Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114.372
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Biochem ; 93(1): 189-210, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38768392

RESUMO

During the last ten years, developments in cryo-electron microscopy have transformed our understanding of eukaryotic ribosome assembly. As a result, the field has advanced from a list of the vast array of ribosome assembly factors toward an emerging molecular movie in which individual frames are represented by structures of stable ribosome assembly intermediates with complementary biochemical and genetic data. In this review, we discuss the mechanisms driving the assembly of yeast and human small and large ribosomal subunits. A particular emphasis is placed on the most recent findings that illustrate key concepts of ribosome assembly, such as folding of preribosomal RNA, the enforced chronology of assembly, enzyme-mediated irreversible transitions, and proofreading of preribosomal particles.


Assuntos
Microscopia Crioeletrônica , Proteínas Ribossômicas , Ribossomos , Humanos , Ribossomos/metabolismo , Ribossomos/ultraestrutura , Ribossomos/química , Ribossomos/genética , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , RNA Ribossômico/metabolismo , RNA Ribossômico/química , RNA Ribossômico/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Modelos Moleculares , Células Eucarióticas/metabolismo , Células Eucarióticas/ultraestrutura , Dobramento de RNA , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/química , Subunidades Ribossômicas Menores de Eucariotos/genética , Subunidades Ribossômicas Menores de Eucariotos/ultraestrutura , Animais
2.
Cell ; 187(18): 4824-4826, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39241742

RESUMO

Epigenetic inheritance of heterochromatin requires transfer of parental H3-H4 tetramers to both daughter duplexes during replication. Three recent papers exploit yeast genetics coupled to inheritance assays and AlphaFold2-multimer predictions coupled to biochemistry to reveal that a replisome component (Mrc1/CLASPIN) is an H3-H4 tetramer chaperone important for parental histone transfer to daughters.


Assuntos
Replicação do DNA , Aprendizado Profundo , Histonas , Saccharomyces cerevisiae , Histonas/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Heterocromatina/metabolismo , Epigênese Genética
3.
Cell ; 187(6): 1490-1507.e21, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38452761

RESUMO

Cell cycle progression relies on coordinated changes in the composition and subcellular localization of the proteome. By applying two distinct convolutional neural networks on images of millions of live yeast cells, we resolved proteome-level dynamics in both concentration and localization during the cell cycle, with resolution of ∼20 subcellular localization classes. We show that a quarter of the proteome displays cell cycle periodicity, with proteins tending to be controlled either at the level of localization or concentration, but not both. Distinct levels of protein regulation are preferentially utilized for different aspects of the cell cycle, with changes in protein concentration being mostly involved in cell cycle control and changes in protein localization in the biophysical implementation of the cell cycle program. We present a resource for exploring global proteome dynamics during the cell cycle, which will aid in understanding a fundamental biological process at a systems level.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Células Eucarióticas/metabolismo , Redes Neurais de Computação , Proteoma/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Cell ; 187(13): 3303-3318.e18, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38906101

RESUMO

Gamete formation and subsequent offspring development often involve extended phases of suspended cellular development or even dormancy. How cells adapt to recover and resume growth remains poorly understood. Here, we visualized budding yeast cells undergoing meiosis by cryo-electron tomography (cryoET) and discovered elaborate filamentous assemblies decorating the nucleus, cytoplasm, and mitochondria. To determine filament composition, we developed a "filament identification" (FilamentID) workflow that combines multiscale cryoET/cryo-electron microscopy (cryoEM) analyses of partially lysed cells or organelles. FilamentID identified the mitochondrial filaments as being composed of the conserved aldehyde dehydrogenase Ald4ALDH2 and the nucleoplasmic/cytoplasmic filaments as consisting of acetyl-coenzyme A (CoA) synthetase Acs1ACSS2. Structural characterization further revealed the mechanism underlying polymerization and enabled us to genetically perturb filament formation. Acs1 polymerization facilitates the recovery of chronologically aged spores and, more generally, the cell cycle re-entry of starved cells. FilamentID is broadly applicable to characterize filaments of unknown identity in diverse cellular contexts.


Assuntos
Gametogênese , Mitocôndrias , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Aldeído Desidrogenase/metabolismo , Aldeído Desidrogenase/química , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Coenzima A Ligases/metabolismo , Microscopia Crioeletrônica , Citoplasma/metabolismo , Tomografia com Microscopia Eletrônica , Meiose , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Esporos Fúngicos/metabolismo , Modelos Moleculares , Estrutura Quaternária de Proteína
5.
Cell ; 187(17): 4656-4673.e28, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-38942013

RESUMO

The ability of proteins and RNA to coalesce into phase-separated assemblies, such as the nucleolus and stress granules, is a basic principle in organizing membraneless cellular compartments. While the constituents of biomolecular condensates are generally well documented, the mechanisms underlying their formation under stress are only partially understood. Here, we show in yeast that covalent modification with the ubiquitin-like modifier Urm1 promotes the phase separation of a wide range of proteins. We find that the drop in cellular pH induced by stress triggers Urm1 self-association and its interaction with both target proteins and the Urm1-conjugating enzyme Uba4. Urmylation of stress-sensitive proteins promotes their deposition into stress granules and nuclear condensates. Yeast cells lacking Urm1 exhibit condensate defects that manifest in reduced stress resilience. We propose that Urm1 acts as a reversible molecular "adhesive" to drive protective phase separation of functionally critical proteins under cellular stress.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Estresse Fisiológico , Ubiquitinas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitinas/metabolismo , Condensados Biomoleculares/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Concentração de Íons de Hidrogênio , Grânulos de Estresse/metabolismo
6.
Cell ; 187(19): 5267-5281.e13, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39127037

RESUMO

The nuclear pore complex (NPC) is the sole mediator of nucleocytoplasmic transport. Despite great advances in understanding its conserved core architecture, the peripheral regions can exhibit considerable variation within and between species. One such structure is the cage-like nuclear basket. Despite its crucial roles in mRNA surveillance and chromatin organization, an architectural understanding has remained elusive. Using in-cell cryo-electron tomography and subtomogram analysis, we explored the NPC's structural variations and the nuclear basket across fungi (yeast; S. cerevisiae), mammals (mouse; M. musculus), and protozoa (T. gondii). Using integrative structural modeling, we computed a model of the basket in yeast and mammals that revealed how a hub of nucleoporins (Nups) in the nuclear ring binds to basket-forming Mlp/Tpr proteins: the coiled-coil domains of Mlp/Tpr form the struts of the basket, while their unstructured termini constitute the basket distal densities, which potentially serve as a docking site for mRNA preprocessing before nucleocytoplasmic transport.


Assuntos
Transporte Ativo do Núcleo Celular , Complexo de Proteínas Formadoras de Poros Nucleares , Poro Nuclear , Saccharomyces cerevisiae , Animais , Poro Nuclear/metabolismo , Poro Nuclear/ultraestrutura , Poro Nuclear/química , Saccharomyces cerevisiae/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/química , Camundongos , Núcleo Celular/metabolismo , Toxoplasma/metabolismo , Toxoplasma/ultraestrutura , Microscopia Crioeletrônica , RNA Mensageiro/metabolismo , Modelos Moleculares , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/ultraestrutura
7.
Cell ; 187(18): 5010-5028.e24, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39094570

RESUMO

Faithful transfer of parental histones to newly replicated daughter DNA strands is critical for inheritance of epigenetic states. Although replication proteins that facilitate parental histone transfer have been identified, how intact histone H3-H4 tetramers travel from the front to the back of the replication fork remains unknown. Here, we use AlphaFold-Multimer structural predictions combined with biochemical and genetic approaches to identify the Mrc1/CLASPIN subunit of the replisome as a histone chaperone. Mrc1 contains a conserved histone-binding domain that forms a brace around the H3-H4 tetramer mimicking nucleosomal DNA and H2A-H2B histones, is required for heterochromatin inheritance, and promotes parental histone recycling during replication. We further identify binding sites for the FACT histone chaperone in Swi1/TIMELESS and DNA polymerase α that are required for heterochromatin inheritance. We propose that Mrc1, in concert with FACT acting as a mobile co-chaperone, coordinates the distribution of parental histones to newly replicated DNA.


Assuntos
Replicação do DNA , Epigênese Genética , Heterocromatina , Histonas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Histonas/metabolismo , Heterocromatina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Proteínas de Grupo de Alta Mobilidade/genética , Fatores de Elongação da Transcrição/metabolismo , Fatores de Elongação da Transcrição/genética , Chaperonas de Histonas/metabolismo , Chaperonas Moleculares/metabolismo , DNA Polimerase I/metabolismo , DNA Polimerase I/genética
8.
Annu Rev Biochem ; 92: 227-245, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37001134

RESUMO

Messenger RNA (mRNA) stability and translational efficiency are two crucial aspects of the post-transcriptional process that profoundly impact protein production in a cell. While it is widely known that ribosomes produce proteins, studies during the past decade have surprisingly revealed that ribosomes also control mRNA stability in a codon-dependent manner, a process referred to as codon optimality. Therefore, codons, the three-nucleotide words read by the ribosome, have a potent effect on mRNA stability and provide cis-regulatory information that extends beyond the amino acids they encode. While the codon optimality molecular mechanism is still unclear, the translation elongation rate appears to trigger mRNA decay. Thus, transfer RNAs emerge as potential master gene regulators affecting mRNA stability. Furthermore, while few factors related to codon optimality have been identified in yeast, the orthologous genes in vertebrates do not necessary share the same functions. Here, we discuss codon optimality findings and gene regulation layers related to codon composition in different eukaryotic species.


Assuntos
Biossíntese de Proteínas , Proteínas , Animais , RNA Mensageiro/metabolismo , Códon/genética , Proteínas/genética , Estabilidade de RNA , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
9.
Annu Rev Biochem ; 92: 199-225, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37001138

RESUMO

Formation of the 3' end of a eukaryotic mRNA is a key step in the production of a mature transcript. This process is mediated by a number of protein factors that cleave the pre-mRNA, add a poly(A) tail, and regulate transcription by protein dephosphorylation. Cleavage and polyadenylation specificity factor (CPSF) in humans, or cleavage and polyadenylation factor (CPF) in yeast, coordinates these enzymatic activities with each other, with RNA recognition, and with transcription. The site of pre-mRNA cleavage can strongly influence the translation, stability, and localization of the mRNA. Hence, cleavage site selection is highly regulated. The length of the poly(A) tail is also controlled to ensure that every transcript has a similar tail when it is exported from the nucleus. In this review, we summarize new mechanistic insights into mRNA 3'-end processing obtained through structural studies and biochemical reconstitution and outline outstanding questions in the field.


Assuntos
Precursores de RNA , Fatores de Poliadenilação e Clivagem de mRNA , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/genética , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Expressão Gênica
10.
Cell ; 186(24): 5220-5236.e16, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37944511

RESUMO

The Sc2.0 project is building a eukaryotic synthetic genome from scratch. A major milestone has been achieved with all individual Sc2.0 chromosomes assembled. Here, we describe the consolidation of multiple synthetic chromosomes using advanced endoreduplication intercrossing with tRNA expression cassettes to generate a strain with 6.5 synthetic chromosomes. The 3D chromosome organization and transcript isoform profiles were evaluated using Hi-C and long-read direct RNA sequencing. We developed CRISPR Directed Biallelic URA3-assisted Genome Scan, or "CRISPR D-BUGS," to map phenotypic variants caused by specific designer modifications, known as "bugs." We first fine-mapped a bug in synthetic chromosome II (synII) and then discovered a combinatorial interaction associated with synIII and synX, revealing an unexpected genetic interaction that links transcriptional regulation, inositol metabolism, and tRNASerCGA abundance. Finally, to expedite consolidation, we employed chromosome substitution to incorporate the largest chromosome (synIV), thereby consolidating >50% of the Sc2.0 genome in one strain.


Assuntos
Cromossomos Artificiais de Levedura , Genoma Fúngico , Saccharomyces cerevisiae , Sequência de Bases , Cromossomos/genética , Saccharomyces cerevisiae/genética , Biologia Sintética
11.
Cell ; 186(1): 8-9, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36608660

RESUMO

Much of our foundational knowledge of cellular biology comes from studies in budding yeast, often described as a simple unicellular eukaryotic model. In this issue of Cell, Correia-Melo et al. describe an unappreciated feature of yeast biology involving intra-cellular metabolite exchange, where cells adapt and respond as part of a community, and go on to show that sharing of resources linked to methionine metabolism enhances longevity of cooperating cells.


Assuntos
Longevidade , Saccharomycetales , Saccharomyces cerevisiae/metabolismo , Células Eucarióticas , Citoplasma
12.
Cell ; 186(18): 3810-3825.e18, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37552983

RESUMO

A ubiquitous feature of eukaryotic transcriptional regulation is cooperative self-assembly between transcription factors (TFs) and DNA cis-regulatory motifs. It is thought that this strategy enables specific regulatory connections to be formed in gene networks between otherwise weakly interacting, low-specificity molecular components. Here, using synthetic gene circuits constructed in yeast, we find that high regulatory specificity can emerge from cooperative, multivalent interactions among artificial zinc-finger-based TFs. We show that circuits "wired" using the strategy of cooperative TF assembly are effectively insulated from aberrant misregulation of the host cell genome. As we demonstrate in experiments and mathematical models, this mechanism is sufficient to rescue circuit-driven fitness defects, resulting in genetic and functional stability of circuits in long-term continuous culture. Our naturally inspired approach offers a simple, generalizable means for building high-fidelity, evolutionarily robust gene circuits that can be scaled to a wide range of host organisms and applications.


Assuntos
Redes Reguladoras de Genes , Fatores de Transcrição , Fatores de Transcrição/genética , Saccharomyces cerevisiae/genética , Genoma
13.
Cell ; 186(1): 63-79.e21, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36608659

RESUMO

Metabolism is deeply intertwined with aging. Effects of metabolic interventions on aging have been explained with intracellular metabolism, growth control, and signaling. Studying chronological aging in yeast, we reveal a so far overlooked metabolic property that influences aging via the exchange of metabolites. We observed that metabolites exported by young cells are re-imported by chronologically aging cells, resulting in cross-generational metabolic interactions. Then, we used self-establishing metabolically cooperating communities (SeMeCo) as a tool to increase metabolite exchange and observed significant lifespan extensions. The longevity of the SeMeCo was attributable to metabolic reconfigurations in methionine consumer cells. These obtained a more glycolytic metabolism and increased the export of protective metabolites that in turn extended the lifespan of cells that supplied them with methionine. Our results establish metabolite exchange interactions as a determinant of cellular aging and show that metabolically cooperating cells can shape the metabolic environment to extend their lifespan.


Assuntos
Longevidade , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Metionina/metabolismo , Transdução de Sinais
14.
Cell ; 186(9): 2018-2034.e21, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37080200

RESUMO

Functional genomic strategies have become fundamental for annotating gene function and regulatory networks. Here, we combined functional genomics with proteomics by quantifying protein abundances in a genome-scale knockout library in Saccharomyces cerevisiae, using data-independent acquisition mass spectrometry. We find that global protein expression is driven by a complex interplay of (1) general biological properties, including translation rate, protein turnover, the formation of protein complexes, growth rate, and genome architecture, followed by (2) functional properties, such as the connectivity of a protein in genetic, metabolic, and physical interaction networks. Moreover, we show that functional proteomics complements current gene annotation strategies through the assessment of proteome profile similarity, protein covariation, and reverse proteome profiling. Thus, our study reveals principles that govern protein expression and provides a genome-spanning resource for functional annotation.


Assuntos
Proteoma , Proteômica , Proteômica/métodos , Proteoma/metabolismo , Genômica/métodos , Genoma , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
15.
Cell ; 186(24): 5237-5253.e22, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37944512

RESUMO

Here, we report the design, construction, and characterization of a tRNA neochromosome, a designer chromosome that functions as an additional, de novo counterpart to the native complement of Saccharomyces cerevisiae. Intending to address one of the central design principles of the Sc2.0 project, the ∼190-kb tRNA neochromosome houses all 275 relocated nuclear tRNA genes. To maximize stability, the design incorporates orthogonal genetic elements from non-S. cerevisiae yeast species. Furthermore, the presence of 283 rox recombination sites enables an orthogonal tRNA SCRaMbLE system. Following construction in yeast, we obtained evidence of a potent selective force, manifesting as a spontaneous doubling in cell ploidy. Furthermore, tRNA sequencing, transcriptomics, proteomics, nucleosome mapping, replication profiling, FISH, and Hi-C were undertaken to investigate questions of tRNA neochromosome behavior and function. Its construction demonstrates the remarkable tractability of the yeast model and opens up opportunities to directly test hypotheses surrounding these essential non-coding RNAs.


Assuntos
Cromossomos Artificiais de Levedura , Genoma Fúngico , Saccharomyces cerevisiae , Perfilação da Expressão Gênica , Proteômica , Saccharomyces cerevisiae/genética , Biologia Sintética , RNA de Transferência/genética , Cromossomos Artificiais de Levedura/genética
16.
Cell ; 186(4): 748-763.e15, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36758548

RESUMO

Although many prokaryotes have glycolysis alternatives, it's considered as the only energy-generating glucose catabolic pathway in eukaryotes. Here, we managed to create a hybrid-glycolysis yeast. Subsequently, we identified an inositol pyrophosphatase encoded by OCA5 that could regulate glycolysis and respiration by adjusting 5-diphosphoinositol 1,2,3,4,6-pentakisphosphate (5-InsP7) levels. 5-InsP7 levels could regulate the expression of genes involved in glycolysis and respiration, representing a global mechanism that could sense ATP levels and regulate central carbon metabolism. The hybrid-glycolysis yeast did not produce ethanol during growth under excess glucose and could produce 2.68 g/L free fatty acids, which is the highest reported production in shake flask of Saccharomyces cerevisiae. This study demonstrated the significance of hybrid-glycolysis yeast and determined Oca5 as an inositol pyrophosphatase controlling the balance between glycolysis and respiration, which may shed light on the role of inositol pyrophosphates in regulating eukaryotic metabolism.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Difosfatos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fosfatos de Inositol/genética , Fosfatos de Inositol/metabolismo , Glicólise/genética , Respiração , Pirofosfatases/metabolismo , Glucose/metabolismo
17.
Cell ; 186(2): 305-326.e27, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36638792

RESUMO

All living things experience an increase in entropy, manifested as a loss of genetic and epigenetic information. In yeast, epigenetic information is lost over time due to the relocalization of chromatin-modifying proteins to DNA breaks, causing cells to lose their identity, a hallmark of yeast aging. Using a system called "ICE" (inducible changes to the epigenome), we find that the act of faithful DNA repair advances aging at physiological, cognitive, and molecular levels, including erosion of the epigenetic landscape, cellular exdifferentiation, senescence, and advancement of the DNA methylation clock, which can be reversed by OSK-mediated rejuvenation. These data are consistent with the information theory of aging, which states that a loss of epigenetic information is a reversible cause of aging.


Assuntos
Envelhecimento , Epigênese Genética , Animais , Envelhecimento/genética , Metilação de DNA , Epigenoma , Mamíferos/genética , Nucleoproteínas , Saccharomyces cerevisiae/genética
18.
Cell ; 186(23): 5054-5067.e16, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37949058

RESUMO

Fatty acids (FAs) play a central metabolic role in living cells as constituents of membranes, cellular energy reserves, and second messenger precursors. A 2.6 MDa FA synthase (FAS), where the enzymatic reactions and structures are known, is responsible for FA biosynthesis in yeast. Essential in the yeast FAS catalytic cycle is the acyl carrier protein (ACP) that actively shuttles substrates, biosynthetic intermediates, and products from one active site to another. We resolve the S. cerevisiae FAS structure at 1.9 Å, elucidating cofactors and water networks involved in their recognition. Structural snapshots of ACP domains bound to various enzymatic domains allow the reconstruction of a full yeast FA biosynthesis cycle. The structural information suggests that each FAS functional unit could accommodate exogenous proteins to incorporate various enzymatic activities, and we show proof-of-concept experiments where ectopic proteins are used to modulate FAS product profiles.


Assuntos
Proteína de Transporte de Acila , Ácidos Graxos , Saccharomyces cerevisiae , Proteína de Transporte de Acila/química , Domínio Catalítico , Ácidos Graxos/biossíntese , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
Cell ; 186(4): 837-849.e11, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36693376

RESUMO

Concomitant with DNA replication, the chromosomal cohesin complex establishes cohesion between newly replicated sister chromatids. Cohesion establishment requires acetylation of conserved cohesin lysine residues by Eco1 acetyltransferase. Here, we explore how cohesin acetylation is linked to DNA replication. Biochemical reconstitution of replication-coupled cohesin acetylation reveals that transient DNA structures, which form during DNA replication, control the acetylation reaction. As polymerases complete lagging strand replication, strand displacement synthesis produces DNA flaps that are trimmed to result in nicked double-stranded DNA. Both flaps and nicks stimulate cohesin acetylation, while subsequent nick ligation to complete Okazaki fragment maturation terminates the acetylation reaction. A flapped or nicked DNA substrate constitutes a transient molecular clue that directs cohesin acetylation to a window behind the replication fork, next to where cohesin likely entraps both sister chromatids. Our results provide an explanation for how DNA replication is linked to sister chromatid cohesion establishment.


Assuntos
Cromátides , Proteínas de Saccharomyces cerevisiae , Cromátides/metabolismo , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Replicação do DNA , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , DNA , Acetiltransferases/genética , Acetiltransferases/metabolismo
20.
Annu Rev Biochem ; 91: 157-181, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35303790

RESUMO

Covalent DNA-protein crosslinks (DPCs) are pervasive DNA lesions that interfere with essential chromatin processes such as transcription or replication. This review strives to provide an overview of the sources and principles of cellular DPC formation. DPCs are caused by endogenous reactive metabolites and various chemotherapeutic agents. However, in certain conditions DPCs also arise physiologically in cells. We discuss the cellular mechanisms resolving these threats to genomic integrity. Detection and repair of DPCs require not only the action of canonical DNA repair pathways but also the activity of specialized proteolytic enzymes-including proteases of the SPRTN/Wss1 family-to degrade the crosslinked protein. Loss of DPC repair capacity has dramatic consequences, ranging from genome instability in yeast and worms to cancer predisposition and premature aging in mice and humans.


Assuntos
Reparo do DNA , Proteínas de Saccharomyces cerevisiae , Animais , DNA/genética , DNA/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Instabilidade Genômica , Camundongos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA