Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.072
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 39, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191291

RESUMO

BACKGROUND: Scutellaria baicalensis Georgi has been extensively used as a medicinal herb in China for over 2000 years. They may be intentionally or inadvertently substituted or blended with comparable species in the local market, threatening clinical medication safety. Molecular markers are effective tools to prevent misidentification and eliminate doping and falsification among Scutellaria plants. This study screened four highly variable regions to identify Scutellaria and its adulterants. In addition, a phylogenetic analysis was performed using the complete cp genome combined with published Scutellaria species samples. Moreover, a comparative analysis of the cp genomes was conducted to investigate the cp genome evolution of S. baicalensis. RESULTS: The complete cp genome of five species of Scutellaria was sequenced for the first time, and four previously published Scutellaria species were re-sequenced. They all exhibited a conserved quadripartite structure in their cp genomes, including two distinct regions, namely a small and large single copy region, respectively, and two inverted repeats encompassing the majority of ribosomal RNA genes. Furthermore, the nine species exhibited high conservation from aspects of the genome structure, codon usage, repeat sequences, and gene content. Four highly variable regions (matK-rps16, ndhC-trnV-UAC, psbE-petL, and rps16-trnQ-UUG) may function as potential molecular markers for differentiating S. baicalensis from its adulterants. Additionally, the monophyly of Scutellaria was ascertained and could be reclassified into two subgenera, subgenus Anaspis and subgenus Scutellaria, as evidenced by the phylogenetic analyses on sequences of cp genome and shared protein-coding sequences. According to the molecular clock analysis, it has been inferred that the divergence of Scutellaria occurred at approximately 4.0 Mya during the Pliocene Epoch. CONCLUSION: Our study provides an invaluable theoretical basis for further Scutellaria species identification, phylogenetics, and evolution analysis.


Assuntos
Genoma de Cloroplastos , Plantas Medicinais , Plantas Medicinais/genética , Scutellaria baicalensis/genética , Filogenia , Mapeamento Cromossômico
2.
Plant Mol Biol ; 114(2): 20, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363403

RESUMO

SQUAMOSA PROMOTER BINDING PROTEIN-LIKEs (SPLs) encode plant-specific transcription factors that regulate plant growth and development, stress response, and metabolite accumulation. However, there is limited information on Scutellaria baicalensis SPLs. In this study, 14 SbSPLs were identified and divided into 8 groups based on phylogenetic relationships. SbSPLs in the same group had similar structures. Abscisic acid-responsive (ABRE) and MYB binding site (MBS) cis-acting elements were found in the promoters of 8 and 6 SbSPLs. Segmental duplications and transposable duplications were the main causes of SbSPL expansion. Expression analysis based on transcriptional profiling showed that SbSPL1, SbSPL10, and SbSPL13 were highly expressed in roots, stems, and flowers, respectively. Expression analysis based on quantitative real-time polymerase chain reaction (RT‒qPCR) showed that most SbSPLs responded to low temperature, drought, abscisic acid (ABA) and salicylic acid (SA), among which the expression levels of SbSPL7/9/10/12 were significantly upregulated in response to abiotic stress. These results indicate that SbSPLs are involved in the growth, development and stress response of S. baicalensis. In addition, 8 Sba-miR156/157 s were identified, and SbSPL1-5 was a potential target of Sba-miR156/157 s. The results of target gene prediction and coexpression analysis together indicated that SbSPLs may be involved in the regulation of L-phenylalanine (L-Phe), lignin and jasmonic acid (JA) biosynthesis. In summary, the identification and characterization of the SbSPL gene family lays the foundation for functional research and provides a reference for improved breeding of S. baicalensis stress resistance and quality traits.


Assuntos
Ácido Abscísico , Scutellaria baicalensis , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Scutellaria baicalensis/genética , Scutellaria baicalensis/metabolismo , Filogenia , Melhoramento Vegetal , Estresse Fisiológico/genética , Hormônios/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
3.
Funct Integr Genomics ; 24(2): 55, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38467948

RESUMO

Huang Qin decoction (HQD) is a traditional Chinese medicine formula for treating colitis, but the effects and molecular mechanism of action of HQD in colitis-associated carcinogenesis (CAC) are still unclear. Therefore, we aimed to determine the beneficial effects of HQD on CAC in mice and to reveal the underlying mechanism involved. AOM/DSS was used to induce CAC in mice, and the effects of HQD on tumorigenesis in mice were examined (with mesalazine serving as a positive control). Mesalazine or HQD treatment alleviated body weight loss and decreased the disease activity index in mice induced by AOM/DSS. Mesalazine or HQD treatment also suppressed the shortening of colon tissue length, the number of tumors, and the infiltration of inflammatory cells. The genes targeted by HQD were predicted and verified, followed by knockout experiments. Elevated SLC6A4 and inhibited serotonin production and inflammation were observed in HQD-treated mice. HQD inhibited the NFκB and NLRP3/caspase1/GSDMD pathways. The therapeutic effect of HQD was diminished in SLC6A4-deficient AOM/DSS mice. Additionally, the downregulation of SLC6A4 mitigated the inhibitory effect of HQD-containing serum on MODE-K cell pyroptosis. Our findings suggest that SLC6A4 is a pivotal regulator of HQD-alleviated CAC via its modulation of the NLRP3/caspase1/GSDMD pathway.


Assuntos
Colite , Scutellaria baicalensis , Camundongos , Animais , Mesalamina , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Colite/induzido quimicamente , Colite/complicações , Colite/tratamento farmacológico , Carcinogênese/metabolismo , Camundongos Endogâmicos C57BL
4.
BMC Plant Biol ; 24(1): 804, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39183318

RESUMO

BACKGROUND: 2-oxoglutarate-dependent dioxygenase (2ODD) superfamily is the second largest enzyme family in the plant genome and plays diverse roles in secondary metabolic pathways. The medicinal plant Scutellaria baicalensis Georgi contains various flavonoids, which have the potential to treat coronavirus disease 2019 (COVID-19), such as baicalein and myricetin. Flavone synthase I (FNSI) and flavanone 3-hydroxylase (F3H) from the 2ODDs of DOXC subfamily have been reported to participate in flavonoids biosynthesis. It is certainly interesting to study the 2ODD members involved in the biosynthesis of flavonoids in S. baicalensis. RESULTS: We provided a genome-wide analysis of the 2ODDs of DOXC subfamily in S. baicalensis, a total of 88 2ODD genes were identified, 82 of which were grouped into 25 distinct clades based on phylogenetic analysis of At2ODDs. We then performed a functional analysis of Sb2ODDs involved in the biosynthesis of flavones and dihydroflavonols. Sb2ODD1 and Sb2ODD2 from DOXC38 clade exhibit the activity of FNSI (Flavone synthase I), which exclusively converts pinocembrin to chrysin. Sb2ODD1 has significantly higher transcription levels in the root. While Sb2ODD7 from DOXC28 clade exhibits high expression in flowers, it encodes a F3H (flavanone 3-hydroxylase). This enzyme is responsible for catalyzing the conversion of both naringenin and pinocembrin into dihydrokaempferol and pinobanksin, kinetic analysis showed that Sb2ODD7 exhibited high catalytic efficiency towards naringenin. CONCLUSIONS: Our experiment suggests that Sb2ODD1 may serve as a supplementary factor to SbFNSII-2 and play a role in flavone biosynthesis specifically in the roots of S. baicalensis. Sb2ODD7 is mainly responsible for dihydrokaempferol biosynthesis in flowers, which can be further directed into the metabolic pathways of flavonols and anthocyanins.


Assuntos
Dioxigenases , Flavonoides , Scutellaria baicalensis , Flavonoides/biossíntese , Flavonoides/metabolismo , Scutellaria baicalensis/genética , Scutellaria baicalensis/metabolismo , Scutellaria baicalensis/enzimologia , Dioxigenases/genética , Dioxigenases/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flavanonas/metabolismo , Flavanonas/biossíntese , Regulação da Expressão Gênica de Plantas , Genes de Plantas
5.
Arch Microbiol ; 206(8): 349, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992278

RESUMO

Candida auris, a rapidly spreading multi-drug-resistant fungus, is causing lethal infections under certain conditions globally. Baicalin (BE), an active ingredient extracted from the dried root of Scutellaria baicalensis Georgi, exhibits antifungal activity. However, studies have shown the distinctive advantages of Traditional Chinese medicine in combating fungal infections, while the effect of BE, an active ingredient extracted from the dried roots of Scutellaria baicalensis Georgi, on C. auris, remains unknown. Therefore, this study aims to evaluate the potential of BE as an antifungal agent against the emerging multidrug-resistant C. auris. Various assays and models, including microbroth dilution, time growth curve analysis, spot assays, adhesion tests, flocculation test, cell surface hydrophobicity assay, hydrolase activity assays, XTT assay, violet crystal assay, scanning electron microscope (SEM), confocal laser scanning microscope (CLSM), flow cytometry, Live/dead fluorescent staining, reactive oxygen species (ROS), cell wall assay, aggregation assay, porcine skin model, Galleria mellonella larvae (G. mellonella larvae) infection model, and reverse transcription-quantitative polymerase chain reaction (RT-PCR) were utilized to investigate how baicalein suppresses C. auris through possible multifaceted mechanisms. The findings indicate that BE strongly inhibited C. auris growth, adhesion, and biofilm formation. It also effectively reduced drug resistance and aggregation by disrupting the cell membrane and cell wall while reducing colonization and invasion of the host. Transcriptome analysis showed significant modulation in gene expression related to different virulence factors post-BE treatment. In conclusion, BE exhibits significant effectiveness against C. auris, suggesting its potential as a viable treatment option due to its multifaceted suppression mechanisms.


Assuntos
Antifúngicos , Candida auris , Flavanonas , Fatores de Virulência , Flavanonas/farmacologia , Fatores de Virulência/metabolismo , Fatores de Virulência/genética , Animais , Antifúngicos/farmacologia , Candida auris/efeitos dos fármacos , Candida auris/genética , Testes de Sensibilidade Microbiana , Scutellaria baicalensis/química , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Suínos , Larva/microbiologia , Mariposas/microbiologia , Biofilmes/efeitos dos fármacos , Extratos Vegetais/farmacologia , Flavonoides
6.
BMC Infect Dis ; 24(1): 695, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997656

RESUMO

BACKGROUND: Sepsis is a life-threatening organ dysfunction, which seriously threatens human health. The clinical and experimental results have confirmed that Traditional Chinese medicine (TCM), such as Scutellariae Radix, has anti-inflammatory effects. This provides a new idea for the treatment of sepsis. This study systematically analyzed the mechanism of Scutellariae Radix treatment in sepsis based on network pharmacology, RNA sequencing and molecular docking. METHODS: Gene expression analysis was performed using Bulk RNA sequencing on sepsis patients and healthy volunteers. After quality control of the results, the differentially expressed genes (DEGs) were analyzed. The active ingredients and targets of Scutellariae Radix were identified using The Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Gene Ontology (GO) and Protein-Protein Interaction (PPI) analysis were performed for disease-drug intersection targets. With the help of GEO database, Survival analysis and Meta-analysis was performed on the cross-targets to evaluate the prognostic value and screen the core targets. Subsequently, single-cell RNA sequencing was used to determine where the core targets are located within the cell. Finally, in this study, molecular docking experiments were performed to further clarify the interrelationship between the active components of Scutellariae Radix and the corresponding targets. RESULTS: There were 72 active ingredients of Scutellariae Radix, and 50 common targets of drug and disease. GO and PPI analysis showed that the intersection targets were mainly involved in response to chemical stress, response to oxygen levels, response to drug, regulation of immune system process. Survival analysis showed that PRKCD, EGLN1 and CFLAR were positively correlated with sepsis prognosis. Meta-analysis found that the three genes were highly expressed in sepsis survivor, while lowly in non-survivor. PRKCD was mostly found in Macrophages, while EGLN1 and CFLAR were widely expressed in immune cells. The active ingredient Apigenin regulates CFLAR expression, Baicalein regulates EGLN1 expression, and Wogonin regulates PRKCD expression. Molecular docking studies confrmed that the three active components of astragalus have good binding activities with their corresponding targets. CONCLUSIONS: Apigenin, Baicalein and Wogonin, important active components of Scutellaria Radix, produce anti-sepsis effects by regulating the expression of their targets CFLAR, EGLN1 and PRKCD.


Assuntos
Medicamentos de Ervas Chinesas , Simulação de Acoplamento Molecular , Scutellaria baicalensis , Sepse , Análise de Sequência de RNA , Humanos , Sepse/tratamento farmacológico , Scutellaria baicalensis/química , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Medicina Tradicional Chinesa , Flavanonas/uso terapêutico , Flavanonas/farmacologia , Mapas de Interação de Proteínas , Apigenina/uso terapêutico , Apigenina/farmacologia , Perfilação da Expressão Gênica , Ontologia Genética , Farmacologia em Rede
7.
Phytopathology ; 114(7): 1533-1541, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38377011

RESUMO

Fusarium root rot is usually classified as an extremely destructive soilborne disease. From 2020 to 2021, Fusarium root rot was observed in production areas and seriously affected the yield and quality of Scutellaria baicalensis in Shanxi Province, China. Based on morphological characteristics and combined analysis of the internal transcribed spacer region of ribosomal DNA and translation elongation factor 1-alpha sequences, 68 Fusarium isolates obtained in this work were identified as F. oxysporum (52.94%), F. acuminatum (20.59%), F. solani (16.17%), F. proliferatum (5.88%), F. incarnatum (2.94%), and F. brachygibbosum (1.47%). In the pathogenicity tests, all Fusarium isolates could infect S. baicalensis roots, presenting different pathogenic ability. Among these isolates, F. oxysporum was found to have the highest virulence on S. baicalensis roots, followed by F. acuminatum, F. solani, F. proliferatum, F. brachygibbosum, and F. incarnatum. According to fungicide sensitivity tests, Fusarium isolates were more sensitive to fludioxonil and difenoconazole, followed by carbendazim, thiophanate-methyl, and hymexazol. In brief, this is the first report of Fusarium species (F. oxysporum, F. acuminatum, F. solani, F. proliferatum, F. incarnatum, and F. brachygibbosum) as causal agents of root rot of S. baicalensis in Shanxi Province, China. The fungicide sensitivity results will be helpful for formulating management strategies of S. baicalensis root rot.


Assuntos
Fungicidas Industriais , Fusarium , Doenças das Plantas , Raízes de Plantas , Scutellaria baicalensis , Fusarium/genética , Fusarium/efeitos dos fármacos , Fusarium/patogenicidade , Fusarium/isolamento & purificação , Fusarium/fisiologia , Scutellaria baicalensis/microbiologia , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , China , Fungicidas Industriais/farmacologia , Filogenia , Carbamatos/farmacologia , Benzimidazóis
8.
Environ Toxicol ; 39(5): 3172-3187, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38348599

RESUMO

OBJECTIVE: Scutellaria baicalensis (SB) and Polygonatum Rhizoma (PR), two traditional Chinese medicines, are both known to suppress cancer. However, the mechanism and effect of combined treatment of them for lung cancer are rarely known. Investigating the combined effect of SB and PR (hereafter referred to as SP) in potential mechanism of lung cancer is required. This study was to evaluate the inhibitory effects of SP on A549 cell growth and to explore the underlying molecular mechanisms. METHODS: According to the theory of Chinese medicine and network pharmacology, in the in vivo experiment, a mouse model of carcinoma in situ was constructed, and lung carcinoma in situ tissues were collected for proteomics analysis, hematoxylin-eosin staining, and CK19 immunohistochemistry. In the in vitro experiment, lung cancer A549 cells at logarithmic growth stage were taken, and the inhibitory effect of SP on the proliferation of A549 cells was detected by CCK8 method. The expression of PON3 was detected by quantitative polymerase chain reaction and western blot. In addition, the effect of SP on the induction of apoptosis in A549 cells and the changes of membrane potential and reactive oxygen species (ROS) content were detected by flow cytometry. The changes of PON3 content in endoplasmic reticulum (ER) are observed by laser confocal microscopy, whereas the effects of SP on the expression of apoptosis-related proteins and ER stress-related proteins in A549 cells were examined by western blot. RESULT: By searching the Traditional Chinese Medicines of Systems Pharmacology (TCMSP) (https://www.tcmspe.com/index.php) database and SymMap database, the respective target genes of PR and SB were mapped into protein network interactions, and using Venn diagrams to show 38 genes in common between PR and SB and lung cancer, SP was found to play a role in the treatment of lung cancer. In vivo experiments showed that in a lung carcinoma in situ model, lung tumor tissue was significantly lower in the SP group compared with the control group, and PON3 was shown to be downregulated by lung tissue proteomics analysis. The combination of SP was able to inhibit the proliferation of A549 cells in a concentration-dependent manner (p < .0001). The expression levels of apoptosis-related proteins and ER stress proteins were significantly increased and the expression levels of PON3 and anti-apoptosis-related proteins were decreased in A549 cells. At the same time, knockdown of PON3 could inhibit tumor cell proliferation (p < .0001). The combination of different concentrations of SP significantly induced apoptosis in A549 cells (p < .05; p < .0001), increased ROS content (p < .01), and damaged mitochondrial membrane potential of A549 cells (p < .05; p < .0001), and significantly increased the expression levels of apoptosis-related proteins and ER stress proteins in lung cancer A549 cells. CONCLUSION: SP inhibits proliferation of lung cancer A549 cells by downregulating PON3-induced apoptosis in the mitochondrial and ER pathways.


Assuntos
Carcinoma in Situ , Neoplasias Pulmonares , Polygonatum , Animais , Camundongos , Humanos , Células A549 , Polygonatum/metabolismo , Scutellaria baicalensis/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Regulação para Baixo , Neoplasias Pulmonares/patologia , Apoptose , Proliferação de Células , Estresse do Retículo Endoplasmático , Proteínas de Choque Térmico/metabolismo , Linhagem Celular Tumoral
9.
Arch Pharm (Weinheim) ; 357(9): e2400053, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38849327

RESUMO

Scutellarein is a flavonoid from Scutellaria baicalensis Georgi that has been shown to have a variety of pharmacological activities. This review aims to summarize the pharmacological and pharmacokinetic studies on scutellarein and provide useful information for relevant scholars. Pharmacological studies indicate that scutellarein possesses a diverse range of pharmacological properties, including but not limited to anti-inflammatory, antioxidant, antiviral, neuroprotective, hypoglycemic, hypolipidemic, anticancer, and cardiovascular protective effects. Further investigation reveals that the pharmacological effects of scutellarein are driven by multiple mechanisms. These mechanisms encompass the scavenging of free radicals, inhibition of the activation of inflammatory signaling pathways and expression of inflammatory mediators, inhibition of the activity of crucial viral proteins, suppression of gluconeogenesis, amelioration of insulin resistance, improvement of cerebral ischemia-reperfusion injury, induction of apoptosis in cancer cells, and prevention of myocardial hypertrophy, among others. In summary, these pharmacological studies suggest that scutellarein holds promise for the treatment of various diseases. It is imperative to conduct clinical studies to further elucidate the therapeutic effects of scutellarein. However, it is worth noting that studies on the pharmacokinetics reveal an inhibitory effect of scutellarein on uridine 5'-diphosphate glucuronide transferases and cytochrome P450 enzymes, potentially posing safety risks.


Assuntos
Apigenina , Humanos , Apigenina/farmacologia , Apigenina/farmacocinética , Animais , Antioxidantes/farmacologia , Antioxidantes/farmacocinética , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/farmacocinética , Scutellaria baicalensis/química , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/farmacocinética , Hipoglicemiantes/farmacologia , Hipoglicemiantes/farmacocinética
10.
Phytochem Anal ; 35(2): 239-253, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37779216

RESUMO

INTRODUCTION: Scutellaria baicalensis Georgi, a traditional Chinese medicine, is widely applied to treat various diseases among people, especially in East Asia. However, the specific active compounds in S. baicalensis aqueous extracts (SBAEs) responsible for the hypoglycemic and hypolipidemic properties as well as their potential mechanisms of action remain unclear. OBJECTIVES: This work aimed to explore the potential hypoglycemic and hypolipidemic compounds from SBAE and their potential mechanisms of action. METHODOLOGY: The in vitro inhibitory tests against lipase and α-glucosidase, and the effects of SBAE on glucose consumption and total triglyceride content in HepG2 cells were first performed to evaluate the hypoglycemic and hypolipidemic effects. Then, affinity ultrafiltration liquid chromatography-mass spectrometry (LC-MS) screening strategy with five drug targets, including α-glucosidase, α-amylase, protein tyrosine phosphatase 1B (PTP1B), lipase and 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) was developed to screen out the potential active constituents from SBAE, and some representative active compounds were further validated. RESULTS: SBAE displayed noteworthy hypoglycemic and hypolipidemic properties, and 4, 10, 4, 8, and 8 potential bioactive components against α-amylase, α-glucosidase, PTP1B, HMGCR, and lipase were initially screened out, respectively. The interaction network was thus constructed between the potential bioactive compounds screened out and their corresponding drug targets. Among them, baicalein, wogonin, and wogonoside were revealed to possess remarkable hypoglycemic and hypolipidemic effects. CONCLUSION: The potential hypolipidemic and hypoglycemic bioactive compounds in SBAE and their mode of action were initially explored through ligand-target interactions by combining affinity ultrafiltration LC-MS strategy with five drug targets.


Assuntos
Scutellaria baicalensis , Ultrafiltração , Humanos , alfa-Glucosidases , Hipoglicemiantes/farmacologia , Lipase , alfa-Amilases
11.
Phytochem Anal ; 35(7): 1587-1599, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38850098

RESUMO

INTRODUCTION: Quality evaluation of Huang-qin is significant to ensure its clinical efficacy. OBJECTIVE: This study aims to establish an accurate, rapid and comprehensive Huang-qin quality evaluation method to overcome the time-consuming and laborious shortcomings of traditional herbal medicine quality assessment methods. METHODS: The contents of baicalin, baicalein and scutellarin in Huang-qin from five different origins were analyzed by FT-IR and NIR spectra combined with multivariate data technology. The quality of Huang-qin from different origins was evaluated by TOPSIS and consistency analysis based on the content of three active ingredients. The correlation between ecological factors and the accumulation of active ingredients was explored. RESULTS: Satisfactory prediction results of PLS models were obtained. Relatively, the model based on FT-IR combined with the PLS regression method has higher R2 and smaller RMSE than the NIR combined with the PLS method. TOPSIS and consistency analysis results showed that the quality of Huang-qin from different geographical origins was significantly different. The results showed that the quality of Huang-qin produced in Shanxi Province was the best among the five origins studied. The results also found that the quality of Huang-qin in different growing areas of the same origin was not completely consistent. The correlation study showed that altitude, sunshine duration and rainfall were the main factors that caused the quality difference of medicinal materials in different geographical origins. CONCLUSION: This study provides a reference for the rapid quantitative analysis of the active components of herbal medicine and the quality evaluation of them.


Assuntos
Medicamentos de Ervas Chinesas , Espectroscopia de Luz Próxima ao Infravermelho , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/análise , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Flavonoides/análise , Flavanonas/análise , Quimiometria/métodos , Apigenina/análise , Apigenina/química , Controle de Qualidade , Glucuronatos/análise , Análise dos Mínimos Quadrados , Scutellaria baicalensis/química
12.
Int J Mol Sci ; 25(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38396723

RESUMO

The water and ethanol extracts of huangqin, the roots of Scutellaria baicalensis Georgi. with potential antiviral properties and antioxidant activities, were investigated for their chemical profiles and their abilities to interfere with the interaction between SARS-CoV-2 spike protein and ACE2, inhibiting ACE2 activity and scavenging free radicals. A total of 76 compounds were tentatively identified from the extracts. The water extract showed a greater inhibition on the interaction between SARS-CoV-2 spike protein and ACE2, but less inhibition on ACE2 activity than that of the ethanol extract on a per botanical weight concentration basis. The total phenolic content was 65.27 mg gallic acid equivalent (GAE)/g dry botanical and the scavenging capacities against HO●, DPPH●, and ABTS●+ were 1369.39, 334.37, and 533.66 µmol trolox equivalent (TE)/g dry botanical for the water extract, respectively. These values were greater than those of the ethanol extract, with a TPC of 20.34 mg GAE/g, and 217.17, 10.93, and 50.21 µmol TE/g against HO●, DPPH●, and ABTS●+, respectively. The results suggested the potential use of huangqin as a functional food ingredient in preventing COVID-19.


Assuntos
Benzotiazóis , COVID-19 , Scutellaria baicalensis , Ácidos Sulfônicos , Humanos , Scutellaria baicalensis/química , Glicoproteína da Espícula de Coronavírus , Enzima de Conversão de Angiotensina 2 , SARS-CoV-2 , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Radicais Livres , Etanol , Água
13.
Int J Mol Sci ; 25(5)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38474182

RESUMO

Blocking the interaction between the SARS-CoV-2 spike protein and the human angiotensin-converting enzyme II (hACE2) protein serves as a therapeutic strategy for treating COVID-19. Traditional Chinese medicine (TCM) treatments containing bioactive products could alleviate the symptoms of severe COVID-19. However, the emergence of SARS-CoV-2 variants has complicated the process of developing broad-spectrum drugs. As such, the aim of this study was to explore the efficacy of TCM treatments against SARS-CoV-2 variants through targeting the interaction of the viral spike protein with the hACE2 receptor. Antiviral activity was systematically evaluated using a pseudovirus system. Scutellaria baicalensis (S. baicalensis) was found to be effective against SARS-CoV-2 infection, as it mediated the interaction between the viral spike protein and the hACE2 protein. Moreover, the active molecules of S. baicalensis were identified and analyzed. Baicalein and baicalin, a flavone and a flavone glycoside found in S. baicalensis, respectively, exhibited strong inhibitory activities targeting the viral spike protein and the hACE2 protein, respectively. Under optimized conditions, virus infection was inhibited by 98% via baicalein-treated pseudovirus and baicalin-treated hACE2. In summary, we identified the potential SARS-CoV-2 inhibitors from S. baicalensis that mediate the interaction between the Omicron spike protein and the hACE2 receptor. Future studies on the therapeutic application of baicalein and baicalin against SARS-CoV-2 variants are needed.


Assuntos
COVID-19 , Flavonas , Humanos , SARS-CoV-2 , Scutellaria baicalensis , Glicoproteína da Espícula de Coronavírus , Angiotensinas , Ligação Proteica
14.
Int J Mol Sci ; 25(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38396803

RESUMO

Osteoarthritis is the most common type of arthritis, characterized by joint pain and a decline in physiological function. Scutellaria baicalensis Georgi (SB) is potentially effective against osteoarthritis because of its wide range of anti-inflammatory pharmacological activities. This study aimed to identify the mode of action of SB against osteoarthritis using network pharmacology prediction and experimental verification. Networks were constructed to key compounds, hub targets, and pathways essential for SB's effectiveness against osteoarthritis. Additionally, in vivo and in vitro tests were performed, including investigations on weight bearing in hind limbs, the acetic acid-induced writhing response, lipopolysaccharide-stimulated RAW264.7 cells, and serum cytokine responses. We identified 15 active compounds and 14 hub targets, supporting the anti-osteoarthritis effects of SB. The Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated that fluid shear stress, atherosclerosis, phosphatidylinositol 3-kinase-Akt signaling, and cellular senescence pathways were important. SB showed substantial anti-inflammatory, analgesic, and joint tissue-protective effects against osteoarthritis. Our study shows that SB has the potential value to be further investigated as a candidate material for the treatment of osteoarthritis in the future.


Assuntos
Medicamentos de Ervas Chinesas , Osteoartrite , Farmacologia em Rede , Scutellaria baicalensis , Osteoartrite/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Inflamação/tratamento farmacológico , Dor/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Simulação de Acoplamento Molecular
15.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474318

RESUMO

Hepatocellular carcinoma is one of the most common malignant tumors in the world and shows strong metastatic potential. Current medicine for hepatocellular carcinoma therapy is invalid, while Scutellaria baicalensis Georgi exhibits the pharmaceutical potential to treat liver diseases and liver cancer. Herein, we verified the inhibitory properties and the pivotal molecules regimented by Scutellaria baicalensis on advanced hepatocellular carcinoma. At first, the viability of SK-Hep-1 cells was significantly reduced under treatment of Scutellaria baicalensis extract in a dose-dependent manner without affecting the growth of normal hepatocyte. Scutellaria baicalensis extract application could remarkably cause apoptosis of SK-Hep-1 cells through p53/cytochrome C/poly-ADP ribose polymerase cascades and arrest the cell cycle at the G1/S phase by downregulating cyclin-dependent kinases. Meanwhile, administration of Scutellaria baicalensis extract remarkably attenuated the migration capability as well as suppressed matrix metalloproteinase activity of advanced hepatocellular carcinoma cells. The proteome profiles and network analysis particularly implied that exposure to Scutellaria baicalensis extract downregulated the expression of HSP90ß, and the clinical stage of hepatocellular carcinoma is also positively correlated with the HSP90ß level. Combined treatment of Scutellaria baicalensis extract and HSP90ß siRNAs could markedly enhance the ubiquitination activity and the degradation of vimentin to subsequently inhibit the metastatic property of SK-Hep-1 cells. Moreover, application of Scutellaria baicalensis extract and HSP90ß siRNAs depleted phosphorylation of AKT, which stimulated the expression of p53 and consecutively triggered cell apoptosis. These findings suggest that HSP90ß may be a prospective target for the effective therapy of advanced hepatocellular carcinoma via accelerating apoptosis of hepatocellular carcinoma cells and eliciting mesenchymal-epithelial transition with the administration of Scutellaria baicalensis extract.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Extratos Vegetais , Scutellaria baicalensis , Humanos , Apoptose , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Extratos Vegetais/farmacologia , Proteína Supressora de Tumor p53
16.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38612466

RESUMO

Type 2 diabetes mellitus (T2DM) is marked by persistent hyperglycemia, insulin resistance, and pancreatic ß-cell dysfunction, imposing substantial health burdens and elevating the risk of systemic complications and cardiovascular diseases. While the pathogenesis of diabetes remains elusive, a cyclical relationship between insulin resistance and inflammation is acknowledged, wherein inflammation exacerbates insulin resistance, perpetuating a deleterious cycle. Consequently, anti-inflammatory interventions offer a therapeutic avenue for T2DM management. In this study, a herb called Baikal skullcap, renowned for its repertoire of bioactive compounds with anti-inflammatory potential, is posited as a promising source for novel T2DM therapeutic strategies. Our study probed the anti-diabetic properties of compounds from Baikal skullcap via network pharmacology, molecular docking, and cellular assays, concentrating on their dual modulatory effects on diabetes through Protein Tyrosine Phosphatase 1B (PTP1B) enzyme inhibition and anti-inflammatory actions. We identified the major compounds in Baikal skullcap using liquid chromatography-mass spectrometry (LC-MS), highlighting six flavonoids, including the well-studied baicalein, as potent inhibitors of PTP1B. Furthermore, cellular experiments revealed that baicalin and baicalein exhibited enhanced anti-inflammatory responses compared to the active constituents of licorice, a known anti-inflammatory agent in TCM. Our findings confirmed that baicalin and baicalein mitigate diabetes via two distinct pathways: PTP1B inhibition and anti-inflammatory effects. Additionally, we have identified six flavonoid molecules with substantial potential for drug development, thereby augmenting the T2DM pharmacotherapeutic arsenal and promoting the integration of herb-derived treatments into modern pharmacology.


Assuntos
Diabetes Mellitus Tipo 2 , Flavanonas , Resistência à Insulina , Scutellaria baicalensis , Diabetes Mellitus Tipo 2/tratamento farmacológico , Espectrometria de Massa com Cromatografia Líquida , Cromatografia Líquida , Simulação de Acoplamento Molecular , Espectrometria de Massas em Tandem , Flavonoides/farmacologia , Inflamação , Anti-Inflamatórios/farmacologia
17.
Molecules ; 29(17)2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39275001

RESUMO

Ethanolic extracts of Baikal skullcap (Scutellaria baicalensis) root were obtained using various techniques, such as maceration, maceration with shaking, ultrasound-assisted extraction, reflux extraction, and Soxhlet extraction. The influence of the type and time of isolation technique on the extraction process was studied, and the quality of the obtained extracts was determined by spectrophotometric and chromatographic methods to find the optimal extraction conditions. Radical scavenging activity of the extracts was analyzed using DPPH assay, while total phenolic content (TPC) was analyzed by the method with the Folin-Ciocalteu reagent. Application of gas chromatography with mass selective detector (GC-MS) enabled the identification of some bioactive substances and a comparison of the composition of the particular extracts. The Baikal skullcap root extracts characterized by both the highest antioxidant activity and content of phenolic compounds were obtained in 2 h of reflux and Soxhlet extraction. The main biologically active compounds identified in extracts by the GC-MS method were wogonin and oroxylin A, known for their broad spectrum of biological effects, including antioxidant, anti-inflammatory, antiviral, anticancer, and others.


Assuntos
Antioxidantes , Etanol , Fenóis , Extratos Vegetais , Raízes de Plantas , Scutellaria baicalensis , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Scutellaria baicalensis/química , Antioxidantes/química , Antioxidantes/farmacologia , Fenóis/análise , Fenóis/química , Etanol/química , Cromatografia Gasosa-Espectrometria de Massas , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/isolamento & purificação , Flavanonas/química , Flavanonas/isolamento & purificação , Flavanonas/análise
18.
Bull Exp Biol Med ; 176(6): 827-829, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38890211

RESUMO

The severity of ischemic injury was evaluated by densitometry of brain samples stained with 2,3,5-triphenyltetrazolium chloride (TTC) on a rat model of cerebral ischemia/reperfusion (common carotid artery occlusion) and the neuroprotective activity of an extract of Astragalus membranaceus, Scutellaria baicalensis, and Phlojodicarpus sibiricus was assessed. Occlusion of the common carotid arteries led to a weakening of TTC staining of the brain tissue: densitometric indicators of the staining intensity for the cortex and striatum were lower than the corresponding indicators of sham-operated rats by 18.3 and 10.4%. The mean intensity of staining of brain samples did not differ in rats treated with the extract and sham-operated animals, which attested to its neuroprotective effect. The applied method is convenient for evaluation of the severity of ischemic brain damage at the early stages and screening potential neuroprotective agents.


Assuntos
Isquemia Encefálica , Fármacos Neuroprotetores , Extratos Vegetais , Animais , Ratos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Masculino , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/patologia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Astragalus propinquus/química , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/prevenção & controle , Sais de Tetrazólio/química , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Ratos Wistar , Modelos Animais de Doenças , Scutellaria baicalensis
19.
Zhongguo Zhong Yao Za Zhi ; 49(3): 809-818, 2024 Feb.
Artigo em Zh | MEDLINE | ID: mdl-38621885

RESUMO

Scutellariae Radix extract is one of the important components in Shuganning Injection. In this study, an ultra-performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS) method was established for simultaneously determining five components in Shuganning Injection and Scutellariae Radix extract in bile, urine, and feces of rats, so as to reveal the difference in the excretion process of Shuganning Injection and Scutellariae Radix extract in rats and explore the law of the excretion process of the five components in vivo before and after the compatibility of Scutellariae Radix. Rats were injected with Shuganning Injection and Scutellariae Radix extract(4.2 mL·kg~(-1)), respectively, and the excretion of baicalin, baicalein, oroxylin A, oroxylin A-7-O-ß-D-glucuronide, and scutellarin in bile, urine, and feces of rats in 24 h was observed. The results showed that except for baicalin, the other four index components were excreted as prototype components in a high proportion after intravenous injection of Shuganning Injection and Scutellariae Radix extract in rats, respectively. The excretion of each component was relatively high in urine and less in feces and bile. After the compatibility of Scutellariae Radix extract, the accumulative excretion of five index components in rats all decreased. Among them, the cumulative excretion of baicalein in bile, urine, and feces significantly decreased by 26.67%, 48.11%, and 31.01%. The cumulative excretion of baicalin in bile, urine, and feces decreased significantly by 70.69%, 19.43%, and 31.22%. The result showed that the five index components in Scutellariae Radix extract were mainly excreted by the kidneys, and other components in Shuganning Injection delayed the excretion process and prolonged the residence time. This study is of great significance for elucidating the compatibility rationality of Shuganning Injection.


Assuntos
Bile , Scutellaria baicalensis , Ratos , Animais , Cromatografia Líquida , Espectrometria de Massas em Tandem , Flavonoides , Fezes , Cromatografia Líquida de Alta Pressão
20.
Zhongguo Zhong Yao Za Zhi ; 49(17): 4768-4776, 2024 Sep.
Artigo em Zh | MEDLINE | ID: mdl-39307811

RESUMO

This study established an ultra-high performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS) method to determine the content of five index components in rat tissues and organs after administration of Shuganning Injection or Scutellariae Radix extract. The dynamic changes and differences of the distribution of the five index components over time between the two groups were studied, and the effects of Scutellariae Radix alone or in combination with other medicines on the tissue distribution of the five components were explored. After Shuganning Injection or Scutellariae Radix extract was injected into the tail vein of rats, the heart, liver, spleen, lung, kidney, stomach, intestine, and brain tissue samples were collected at four time points of 0.17, 0.5, 1, and 2 h, respectively. UPLC-MS/MS was employed to measure the concentrations of the five index components(baicalin, baicalein, oroxylin A, oroxylin A-7-O-ß-D-glucuronide, and scutellarin) in the samples of the two groups. The results showed that the established method was simple, fast, and exclusively stable. After the administration of Shuganning Injection and Scutellariae Radix extract, the five index components presented wide distribution and had differences in vivo. The two groups showcased abundant distribution of baicalin, baicalein, and oroxylin A in the kidney and liver, oroxylin A-7-O-ß-D-glucuronide in the kidney and brain, and scutellarin in the kidney and heart. The content of baicalin in the heart, liver, kidney, and intestine, baicalein in the liver and kidney, and oroxylin A in the lung after administration of Shuganning Injection(Scutellariae Radix in combination with other medicines) was significantly higher than that after administration of Scutellariae Radix extract. The results of this study suggested that the five components of Shuganning Injection and Scutellariae Radix extract demonstrated wide distribution without accumulation in rats. The combination of Scutellariae Radix with other medicines can increase the distribution of active components in rats, which provided a basis for explaining the rationality of the compatibility of Shuganning Injection from in vivo processes.


Assuntos
Medicamentos de Ervas Chinesas , Flavonoides , Ratos Sprague-Dawley , Scutellaria baicalensis , Espectrometria de Massas em Tandem , Animais , Scutellaria baicalensis/química , Espectrometria de Massas em Tandem/métodos , Ratos , Distribuição Tecidual , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacocinética , Medicamentos de Ervas Chinesas/análise , Cromatografia Líquida de Alta Pressão/métodos , Masculino , Flavonoides/análise , Flavanonas/análise , Extratos Vegetais/química , Apigenina/análise , Espectrometria de Massa com Cromatografia Líquida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA