directly activate PKG1α. Insights into the mechanism of action of these compounds will enable future development of cardioprotective compounds that function through novel modes of action for the treatment of cardiovascular diseases.


Assuntos
Doenças Cardiovasculares , Proteína Quinase Dependente de GMP Cíclico Tipo I , GMP Cíclico , Piperidinas , Trifosfato de Adenosina/metabolismo , Regulação Alostérica/efeitos dos fármacos , Sítio Alostérico/efeitos dos fármacos , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/enzimologia , GMP Cíclico/metabolismo , Proteína Quinase Dependente de GMP Cíclico Tipo I/metabolismo , Humanos , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
10.
Nature ; 544(7651): 446-451, 2017 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-28424515

RESUMO

Human members of the solute carrier 1 (SLC1) family of transporters take up excitatory neurotransmitters in the brain and amino acids in peripheral organs. Dysregulation of the function of SLC1 transporters is associated with neurodegenerative disorders and cancer. Here we present crystal structures of a thermostabilized human SLC1 transporter, the excitatory amino acid transporter 1 (EAAT1), with and without allosteric and competitive inhibitors bound. The structures reveal architectural features of the human transporters, such as intra- and extracellular domains that have potential roles in transport function, regulation by lipids and post-translational modifications. The coordination of the allosteric inhibitor in the structures and the change in the transporter dynamics measured by hydrogen-deuterium exchange mass spectrometry reveal a mechanism of inhibition, in which the transporter is locked in the outward-facing states of the transport cycle. Our results provide insights into the molecular mechanisms underlying the function and pharmacology of human SLC1 transporters.


Assuntos
Regulação Alostérica/efeitos dos fármacos , Transportador 1 de Aminoácido Excitatório/antagonistas & inibidores , Transportador 1 de Aminoácido Excitatório/química , Sítio Alostérico/efeitos dos fármacos , Cristalização , Cristalografia por Raios X , Medição da Troca de Deutério , Transportador 1 de Aminoácido Excitatório/metabolismo , Humanos , Espectrometria de Massas , Modelos Moleculares , Domínios Proteicos/efeitos dos fármacos
11.
Nature ; 546(7657): 312-315, 2017 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-28514449

RESUMO

The glucagon-like peptide-1 receptor (GLP-1R) and the glucagon receptor (GCGR) are members of the secretin-like class B family of G-protein-coupled receptors (GPCRs) and have opposing physiological roles in insulin release and glucose homeostasis. The treatment of type 2 diabetes requires positive modulation of GLP-1R to inhibit glucagon secretion and stimulate insulin secretion in a glucose-dependent manner. Here we report crystal structures of the human GLP-1R transmembrane domain in complex with two different negative allosteric modulators, PF-06372222 and NNC0640, at 2.7 and 3.0 Å resolution, respectively. The structures reveal a common binding pocket for negative allosteric modulators, present in both GLP-1R and GCGR and located outside helices V-VII near the intracellular half of the receptor. The receptor is in an inactive conformation with compounds that restrict movement of the intracellular tip of helix VI, a movement that is generally associated with activation mechanisms in class A GPCRs. Molecular modelling and mutagenesis studies indicate that agonist positive allosteric modulators target the same general region, but in a distinct sub-pocket at the interface between helices V and VI, which may facilitate the formation of an intracellular binding site that enhances G-protein coupling.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1/química , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Regulação Alostérica/efeitos dos fármacos , Sítio Alostérico/efeitos dos fármacos , Sequência de Aminoácidos , Aminopiridinas/química , Aminopiridinas/metabolismo , Aminopiridinas/farmacologia , Benzamidas/química , Benzamidas/metabolismo , Benzamidas/farmacologia , Cristalografia por Raios X , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Humanos , Modelos Moleculares , Compostos de Fenilureia/química , Compostos de Fenilureia/metabolismo , Compostos de Fenilureia/farmacologia , Domínios Proteicos
12.
Nature ; 546(7657): 259-264, 2017 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-28514451

RESUMO

The human glucagon receptor, GCGR, belongs to the class B G-protein-coupled receptor family and plays a key role in glucose homeostasis and the pathophysiology of type 2 diabetes. Here we report the 3.0 Å crystal structure of full-length GCGR containing both the extracellular domain and transmembrane domain in an inactive conformation. The two domains are connected by a 12-residue segment termed the stalk, which adopts a ß-strand conformation, instead of forming an α-helix as observed in the previously solved structure of the GCGR transmembrane domain. The first extracellular loop exhibits a ß-hairpin conformation and interacts with the stalk to form a compact ß-sheet structure. Hydrogen-deuterium exchange, disulfide crosslinking and molecular dynamics studies suggest that the stalk and the first extracellular loop have critical roles in modulating peptide ligand binding and receptor activation. These insights into the full-length GCGR structure deepen our understanding of the signalling mechanisms of class B G-protein-coupled receptors.


Assuntos
Receptores de Glucagon/química , Receptores de Glucagon/classificação , Sítio Alostérico/efeitos dos fármacos , Benzamidas/química , Benzamidas/metabolismo , Benzamidas/farmacologia , Membrana Celular/metabolismo , Reagentes de Ligações Cruzadas/química , Cristalografia por Raios X , Medição da Troca de Deutério , Dissulfetos/química , Humanos , Ligantes , Modelos Moleculares , Simulação de Dinâmica Molecular , Compostos de Fenilureia/química , Compostos de Fenilureia/metabolismo , Compostos de Fenilureia/farmacologia , Domínios Proteicos , Estabilidade Proteica , Receptores de Glucagon/agonistas , Receptores de Glucagon/metabolismo
13.
Nature ; 545(7652): 112-115, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28445455

RESUMO

Protease-activated receptors (PARs) are a family of G-protein-coupled receptors (GPCRs) that are irreversibly activated by proteolytic cleavage of the N terminus, which unmasks a tethered peptide ligand that binds and activates the transmembrane receptor domain, eliciting a cellular cascade in response to inflammatory signals and other stimuli. PARs are implicated in a wide range of diseases, such as cancer and inflammation. PARs have been the subject of major pharmaceutical research efforts but the discovery of small-molecule antagonists that effectively bind them has proved challenging. The only marketed drug targeting a PAR is vorapaxar, a selective antagonist of PAR1 used to prevent thrombosis. The structure of PAR1 in complex with vorapaxar has been reported previously. Despite sequence homology across the PAR isoforms, discovery of PAR2 antagonists has been less successful, although GB88 has been described as a weak antagonist. Here we report crystal structures of PAR2 in complex with two distinct antagonists and a blocking antibody. The antagonist AZ8838 binds in a fully occluded pocket near the extracellular surface. Functional and binding studies reveal that AZ8838 exhibits slow binding kinetics, which is an attractive feature for a PAR2 antagonist competing against a tethered ligand. Antagonist AZ3451 binds to a remote allosteric site outside the helical bundle. We propose that antagonist binding prevents structural rearrangements required for receptor activation and signalling. We also show that a blocking antibody antigen-binding fragment binds to the extracellular surface of PAR2, preventing access of the tethered ligand to the peptide-binding site. These structures provide a basis for the development of selective PAR2 antagonists for a range of therapeutic uses.


Assuntos
Receptor PAR-2/química , Receptor PAR-2/metabolismo , Regulação Alostérica/efeitos dos fármacos , Sítio Alostérico/efeitos dos fármacos , Anticorpos Bloqueadores/química , Anticorpos Bloqueadores/farmacologia , Benzimidazóis/química , Benzimidazóis/farmacologia , Benzodioxóis/química , Benzodioxóis/farmacologia , Álcoois Benzílicos/química , Álcoois Benzílicos/farmacologia , Cristalografia por Raios X , Humanos , Imidazóis/química , Imidazóis/farmacologia , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/farmacologia , Cinética , Ligantes , Modelos Moleculares , Receptor PAR-2/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos
14.
Nature ; 548(7668): 480-484, 2017 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-28813418

RESUMO

G-protein-coupled receptors (GPCRs) pose challenges for drug discovery efforts because of the high degree of structural homology in the orthosteric pocket, particularly for GPCRs within a single subfamily, such as the nine adrenergic receptors. Allosteric ligands may bind to less-conserved regions of these receptors and therefore are more likely to be selective. Unlike orthosteric ligands, which tonically activate or inhibit signalling, allosteric ligands modulate physiologic responses to hormones and neurotransmitters, and may therefore have fewer adverse effects. The majority of GPCR crystal structures published to date were obtained with receptors bound to orthosteric antagonists, and only a few structures bound to allosteric ligands have been reported. Compound 15 (Cmpd-15) is an allosteric modulator of the ß2 adrenergic receptor (ß2AR) that was recently isolated from a DNA-encoded small-molecule library. Orthosteric ß-adrenergic receptor antagonists, known as beta-blockers, are amongst the most prescribed drugs in the world and Cmpd-15 is the first allosteric beta-blocker. Cmpd-15 exhibits negative cooperativity with agonists and positive cooperativity with inverse agonists. Here we present the structure of the ß2AR bound to a polyethylene glycol-carboxylic acid derivative (Cmpd-15PA) of this modulator. Cmpd-15PA binds to a pocket formed primarily by the cytoplasmic ends of transmembrane segments 1, 2, 6 and 7 as well as intracellular loop 1 and helix 8. A comparison of this structure with inactive- and active-state structures of the ß2AR reveals the mechanism by which Cmpd-15 modulates agonist binding affinity and signalling.


Assuntos
Antagonistas de Receptores Adrenérgicos beta 2/química , Antagonistas de Receptores Adrenérgicos beta 2/farmacologia , Dipeptídeos/química , Dipeptídeos/farmacologia , Espaço Intracelular , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/metabolismo , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/genética , Sítio Alostérico/efeitos dos fármacos , Sítio Alostérico/genética , Sequência Conservada , Cristalografia por Raios X , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Modelos Moleculares , Mutagênese , Propanolaminas/química , Propanolaminas/farmacologia , Conformação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Receptores Adrenérgicos beta 2/genética
15.
Nature ; 543(7647): 733-737, 2017 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-28329763

RESUMO

Chronic myeloid leukaemia (CML) is driven by the activity of the BCR-ABL1 fusion oncoprotein. ABL1 kinase inhibitors have improved the clinical outcomes for patients with CML, with over 80% of patients treated with imatinib surviving for more than 10 years. Second-generation ABL1 kinase inhibitors induce more potent molecular responses in both previously untreated and imatinib-resistant patients with CML. Studies in patients with chronic-phase CML have shown that around 50% of patients who achieve and maintain undetectable BCR-ABL1 transcript levels for at least 2 years remain disease-free after the withdrawal of treatment. Here we characterize ABL001 (asciminib), a potent and selective allosteric ABL1 inhibitor that is undergoing clinical development testing in patients with CML and Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukaemia. In contrast to catalytic-site ABL1 kinase inhibitors, ABL001 binds to the myristoyl pocket of ABL1 and induces the formation of an inactive kinase conformation. ABL001 and second-generation catalytic inhibitors have similar cellular potencies but distinct patterns of resistance mutations, with genetic barcoding studies revealing pre-existing clonal populations with no shared resistance between ABL001 and the catalytic inhibitor nilotinib. Consistent with this profile, acquired resistance was observed with single-agent therapy in mice; however, the combination of ABL001 and nilotinib led to complete disease control and eradicated CML xenograft tumours without recurrence after the cessation of treatment.


Assuntos
Sítio Alostérico/efeitos dos fármacos , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Niacinamida/análogos & derivados , Pirazóis/farmacologia , Regulação Alostérica/efeitos dos fármacos , Animais , Domínio Catalítico/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Dasatinibe/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Quimioterapia Combinada , Proteínas de Fusão bcr-abl/química , Proteínas de Fusão bcr-abl/genética , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/enzimologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Camundongos , Mutação , Niacinamida/farmacologia , Niacinamida/uso terapêutico , Pirazóis/uso terapêutico , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Nature ; 540(7633): 458-461, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27926736

RESUMO

CC chemokine receptor 2 (CCR2) is one of 19 members of the chemokine receptor subfamily of human class A G-protein-coupled receptors. CCR2 is expressed on monocytes, immature dendritic cells, and T-cell subpopulations, and mediates their migration towards endogenous CC chemokine ligands such as CCL2 (ref. 1). CCR2 and its ligands are implicated in numerous inflammatory and neurodegenerative diseases including atherosclerosis, multiple sclerosis, asthma, neuropathic pain, and diabetic nephropathy, as well as cancer. These disease associations have motivated numerous preclinical studies and clinical trials (see http://www.clinicaltrials.gov) in search of therapies that target the CCR2-chemokine axis. To aid drug discovery efforts, here we solve a structure of CCR2 in a ternary complex with an orthosteric (BMS-681 (ref. 6)) and allosteric (CCR2-RA-[R]) antagonist. BMS-681 inhibits chemokine binding by occupying the orthosteric pocket of the receptor in a previously unseen binding mode. CCR2-RA-[R] binds in a novel, highly druggable pocket that is the most intracellular allosteric site observed in class A G-protein-coupled receptors so far; this site spatially overlaps the G-protein-binding site in homologous receptors. CCR2-RA-[R] inhibits CCR2 non-competitively by blocking activation-associated conformational changes and formation of the G-protein-binding interface. The conformational signature of the conserved microswitch residues observed in double-antagonist-bound CCR2 resembles the most inactive G-protein-coupled receptor structures solved so far. Like other protein-protein interactions, receptor-chemokine complexes are considered challenging therapeutic targets for small molecules, and the present structure suggests diverse pocket epitopes that can be exploited to overcome obstacles in drug design.


Assuntos
Pirrolidinonas/química , Pirrolidinonas/farmacologia , Quinazolinas/química , Quinazolinas/farmacologia , Receptores CCR2/antagonistas & inibidores , Receptores CCR2/química , Sítio Alostérico/efeitos dos fármacos , Sítios de Ligação , Quimiocinas CC/metabolismo , Cristalografia por Raios X , Desenho de Fármacos , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Humanos , Ligantes , Modelos Moleculares
17.
Nature ; 535(7612): 448-52, 2016 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-27409812

RESUMO

G-protein-coupled receptors (GPCRs) modulate many physiological processes by transducing a variety of extracellular cues into intracellular responses. Ligand binding to an extracellular orthosteric pocket propagates conformational change to the receptor cytosolic region to promote binding and activation of downstream signalling effectors such as G proteins and ß-arrestins. It is well known that different agonists can share the same binding pocket but evoke unique receptor conformations leading to a wide range of downstream responses ('efficacy'). Furthermore, increasing biophysical evidence, primarily using the ß2-adrenergic receptor (ß2AR) as a model system, supports the existence of multiple active and inactive conformational states. However, how agonists with varying efficacy modulate these receptor states to initiate cellular responses is not well understood. Here we report stabilization of two distinct ß2AR conformations using single domain camelid antibodies (nanobodies)­a previously described positive allosteric nanobody (Nb80) and a newly identified negative allosteric nanobody (Nb60). We show that Nb60 stabilizes a previously unappreciated low-affinity receptor state which corresponds to one of two inactive receptor conformations as delineated by X-ray crystallography and NMR spectroscopy. We find that the agonist isoprenaline has a 15,000-fold higher affinity for ß2AR in the presence of Nb80 compared to the affinity of isoprenaline for ß2AR in the presence of Nb60, highlighting the full allosteric range of a GPCR. Assessing the binding of 17 ligands of varying efficacy to the ß2AR in the absence and presence of Nb60 or Nb80 reveals large ligand-specific effects that can only be explained using an allosteric model which assumes equilibrium amongst at least three receptor states. Agonists generally exert efficacy by stabilizing the active Nb80-stabilized receptor state (R80). In contrast, for a number of partial agonists, both stabilization of R80 and destabilization of the inactive, Nb60-bound state (R60) contribute to their ability to modulate receptor activation. These data demonstrate that ligands can initiate a wide range of cellular responses by differentially stabilizing multiple receptor states.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/metabolismo , Anticorpos de Domínio Único/farmacologia , Regulação Alostérica/efeitos dos fármacos , Sítio Alostérico/efeitos dos fármacos , Cristalografia por Raios X , Agonismo Parcial de Drogas , Humanos , Isoproterenol/farmacologia , Ligantes , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos
18.
Nature ; 540(7633): 462-465, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27926729

RESUMO

Chemokines and their G-protein-coupled receptors play a diverse role in immune defence by controlling the migration, activation and survival of immune cells. They are also involved in viral entry, tumour growth and metastasis and hence are important drug targets in a wide range of diseases. Despite very significant efforts by the pharmaceutical industry to develop drugs, with over 50 small-molecule drugs directed at the family entering clinical development, only two compounds have reached the market: maraviroc (CCR5) for HIV infection and plerixafor (CXCR4) for stem-cell mobilization. The high failure rate may in part be due to limited understanding of the mechanism of action of chemokine antagonists and an inability to optimize compounds in the absence of structural information. CC chemokine receptor type 9 (CCR9) activation by CCL25 plays a key role in leukocyte recruitment to the gut and represents a therapeutic target in inflammatory bowel disease. The selective CCR9 antagonist vercirnon progressed to phase 3 clinical trials in Crohn's disease but efficacy was limited, with the need for very high doses to block receptor activation. Here we report the crystal structure of the CCR9 receptor in complex with vercirnon at 2.8 Å resolution. Remarkably, vercirnon binds to the intracellular side of the receptor, exerting allosteric antagonism and preventing G-protein coupling. This binding site explains the need for relatively lipophilic ligands and describes another example of an allosteric site on G-protein-coupled receptors that can be targeted for drug design, not only at CCR9, but potentially extending to other chemokine receptors.


Assuntos
Receptores CCR/antagonistas & inibidores , Receptores CCR/química , Sulfonamidas/química , Sulfonamidas/farmacologia , Regulação Alostérica/efeitos dos fármacos , Sítio Alostérico/efeitos dos fármacos , Sítio Alostérico/genética , Sequência Conservada , Cristalografia por Raios X , Citoplasma/metabolismo , Desenho de Fármacos , Proteínas Heterotriméricas de Ligação ao GTP/antagonistas & inibidores , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Humanos , Ligantes , Modelos Moleculares , Mutagênese , Receptores CCR/genética , Receptores CCR5/química , Receptores CXCR4/química
19.
Nature ; 533(7602): 274-7, 2016 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-27111510

RESUMO

Glucagon is a 29-amino-acid peptide released from the α-cells of the islet of Langerhans, which has a key role in glucose homeostasis. Glucagon action is transduced by the class B G-protein-coupled glucagon receptor (GCGR), which is located on liver, kidney, intestinal smooth muscle, brain, adipose tissue, heart and pancreas cells, and this receptor has been considered an important drug target in the treatment of diabetes. Administration of recently identified small-molecule GCGR antagonists in patients with type 2 diabetes results in a substantial reduction of fasting and postprandial glucose concentrations. Although an X-ray structure of the transmembrane domain of the GCGR has previously been solved, the ligand (NNC0640) was not resolved. Here we report the 2.5 Å structure of human GCGR in complex with the antagonist MK-0893 (ref. 4), which is found to bind to an allosteric site outside the seven transmembrane (7TM) helical bundle in a position between TM6 and TM7 extending into the lipid bilayer. Mutagenesis of key residues identified in the X-ray structure confirms their role in the binding of MK-0893 to the receptor. The unexpected position of the binding site for MK-0893, which is structurally similar to other GCGR antagonists, suggests that glucagon activation of the receptor is prevented by restriction of the outward helical movement of TM6 required for G-protein coupling. Structural knowledge of class B receptors is limited, with only one other ligand-binding site defined--for the corticotropin-releasing hormone receptor 1 (CRF1R)--which was located deep within the 7TM bundle. We describe a completely novel allosteric binding site for class B receptors, providing an opportunity for structure-based drug design for this receptor class and furthering our understanding of the mechanisms of activation of these receptors.


Assuntos
Pirazóis/metabolismo , Receptores de Glucagon/antagonistas & inibidores , Receptores de Glucagon/química , beta-Alanina/análogos & derivados , Sítio Alostérico/efeitos dos fármacos , Cristalografia por Raios X , Glucagon/metabolismo , Glucagon/farmacologia , Humanos , Ligantes , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Modelos Moleculares , Conformação Proteica/efeitos dos fármacos , Pirazóis/química , Pirazóis/farmacologia , Receptores de Hormônio Liberador da Corticotropina/química , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Receptores de Glucagon/classificação , Receptores de Glucagon/metabolismo , beta-Alanina/química , beta-Alanina/metabolismo , beta-Alanina/farmacologia
20.
Nature ; 531(7594): 335-40, 2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26958838

RESUMO

Muscarinic M1-M5 acetylcholine receptors are G-protein-coupled receptors that regulate many vital functions of the central and peripheral nervous systems. In particular, the M1 and M4 receptor subtypes have emerged as attractive drug targets for treatments of neurological disorders, such as Alzheimer's disease and schizophrenia, but the high conservation of the acetylcholine-binding pocket has spurred current research into targeting allosteric sites on these receptors. Here we report the crystal structures of the M1 and M4 muscarinic receptors bound to the inverse agonist, tiotropium. Comparison of these structures with each other, as well as with the previously reported M2 and M3 receptor structures, reveals differences in the orthosteric and allosteric binding sites that contribute to a role in drug selectivity at this important receptor family. We also report identification of a cluster of residues that form a network linking the orthosteric and allosteric sites of the M4 receptor, which provides new insight into how allosteric modulation may be transmitted between the two spatially distinct domains.


Assuntos
Receptor Muscarínico M1/química , Receptor Muscarínico M4/química , Acetilcolina/metabolismo , Regulação Alostérica/efeitos dos fármacos , Sítio Alostérico/efeitos dos fármacos , Doença de Alzheimer , Cristalização , Cristalografia por Raios X , Agonismo Inverso de Drogas , Humanos , Modelos Moleculares , Ácidos Nicotínicos/metabolismo , Ácidos Nicotínicos/farmacologia , Receptor Muscarínico M1/metabolismo , Receptor Muscarínico M4/metabolismo , Esquizofrenia , Eletricidade Estática , Especificidade por Substrato , Propriedades de Superfície , Tiofenos/metabolismo , Tiofenos/farmacologia , Brometo de Tiotrópio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA